1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
|
/* $OpenBSD: kern_event.c,v 1.185 2022/03/16 16:17:46 visa Exp $ */
/*-
* Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/kern/kern_event.c,v 1.22 2001/02/23 20:32:42 jlemon Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/pledge.h>
#include <sys/malloc.h>
#include <sys/unistd.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/fcntl.h>
#include <sys/selinfo.h>
#include <sys/queue.h>
#include <sys/event.h>
#include <sys/eventvar.h>
#include <sys/ktrace.h>
#include <sys/pool.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <sys/mount.h>
#include <sys/poll.h>
#include <sys/syscallargs.h>
#include <sys/time.h>
#include <sys/timeout.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#ifdef DIAGNOSTIC
#define KLIST_ASSERT_LOCKED(kl) do { \
if ((kl)->kl_ops != NULL) \
(kl)->kl_ops->klo_assertlk((kl)->kl_arg); \
else \
KERNEL_ASSERT_LOCKED(); \
} while (0)
#else
#define KLIST_ASSERT_LOCKED(kl) ((void)(kl))
#endif
struct kqueue *kqueue_alloc(struct filedesc *);
void kqueue_terminate(struct proc *p, struct kqueue *);
void KQREF(struct kqueue *);
void KQRELE(struct kqueue *);
void kqueue_purge(struct proc *, struct kqueue *);
int kqueue_sleep(struct kqueue *, struct timespec *);
int kqueue_read(struct file *, struct uio *, int);
int kqueue_write(struct file *, struct uio *, int);
int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
struct proc *p);
int kqueue_poll(struct file *fp, int events, struct proc *p);
int kqueue_kqfilter(struct file *fp, struct knote *kn);
int kqueue_stat(struct file *fp, struct stat *st, struct proc *p);
int kqueue_close(struct file *fp, struct proc *p);
void kqueue_wakeup(struct kqueue *kq);
#ifdef KQUEUE_DEBUG
void kqueue_do_check(struct kqueue *kq, const char *func, int line);
#define kqueue_check(kq) kqueue_do_check((kq), __func__, __LINE__)
#else
#define kqueue_check(kq) do {} while (0)
#endif
static int filter_attach(struct knote *kn);
static void filter_detach(struct knote *kn);
static int filter_event(struct knote *kn, long hint);
static int filter_modify(struct kevent *kev, struct knote *kn);
static int filter_process(struct knote *kn, struct kevent *kev);
static void kqueue_expand_hash(struct kqueue *kq);
static void kqueue_expand_list(struct kqueue *kq, int fd);
static void kqueue_task(void *);
static int klist_lock(struct klist *);
static void klist_unlock(struct klist *, int);
const struct fileops kqueueops = {
.fo_read = kqueue_read,
.fo_write = kqueue_write,
.fo_ioctl = kqueue_ioctl,
.fo_poll = kqueue_poll,
.fo_kqfilter = kqueue_kqfilter,
.fo_stat = kqueue_stat,
.fo_close = kqueue_close
};
void knote_attach(struct knote *kn);
void knote_detach(struct knote *kn);
void knote_drop(struct knote *kn, struct proc *p);
void knote_enqueue(struct knote *kn);
void knote_dequeue(struct knote *kn);
int knote_acquire(struct knote *kn, struct klist *, int);
void knote_release(struct knote *kn);
void knote_activate(struct knote *kn);
void knote_remove(struct proc *p, struct kqueue *kq, struct knlist *list,
int purge);
void filt_kqdetach(struct knote *kn);
int filt_kqueue(struct knote *kn, long hint);
int filt_kqueuemodify(struct kevent *kev, struct knote *kn);
int filt_kqueueprocess(struct knote *kn, struct kevent *kev);
int filt_kqueue_common(struct knote *kn, struct kqueue *kq);
int filt_procattach(struct knote *kn);
void filt_procdetach(struct knote *kn);
int filt_proc(struct knote *kn, long hint);
int filt_fileattach(struct knote *kn);
void filt_timerexpire(void *knx);
int filt_timerattach(struct knote *kn);
void filt_timerdetach(struct knote *kn);
int filt_timermodify(struct kevent *kev, struct knote *kn);
int filt_timerprocess(struct knote *kn, struct kevent *kev);
void filt_seltruedetach(struct knote *kn);
const struct filterops kqread_filtops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_kqdetach,
.f_event = filt_kqueue,
.f_modify = filt_kqueuemodify,
.f_process = filt_kqueueprocess,
};
const struct filterops proc_filtops = {
.f_flags = 0,
.f_attach = filt_procattach,
.f_detach = filt_procdetach,
.f_event = filt_proc,
};
const struct filterops file_filtops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = filt_fileattach,
.f_detach = NULL,
.f_event = NULL,
};
const struct filterops timer_filtops = {
.f_flags = 0,
.f_attach = filt_timerattach,
.f_detach = filt_timerdetach,
.f_event = NULL,
.f_modify = filt_timermodify,
.f_process = filt_timerprocess,
};
struct pool knote_pool;
struct pool kqueue_pool;
struct mutex kqueue_klist_lock = MUTEX_INITIALIZER(IPL_MPFLOOR);
int kq_ntimeouts = 0;
int kq_timeoutmax = (4 * 1024);
#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
/*
* Table for for all system-defined filters.
