1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
/* $OpenBSD: softraid_raid1c.c,v 1.6 2021/10/24 14:50:42 tobhe Exp $ */
/*
* Copyright (c) 2007 Marco Peereboom <marco@peereboom.us>
* Copyright (c) 2008 Hans-Joerg Hoexer <hshoexer@openbsd.org>
* Copyright (c) 2008 Damien Miller <djm@mindrot.org>
* Copyright (c) 2009 Joel Sing <jsing@openbsd.org>
* Copyright (c) 2020 Stefan Sperling <stsp@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "bio.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/disk.h>
#include <sys/rwlock.h>
#include <sys/queue.h>
#include <sys/fcntl.h>
#include <sys/mount.h>
#include <sys/sensors.h>
#include <sys/stat.h>
#include <sys/task.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <crypto/cryptodev.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#include <scsi/scsi_disk.h>
#include <dev/softraidvar.h>
/* RAID 1C functions. */
int sr_raid1c_create(struct sr_discipline *, struct bioc_createraid *,
int, int64_t);
int sr_raid1c_add_offline_chunks(struct sr_discipline *, int);
int sr_raid1c_assemble(struct sr_discipline *, struct bioc_createraid *,
int, void *);
int sr_raid1c_alloc_resources(struct sr_discipline *);
void sr_raid1c_free_resources(struct sr_discipline *sd);
int sr_raid1c_ioctl(struct sr_discipline *sd, struct bioc_discipline *bd);
int sr_raid1c_meta_opt_handler(struct sr_discipline *,
struct sr_meta_opt_hdr *);
int sr_raid1c_rw(struct sr_workunit *);
int sr_raid1c_dev_rw(struct sr_workunit *, struct sr_crypto_wu *);
void sr_raid1c_done(struct sr_workunit *wu);
/* RAID1 functions */
extern int sr_raid1_init(struct sr_discipline *sd);
extern int sr_raid1_assemble(struct sr_discipline *,
struct bioc_createraid *, int, void *);
extern int sr_raid1_wu_done(struct sr_workunit *);
extern void sr_raid1_set_chunk_state(struct sr_discipline *, int, int);
extern void sr_raid1_set_vol_state(struct sr_discipline *);
/* CRYPTO raid functions */
extern struct sr_crypto_wu *sr_crypto_prepare(struct sr_workunit *,
struct sr_crypto *, int);
extern int sr_crypto_meta_create(struct sr_discipline *,
struct sr_crypto *, struct bioc_createraid *);
extern int sr_crypto_set_key(struct sr_discipline *,
struct sr_crypto *, struct bioc_createraid *, int, void *);
extern int sr_crypto_alloc_resources_internal(struct sr_discipline *,
struct sr_crypto *);
extern void sr_crypto_free_resources_internal(struct sr_discipline *,
struct sr_crypto *);
extern int sr_crypto_ioctl_internal(struct sr_discipline *,
struct sr_crypto *, struct bioc_discipline *);
int sr_crypto_meta_opt_handler_internal(struct sr_discipline *,
struct sr_crypto *, struct sr_meta_opt_hdr *);
void sr_crypto_done_internal(struct sr_workunit *,
struct sr_crypto *);
/* Discipline initialisation. */
void
sr_raid1c_discipline_init(struct sr_discipline *sd)
{
int i;
/* Fill out discipline members. */
sd->sd_wu_size = sizeof(struct sr_crypto_wu);
sd->sd_type = SR_MD_RAID1C;
strlcpy(sd->sd_name, "RAID 1C", sizeof(sd->sd_name));