*/
const struct filterops *const sysfilt_ops[] = {
&file_filtops, /* EVFILT_READ */
&file_filtops, /* EVFILT_WRITE */
NULL, /*&aio_filtops,*/ /* EVFILT_AIO */
&file_filtops, /* EVFILT_VNODE */
&proc_filtops, /* EVFILT_PROC */
&sig_filtops, /* EVFILT_SIGNAL */
&timer_filtops, /* EVFILT_TIMER */
&file_filtops, /* EVFILT_DEVICE */
&file_filtops, /* EVFILT_EXCEPT */
};
void
KQREF(struct kqueue *kq)
{
refcnt_take(&kq->kq_refcnt);
}
void
KQRELE(struct kqueue *kq)
{
struct filedesc *fdp;
if (refcnt_rele(&kq->kq_refcnt) == 0)
return;
fdp = kq->kq_fdp;
if (rw_status(&fdp->fd_lock) == RW_WRITE) {
LIST_REMOVE(kq, kq_next);
} else {
fdplock(fdp);
LIST_REMOVE(kq, kq_next);
fdpunlock(fdp);
}
KASSERT(TAILQ_EMPTY(&kq->kq_head));
KASSERT(kq->kq_nknotes == 0);
free(kq->kq_knlist, M_KEVENT, kq->kq_knlistsize *
sizeof(struct knlist));
hashfree(kq->kq_knhash, KN_HASHSIZE, M_KEVENT);
klist_free(&kq->kq_sel.si_note);
pool_put(&kqueue_pool, kq);
}
void
kqueue_init(void)
{
pool_init(&kqueue_pool, sizeof(struct kqueue), 0, IPL_MPFLOOR,
PR_WAITOK, "kqueuepl", NULL);
pool_init(&knote_pool, sizeof(struct knote), 0, IPL_MPFLOOR,
PR_WAITOK, "knotepl", NULL);
}
void
kqueue_init_percpu(void)
{
pool_cache_init(&knote_pool);
}
int
filt_fileattach(struct knote *kn)
{
struct file *fp = kn->kn_fp;
return fp->f_ops->fo_kqfilter(fp, kn);
}
int
kqueue_kqfilter(struct file *fp, struct knote *kn)
{
struct kqueue *kq = kn->kn_fp->f_data;
if (kn->kn_filter != EVFILT_READ)
return (EINVAL);
kn->kn_fop = &kqread_filtops;
klist_insert(&kq->kq_sel.si_note, kn);
return (0);
}
void
filt_kqdetach(struct knote *kn)
{
struct kqueue *kq = kn->kn_fp->f_data;
klist_remove(&kq->kq_sel.si_note, kn);
}
int
filt_kqueue_common(struct knote *kn, struct kqueue *kq)
{
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
kn->kn_data = kq->kq_count;
return (kn->kn_data > 0);
}
int
filt_kqueue(struct knote *kn, long hint)
{
struct kqueue *kq = kn->kn_fp->f_data;
int active;
mtx_enter(&kq->kq_lock);
active = filt_kqueue_common(kn, kq);
mtx_leave(&kq->kq_lock);
return (active);
}
int
filt_kqueuemodify(struct kevent *kev, struct knote *kn)
{
struct kqueue *kq = kn->kn_fp->f_data;
int active;
mtx_enter(&kq->kq_lock);
knote_assign(kev, kn);
active = filt_kqueue_common(kn, kq);
mtx_leave(&kq->kq_lock);
return (active);
}
int
filt_kqueueprocess(struct knote *kn, struct kevent *kev)
{
struct kqueue *kq = kn->kn_fp->f_data;
int active;
mtx_enter(&kq->kq_lock);
if (kev != NULL && (kn->kn_flags & EV_ONESHOT))
active = 1;
else
active = filt_kqueue_common(kn, kq);
if (active)
knote_submit(kn, kev);
mtx_leave(&kq->kq_lock);
return (active);
}
int
filt_procattach(struct knote *kn)
{
struct process *pr;
int s;
if ((curproc->p_p->ps_flags & PS_PLEDGE) &&
(curproc->p_p->ps_pledge & PLEDGE_PROC) == 0)
return pledge_fail(curproc, EPERM, PLEDGE_PROC);
if (kn->kn_id > PID_MAX)
return ESRCH;
pr = prfind(kn->kn_id);
if (pr == NULL)
return (ESRCH);
/* exiting processes can't be specified */
if (pr->ps_flags & PS_EXITING)
return (ESRCH);
kn->kn_ptr.p_process = pr;
kn->kn_flags |= EV_CLEAR; /* automatically set */
/*
* internal flag indicating registration done by kernel
*/
if (kn->kn_flags & EV_FLAG1) {
kn->kn_data = kn->kn_sdata; /* ppid */
kn->kn_fflags = NOTE_CHILD;
kn->kn_flags &= ~EV_FLAG1;
}
s = splhigh();
klist_insert_locked(&pr->ps_klist, kn);
splx(s);
return (0);
}
/*
* The knote may be attached to a different process, which may exit,
* leaving nothing for the knote to be attached to. So when the process
* exits, the knote is marked as DETACHED and also flagged as ONESHOT so
* it will be deleted when read out. However, as part of the knote deletion,
* this routine is called, so a check is needed to avoid actually performing
* a detach, because the original process does not exist any more.
*/
void
filt_procdetach(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
struct process *pr = kn->kn_ptr.p_process;
int s, status;
mtx_enter(&kq->kq_lock);
status = kn->kn_status;
mtx_leave(&kq->kq_lock);
if (status & KN_DETACHED)
return;
s = splhigh();
klist_remove_locked(&pr->ps_klist, kn);
splx(s);
}
int
filt_proc(struct knote *kn, long hint)
{
struct kqueue *kq = kn->kn_kq;
u_int event;
/*
* mask off extra data
*/
event = (u_int)hint & NOTE_PCTRLMASK;
/*
* if the user is interested in this event, record it.
*/
if (kn->kn_sfflags & event)
kn->kn_fflags |= event;
/*
* process is gone, so flag the event as finished and remove it
* from the process's klist
*/
if (event == NOTE_EXIT) {
struct process *pr = kn->kn_ptr.p_process;
int s;
mtx_enter(&kq->kq_lock);
kn->kn_status |= KN_DETACHED;
mtx_leave(&kq->kq_lock);
s = splhigh();
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
kn->kn_data = W_EXITCODE(pr->ps_xexit, pr->ps_xsig);
klist_remove_locked(&pr->ps_klist, kn);
splx(s);
return (1);
}
/*
* process forked, and user wants to track the new process,
* so attach a new knote to it, and immediately report an
* event with the parent's pid.
*/
if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
struct kevent kev;
int error;
/*
* register knote with new process.