sd->sd_capabilities = SR_CAP_SYSTEM_DISK | SR_CAP_AUTO_ASSEMBLE |
SR_CAP_REBUILD | SR_CAP_REDUNDANT;
sd->sd_max_wu = SR_RAID1C_NOWU;
for (i = 0; i < SR_CRYPTO_MAXKEYS; i++)
sd->mds.mdd_raid1c.sr1c_crypto.scr_sid[i] = (u_int64_t)-1;
/* Setup discipline specific function pointers. */
sd->sd_alloc_resources = sr_raid1c_alloc_resources;
sd->sd_assemble = sr_raid1c_assemble;
sd->sd_create = sr_raid1c_create;
sd->sd_free_resources = sr_raid1c_free_resources;
sd->sd_ioctl_handler = sr_raid1c_ioctl;
sd->sd_meta_opt_handler = sr_raid1c_meta_opt_handler;
sd->sd_scsi_rw = sr_raid1c_rw;
sd->sd_scsi_done = sr_raid1c_done;
sd->sd_scsi_wu_done = sr_raid1_wu_done;
sd->sd_set_chunk_state = sr_raid1_set_chunk_state;
sd->sd_set_vol_state = sr_raid1_set_vol_state;
}
int
sr_raid1c_create(struct sr_discipline *sd, struct bioc_createraid *bc,
int no_chunk, int64_t coerced_size)
{
int rv;
if (no_chunk < 2) {
sr_error(sd->sd_sc, "%s requires two or more chunks",
sd->sd_name);
return EINVAL;
}
sd->sd_meta->ssdi.ssd_size = coerced_size;
rv = sr_raid1_init(sd);
if (rv)
return rv;
return sr_crypto_meta_create(sd, &sd->mds.mdd_raid1c.sr1c_crypto, bc);
}
int
sr_raid1c_add_offline_chunks(struct sr_discipline *sd, int no_chunk)
{
struct sr_chunk *ch_entry, *ch_prev;
struct sr_chunk **chunks;
int c;
chunks = mallocarray(sd->sd_meta->ssdi.ssd_chunk_no,
sizeof(struct sr_chunk *), M_DEVBUF, M_WAITOK | M_ZERO);
for (c = 0; c < no_chunk; c++)
chunks[c] = sd->sd_vol.sv_chunks[c];
for (c = no_chunk; c < sd->sd_meta->ssdi.ssd_chunk_no; c++) {
ch_prev = chunks[c - 1];
ch_entry = malloc(sizeof(struct sr_chunk), M_DEVBUF,
M_WAITOK | M_ZERO);
ch_entry->src_meta.scm_status = BIOC_SDOFFLINE;
ch_entry->src_dev_mm = NODEV;
SLIST_INSERT_AFTER(ch_prev, ch_entry, src_link);
chunks[c] = ch_entry;
}
free(sd->sd_vol.sv_chunks, M_DEVBUF,
sizeof(struct sr_chunk *) * no_chunk);
sd->sd_vol.sv_chunks = chunks;
return (0);
}
int
sr_raid1c_assemble(struct sr_discipline *sd, struct bioc_createraid *bc,
int no_chunk, void *data)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
int rv;
/* Create NODEV place-holders for missing chunks. */
if (no_chunk < sd->sd_meta->ssdi.ssd_chunk_no) {
rv = sr_raid1c_add_offline_chunks(sd, no_chunk);
if (rv)
return (rv);
}
rv = sr_raid1_assemble(sd, bc, no_chunk, NULL);
if (rv)
return (rv);
return sr_crypto_set_key(sd, &mdd_raid1c->sr1c_crypto, bc,
no_chunk, data);
}
int
sr_raid1c_ioctl(struct sr_discipline *sd, struct bioc_discipline *bd)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
return sr_crypto_ioctl_internal(sd, &mdd_raid1c->sr1c_crypto, bd);
}
int
sr_raid1c_alloc_resources(struct sr_discipline *sd)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
return sr_crypto_alloc_resources_internal(sd, &mdd_raid1c->sr1c_crypto);
}
void
sr_raid1c_free_resources(struct sr_discipline *sd)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
sr_crypto_free_resources_internal(sd, &mdd_raid1c->sr1c_crypto);
}
int
sr_raid1c_dev_rw(struct sr_workunit *wu, struct sr_crypto_wu *crwu)