*/
memset(&kev, 0, sizeof(kev));
kev.ident = hint & NOTE_PDATAMASK; /* pid */
kev.filter = kn->kn_filter;
kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
kev.fflags = kn->kn_sfflags;
kev.data = kn->kn_id; /* parent */
kev.udata = kn->kn_udata; /* preserve udata */
error = kqueue_register(kq, &kev, 0, NULL);
if (error)
kn->kn_fflags |= NOTE_TRACKERR;
}
return (kn->kn_fflags != 0);
}
static void
filt_timer_timeout_add(struct knote *kn)
{
struct timeval tv;
struct timeout *to = kn->kn_hook;
int tticks;
tv.tv_sec = kn->kn_sdata / 1000;
tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
tticks = tvtohz(&tv);
/* Remove extra tick from tvtohz() if timeout has fired before. */
if (timeout_triggered(to))
tticks--;
timeout_add(to, (tticks > 0) ? tticks : 1);
}
void
filt_timerexpire(void *knx)
{
struct knote *kn = knx;
struct kqueue *kq = kn->kn_kq;
kn->kn_data++;
mtx_enter(&kq->kq_lock);
knote_activate(kn);
mtx_leave(&kq->kq_lock);
if ((kn->kn_flags & EV_ONESHOT) == 0)
filt_timer_timeout_add(kn);
}
/*
* data contains amount of time to sleep, in milliseconds
*/
int
filt_timerattach(struct knote *kn)
{
struct timeout *to;
if (kq_ntimeouts > kq_timeoutmax)
return (ENOMEM);
kq_ntimeouts++;
kn->kn_flags |= EV_CLEAR; /* automatically set */
to = malloc(sizeof(*to), M_KEVENT, M_WAITOK);
timeout_set(to, filt_timerexpire, kn);
kn->kn_hook = to;
filt_timer_timeout_add(kn);
return (0);
}
void
filt_timerdetach(struct knote *kn)
{
struct timeout *to;
to = (struct timeout *)kn->kn_hook;
timeout_del_barrier(to);
free(to, M_KEVENT, sizeof(*to));
kq_ntimeouts--;
}
int
filt_timermodify(struct kevent *kev, struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
struct timeout *to = kn->kn_hook;
/* Reset the timer. Any pending events are discarded. */
timeout_del_barrier(to);
mtx_enter(&kq->kq_lock);
if (kn->kn_status & KN_QUEUED)
knote_dequeue(kn);
kn->kn_status &= ~KN_ACTIVE;
mtx_leave(&kq->kq_lock);
kn->kn_data = 0;
knote_assign(kev, kn);
/* Reinit timeout to invoke tick adjustment again. */
timeout_set(to, filt_timerexpire, kn);
filt_timer_timeout_add(kn);
return (0);
}
int
filt_timerprocess(struct knote *kn, struct kevent *kev)
{
int active, s;
s = splsoftclock();
active = (kn->kn_data != 0);
if (active)
knote_submit(kn, kev);
splx(s);
return (active);
}
/*
* filt_seltrue:
*
* This filter "event" routine simulates seltrue().
*/
int
filt_seltrue(struct knote *kn, long hint)
{
/*
* We don't know how much data can be read/written,
* but we know that it *can* be. This is about as
* good as select/poll does as well.
*/
kn->kn_data = 0;
return (1);
}
int
filt_seltruemodify(struct kevent *kev, struct knote *kn)
{
knote_assign(kev, kn);
return (kn->kn_fop->f_event(kn, 0));
}
int
filt_seltrueprocess(struct knote *kn, struct kevent *kev)
{
int active;
active = kn->kn_fop->f_event(kn, 0);
if (active)
knote_submit(kn, kev);
return (active);
}
/*
* This provides full kqfilter entry for device switch tables, which
* has same effect as filter using filt_seltrue() as filter method.
*/
void
filt_seltruedetach(struct knote *kn)
{
/* Nothing to do */
}
const struct filterops seltrue_filtops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_seltruedetach,
.f_event = filt_seltrue,
.f_modify = filt_seltruemodify,
.f_process = filt_seltrueprocess,
};
int
seltrue_kqfilter(dev_t dev, struct knote *kn)
{
switch (kn->kn_filter) {
case EVFILT_READ:
case EVFILT_WRITE:
kn->kn_fop = &seltrue_filtops;
break;
default:
return (EINVAL);
}
/* Nothing more to do */
return (0);
}
static int
filt_dead(struct knote *kn, long hint)
{
if (kn->kn_filter == EVFILT_EXCEPT) {
/*
* Do not deliver event because there is no out-of-band data.
* However, let HUP condition pass for poll(2).
*/
if ((kn->kn_flags & __EV_POLL) == 0) {
kn->kn_flags |= EV_DISABLE;
return (0);
}
}
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
if (kn->kn_flags & __EV_POLL)
kn->kn_flags |= __EV_HUP;
kn->kn_data = 0;
return (1);
}
static void
filt_deaddetach(struct knote *kn)
{
/* Nothing to do */
}
const struct filterops dead_filtops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_deaddetach,
.f_event = filt_dead,
.f_modify = filt_seltruemodify,
.f_process = filt_seltrueprocess,
};
static int
filt_badfd(struct knote *kn, long hint)
{
kn->kn_flags |= (EV_ERROR | EV_ONESHOT);
kn->kn_data = EBADF;
return (1);
}
/* For use with kqpoll. */
const struct filterops badfd_filtops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_deaddetach,
.f_event = filt_badfd,
.f_modify = filt_seltruemodify,
.f_process = filt_seltrueprocess,
};
static int
filter_attach(struct knote *kn)
{
int error;
if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
error = kn->kn_fop->f_attach(kn);
} else {
KERNEL_LOCK();
error = kn->kn_fop->f_attach(kn);
KERNEL_UNLOCK();
}
return (error);
}
static void
filter_detach(struct knote *kn)
{
if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
kn->kn_fop->f_detach(kn);
} else {
KERNEL_LOCK();
kn->kn_fop->f_detach(kn);
KERNEL_UNLOCK();
}
}
static int
filter_event(struct knote *kn, long hint)
{
if ((kn->kn_fop->f_flags & FILTEROP_MPSAFE) == 0)
KERNEL_ASSERT_LOCKED();
return (kn->kn_fop->f_event(kn, hint));
}
static int
filter_modify(struct kevent *kev, struct knote *kn)
{
int active, s;
if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
active = kn->kn_fop->f_modify(kev, kn);
} else {
KERNEL_LOCK();
if (kn->kn_fop->f_modify != NULL) {
active = kn->kn_fop->f_modify(kev, kn);
} else {
s = splhigh();
active = knote_modify(kev, kn);
splx(s);
}
KERNEL_UNLOCK();
}
return (active);
}
static int
filter_process(struct knote *kn, struct kevent *kev)
{
int active, s;
if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
active = kn->kn_fop->f_process(kn, kev);
} else {
KERNEL_LOCK();
if (kn->kn_fop->f_process != NULL) {
active = kn->kn_fop->f_process(kn, kev);
} else {
s = splhigh();
active = knote_process(kn, kev);
splx(s);
}
KERNEL_UNLOCK();
}
return (active);
}
/*
* Initialize the current thread for poll/select system call.
* num indicates the number of serials that the system call may utilize.
* After this function, the valid range of serials is
* p_kq_serial <= x < p_kq_serial + num.
*/
void
kqpoll_init(unsigned int num)
{
struct proc *p = curproc;
struct filedesc *fdp;
if (p->p_kq == NULL) {
p->p_kq = kqueue_alloc(p->p_fd);
p->p_kq_serial = arc4random();
fdp = p->p_fd;
fdplock(fdp);
LIST_INSERT_HEAD(&fdp->fd_kqlist, p->p_kq, kq_next);
fdpunlock(fdp);
}
if (p->p_kq_serial + num < p->p_kq_serial) {
/* Serial is about to wrap. Clear all attached knotes. */
kqueue_purge(p, p->p_kq);
p->p_kq_serial = 0;
}
}
/*
* Finish poll/select system call.
* num must have the same value that was used with kqpoll_init().
*/
void
kqpoll_done(unsigned int num)
{
struct proc *p = curproc;
struct kqueue *kq = p->p_kq;
KASSERT(p->p_kq != NULL);
KASSERT(p->p_kq_serial + num >= p->p_kq_serial);
p->p_kq_serial += num;
/*
* Because of kn_pollid key, a thread can in principle allocate
* up to O(maxfiles^2) knotes by calling poll(2) repeatedly
* with suitably varying pollfd arrays.
* Prevent such a large allocation by clearing knotes eagerly
* if there are too many of them.
*
* A small multiple of kq_knlistsize should give enough margin
* that eager clearing is infrequent, or does not happen at all,
* with normal programs.
* A single pollfd entry can use up to three knotes.
* Typically there is no significant overlap of fd and events
* between different entries in the pollfd array.