{
struct sr_discipline *sd = wu->swu_dis;
struct scsi_xfer *xs = wu->swu_xs;
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
struct sr_ccb *ccb;
struct uio *uio;
struct sr_chunk *scp;
int ios, chunk, i, rt;
daddr_t blkno;
blkno = wu->swu_blk_start;
if (xs->flags & SCSI_DATA_IN)
ios = 1;
else
ios = sd->sd_meta->ssdi.ssd_chunk_no;
for (i = 0; i < ios; i++) {
if (xs->flags & SCSI_DATA_IN) {
rt = 0;
ragain:
/* interleave reads */
chunk = mdd_raid1c->sr1c_raid1.sr1_counter++ %
sd->sd_meta->ssdi.ssd_chunk_no;
scp = sd->sd_vol.sv_chunks[chunk];
switch (scp->src_meta.scm_status) {
case BIOC_SDONLINE:
case BIOC_SDSCRUB:
break;
case BIOC_SDOFFLINE:
case BIOC_SDREBUILD:
case BIOC_SDHOTSPARE:
if (rt++ < sd->sd_meta->ssdi.ssd_chunk_no)
goto ragain;
/* FALLTHROUGH */
default:
/* volume offline */
printf("%s: is offline, cannot read\n",
DEVNAME(sd->sd_sc));
goto bad;
}
} else {
/* writes go on all working disks */
chunk = i;
scp = sd->sd_vol.sv_chunks[chunk];
switch (scp->src_meta.scm_status) {
case BIOC_SDONLINE:
if (ISSET(wu->swu_flags, SR_WUF_REBUILD))
continue;
break;
case BIOC_SDSCRUB:
case BIOC_SDREBUILD:
break;
case BIOC_SDHOTSPARE: /* should never happen */
case BIOC_SDOFFLINE:
continue;
default:
goto bad;
}
}
ccb = sr_ccb_rw(sd, chunk, blkno, xs->datalen, xs->data,
xs->flags, 0);
if (!ccb) {
/* should never happen but handle more gracefully */
printf("%s: %s: too many ccbs queued\n",
DEVNAME(sd->sd_sc),
sd->sd_meta->ssd_devname);
goto bad;
}
if (!ISSET(xs->flags, SCSI_DATA_IN) &&
!ISSET(wu->swu_flags, SR_WUF_REBUILD)) {
uio = crwu->cr_crp->crp_buf;
ccb->ccb_buf.b_data = uio->uio_iov->iov_base;
ccb->ccb_opaque = crwu;
}
sr_wu_enqueue_ccb(wu, ccb);
}
sr_schedule_wu(wu);
return (0);
bad:
return (EINVAL);
}
int
sr_raid1c_meta_opt_handler(struct sr_discipline *sd, struct sr_meta_opt_hdr *om)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
return sr_crypto_meta_opt_handler_internal(sd,
&mdd_raid1c->sr1c_crypto, om);
}
int
sr_raid1c_rw(struct sr_workunit *wu)
{
struct sr_crypto_wu *crwu;
struct sr_raid1c *mdd_raid1c;
daddr_t blkno;
int rv, err;
int s;
DNPRINTF(SR_D_DIS, "%s: sr_raid1c_rw wu %p\n",
DEVNAME(wu->swu_dis->sd_sc), wu);
if (sr_validate_io(wu, &blkno, "sr_raid1c_rw"))
return (1);
if (ISSET(wu->swu_xs->flags, SCSI_DATA_OUT) &&
!ISSET(wu->swu_flags, SR_WUF_REBUILD)) {
mdd_raid1c = &wu->swu_dis->mds.mdd_raid1c;
crwu = sr_crypto_prepare(wu, &mdd_raid1c->sr1c_crypto, 1);
rv = crypto_invoke(crwu->cr_crp);
DNPRINTF(SR_D_INTR, "%s: sr_raid1c_rw: wu %p xs: %p\n",
DEVNAME(wu->swu_dis->sd_sc), wu, wu->swu_xs);
if (rv) {
/* fail io */
wu->swu_xs->error = XS_DRIVER_STUFFUP;
s = splbio();
sr_scsi_done(wu->swu_dis, wu->swu_xs);
splx(s);
}
if ((err = sr_raid1c_dev_rw(wu, crwu)) != 0)
return (err);
} else
rv = sr_raid1c_dev_rw(wu, NULL);
return (rv);
}
void
sr_raid1c_done(struct sr_workunit *wu)
{
struct sr_raid1c *mdd_raid1c = &wu->swu_dis->mds.mdd_raid1c;
sr_crypto_done_internal(wu, &mdd_raid1c->sr1c_crypto);
}
|