*/
if (kq->kq_nknotes > 4 * kq->kq_knlistsize)
kqueue_purge(p, kq);
}
void
kqpoll_exit(void)
{
struct proc *p = curproc;
if (p->p_kq == NULL)
return;
kqueue_purge(p, p->p_kq);
kqueue_terminate(p, p->p_kq);
KASSERT(p->p_kq->kq_refcnt.r_refs == 1);
KQRELE(p->p_kq);
p->p_kq = NULL;
}
struct kqueue *
kqueue_alloc(struct filedesc *fdp)
{
struct kqueue *kq;
kq = pool_get(&kqueue_pool, PR_WAITOK | PR_ZERO);
refcnt_init(&kq->kq_refcnt);
kq->kq_fdp = fdp;
TAILQ_INIT(&kq->kq_head);
mtx_init(&kq->kq_lock, IPL_HIGH);
task_set(&kq->kq_task, kqueue_task, kq);
klist_init_mutex(&kq->kq_sel.si_note, &kqueue_klist_lock);
return (kq);
}
int
sys_kqueue(struct proc *p, void *v, register_t *retval)
{
struct filedesc *fdp = p->p_fd;
struct kqueue *kq;
struct file *fp;
int fd, error;
kq = kqueue_alloc(fdp);
fdplock(fdp);
error = falloc(p, &fp, &fd);
if (error)
goto out;
fp->f_flag = FREAD | FWRITE;
fp->f_type = DTYPE_KQUEUE;
fp->f_ops = &kqueueops;
fp->f_data = kq;
*retval = fd;
LIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_next);
kq = NULL;
fdinsert(fdp, fd, 0, fp);
FRELE(fp, p);
out:
fdpunlock(fdp);
if (kq != NULL)
pool_put(&kqueue_pool, kq);
return (error);
}
int
sys_kevent(struct proc *p, void *v, register_t *retval)
{
struct kqueue_scan_state scan;
struct filedesc* fdp = p->p_fd;
struct sys_kevent_args /* {
syscallarg(int) fd;
syscallarg(const struct kevent *) changelist;
syscallarg(int) nchanges;
syscallarg(struct kevent *) eventlist;
syscallarg(int) nevents;
syscallarg(const struct timespec *) timeout;
} */ *uap = v;
struct kevent *kevp;
struct kqueue *kq;
struct file *fp;
struct timespec ts;
struct timespec *tsp = NULL;
int i, n, nerrors, error;
int ready, total;
struct kevent kev[KQ_NEVENTS];
if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL)
return (EBADF);
if (fp->f_type != DTYPE_KQUEUE) {
error = EBADF;
goto done;
}
if (SCARG(uap, timeout) != NULL) {
error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
if (error)
goto done;
#ifdef KTRACE
if (KTRPOINT(p, KTR_STRUCT))
ktrreltimespec(p, &ts);
#endif
if (ts.tv_sec < 0 || !timespecisvalid(&ts)) {
error = EINVAL;
goto done;
}
tsp = &ts;
}
kq = fp->f_data;
nerrors = 0;
while ((n = SCARG(uap, nchanges)) > 0) {
if (n > nitems(kev))
n = nitems(kev);
error = copyin(SCARG(uap, changelist), kev,
n * sizeof(struct kevent));
if (error)
goto done;
#ifdef KTRACE
if (KTRPOINT(p, KTR_STRUCT))
ktrevent(p, kev, n);
#endif
for (i = 0; i < n; i++) {
kevp = &kev[i];
kevp->flags &= ~EV_SYSFLAGS;
error = kqueue_register(kq, kevp, 0, p);
if (error || (kevp->flags & EV_RECEIPT)) {
if (SCARG(uap, nevents) != 0) {
kevp->flags = EV_ERROR;
kevp->data = error;
copyout(kevp, SCARG(uap, eventlist),
sizeof(*kevp));
SCARG(uap, eventlist)++;
SCARG(uap, nevents)--;
nerrors++;
} else {
goto done;
}
}
}
SCARG(uap, nchanges) -= n;
SCARG(uap, changelist) += n;
}
if (nerrors) {
*retval = nerrors;
error = 0;
goto done;
}
kqueue_scan_setup(&scan, kq);
FRELE(fp, p);
/*
* Collect as many events as we can. The timeout on successive
* loops is disabled (kqueue_scan() becomes non-blocking).
*/
total = 0;
error = 0;
while ((n = SCARG(uap, nevents) - total) > 0) {
if (n > nitems(kev))
n = nitems(kev);
ready = kqueue_scan(&scan, n, kev, tsp, p, &error);
if (ready == 0)
break;
error = copyout(kev, SCARG(uap, eventlist) + total,
sizeof(struct kevent) * ready);
#ifdef KTRACE
if (KTRPOINT(p, KTR_STRUCT))
ktrevent(p, kev, ready);
#endif
total += ready;
if (error || ready < n)
break;
}
kqueue_scan_finish(&scan);
*retval = total;
return (error);
done:
FRELE(fp, p);
return (error);
}
#ifdef KQUEUE_DEBUG
void
kqueue_do_check(struct kqueue *kq, const char *func, int line)
{
struct knote *kn;
int count = 0, nmarker = 0;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
if (kn->kn_filter == EVFILT_MARKER) {
if ((kn->kn_status & KN_QUEUED) != 0)
panic("%s:%d: kq=%p kn=%p marker QUEUED",
func, line, kq, kn);
nmarker++;
} else {
if ((kn->kn_status & KN_ACTIVE) == 0)
panic("%s:%d: kq=%p kn=%p knote !ACTIVE",
func, line, kq, kn);
if ((kn->kn_status & KN_QUEUED) == 0)
panic("%s:%d: kq=%p kn=%p knote !QUEUED",
func, line, kq, kn);
if (kn->kn_kq != kq)
panic("%s:%d: kq=%p kn=%p kn_kq=%p != kq",
func, line, kq, kn, kn->kn_kq);
count++;
if (count > kq->kq_count)
goto bad;
}
}
if (count != kq->kq_count) {
bad:
panic("%s:%d: kq=%p kq_count=%d count=%d nmarker=%d",
func, line, kq, kq->kq_count, count, nmarker);
}
}
#endif
int
kqueue_register(struct kqueue *kq, struct kevent *kev, unsigned int pollid,
struct proc *p)
{
struct filedesc *fdp = kq->kq_fdp;
const struct filterops *fops = NULL;
struct file *fp = NULL;
struct knote *kn = NULL, *newkn = NULL;
struct knlist *list = NULL;
int active, error = 0;
KASSERT(pollid == 0 || (p != NULL && p->p_kq == kq));
if (kev->filter < 0) {
if (kev->filter + EVFILT_SYSCOUNT < 0)
return (EINVAL);
fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
}
if (fops == NULL) {
/*
* XXX
* filter attach routine is responsible for ensuring that
* the identifier can be attached to it.
*/
return (EINVAL);
}
if (fops->f_flags & FILTEROP_ISFD) {
/* validate descriptor */
if (kev->ident > INT_MAX)
return (EBADF);
}
if (kev->flags & EV_ADD)
newkn = pool_get(&knote_pool, PR_WAITOK | PR_ZERO);
again:
if (fops->f_flags & FILTEROP_ISFD) {
if ((fp = fd_getfile(fdp, kev->ident)) == NULL) {
error = EBADF;
goto done;
}
mtx_enter(&kq->kq_lock);
if (kev->flags & EV_ADD)
kqueue_expand_list(kq, kev->ident);
if (kev->ident < kq->kq_knlistsize)
list = &kq->kq_knlist[kev->ident];
} else {
mtx_enter(&kq->kq_lock);
if (kev->flags & EV_ADD)
kqueue_expand_hash(kq);
if (kq->kq_knhashmask != 0) {
list = &kq->kq_knhash[
KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
}
}
if (list != NULL) {
SLIST_FOREACH(kn, list, kn_link) {
if (kev->filter == kn->kn_filter &&
kev->ident == kn->kn_id &&
pollid == kn->kn_pollid) {
if (!knote_acquire(kn, NULL, 0)) {
/* knote_acquire() has released
* kq_lock. */
if (fp != NULL) {
FRELE(fp, p);
fp = NULL;
}
goto again;
}
break;
}
}
}
KASSERT(kn == NULL || (kn->kn_status & KN_PROCESSING) != 0);
if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
mtx_leave(&kq->kq_lock);
error = ENOENT;
goto done;
}
/*
* kn now contains the matching knote, or NULL if no match.
*/
if (kev->flags & EV_ADD) {
if (kn == NULL) {
kn = newkn;
newkn = NULL;
kn->kn_status = KN_PROCESSING;
kn->kn_fp = fp;
kn->kn_kq = kq;
kn->kn_fop = fops;
/*
* apply reference count to knote structure, and
* do not release it at the end of this routine.
*/
fp = NULL;
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
kev->fflags = 0;
kev->data = 0;
kn->kn_kevent = *kev;
kn->kn_pollid = pollid;
knote_attach(kn);
mtx_leave(&kq->kq_lock);
error = filter_attach(kn);
if (error != 0) {
knote_drop(kn, p);
goto done;
}
/*
* If this is a file descriptor filter, check if
* fd was closed while the knote was being added.
* knote_fdclose() has missed kn if the function
* ran before kn appeared in kq_knlist.
*/
if ((fops->f_flags & FILTEROP_ISFD) &&
fd_checkclosed(fdp, kev->ident, kn->kn_fp)) {
/*
* Drop the knote silently without error
* because another thread might already have
* seen it. This corresponds to the insert
* happening in full before the close.
*/
filter_detach(kn);
knote_drop(kn, p);
goto done;
}
/* Check if there is a pending event. */
active = filter_process(kn, NULL);
mtx_enter(&kq->kq_lock);
if (active)
knote_activate(kn);
} else if (kn->kn_fop == &badfd_filtops) {
/*
* Nothing expects this badfd knote any longer.
* Drop it to make room for the new knote and retry.
*/
KASSERT(kq == p->p_kq);
mtx_leave(&kq->kq_lock);
filter_detach(kn);
knote_drop(kn, p);
KASSERT(fp != NULL);
FRELE(fp, p);
fp = NULL;
goto again;
} else {
/*
* The user may change some filter values after the
* initial EV_ADD, but doing so will not reset any
* filters which have already been triggered.
*/
mtx_leave(&kq->kq_lock);
active = filter_modify(kev, kn);
mtx_enter(&kq->kq_lock);
if (active)
knote_activate(kn);
if (kev->flags & EV_ERROR) {
error = kev->data;
goto release;
}
}
} else if (kev->flags & EV_DELETE) {
mtx_leave(&kq->kq_lock);
filter_detach(kn);
knote_drop(kn, p);
goto done;
}
if ((kev->flags & EV_DISABLE) && ((kn->kn_status & KN_DISABLED) == 0))
kn->kn_status |= KN_DISABLED;
if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
kn->kn_status &= ~KN_DISABLED;
mtx_leave(&kq->kq_lock);
/* Check if there is a pending event. */
active = filter_process(kn, NULL);
mtx_enter(&kq->kq_lock);
if (active)
knote_activate(kn);
}
release:
knote_release(kn);
mtx_leave(&kq->kq_lock);
done:
if (fp != NULL)
FRELE(fp, p);
if (newkn != NULL)
pool_put(&knote_pool, newkn);
return (error);
}
int
kqueue_sleep(struct kqueue *kq, struct timespec *tsp)
{
struct timespec elapsed, start, stop;
uint64_t nsecs;
int error;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
if (tsp != NULL) {
getnanouptime(&start);
nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
} else
nsecs = INFSLP;
error = msleep_nsec(kq, &kq->kq_lock, PSOCK | PCATCH | PNORELOCK,
"kqread", nsecs);
if (tsp != NULL) {
getnanouptime(&stop);
timespecsub(&stop, &start, &elapsed);
timespecsub(tsp, &elapsed, tsp);
if (tsp->tv_sec < 0)
timespecclear(tsp);
}
return (error);
}
/*
* Scan the kqueue, blocking if necessary until the target time is reached.
* If tsp is NULL we block indefinitely. If tsp->ts_secs/nsecs are both
* 0 we do not block at all.
*/
int
kqueue_scan(struct kqueue_scan_state *scan, int maxevents,
struct kevent *kevp, struct timespec *tsp, struct proc *p, int *errorp)
{
struct kqueue *kq = scan->kqs_kq;
struct knote *kn;
int error = 0, nkev = 0;
if (maxevents == 0)
goto done;
retry:
KASSERT(nkev == 0);
error = 0;
/* msleep() with PCATCH requires kernel lock. */
KERNEL_LOCK();
mtx_enter(&kq->kq_lock);
if (kq->kq_state & KQ_DYING) {
mtx_leave(&kq->kq_lock);
KERNEL_UNLOCK();
error = EBADF;
goto done;
}
if (kq->kq_count == 0) {
/*
* Successive loops are only necessary if there are more
* ready events to gather, so they don't need to block.
*/
if ((tsp != NULL && !timespecisset(tsp)) ||
scan->kqs_nevent != 0) {
mtx_leave(&kq->kq_lock);
KERNEL_UNLOCK();
error = 0;
goto done;
}
kq->kq_state |= KQ_SLEEP;
error = kqueue_sleep(kq, tsp);
/* kqueue_sleep() has released kq_lock. */
KERNEL_UNLOCK();
if (error == 0 || error == EWOULDBLOCK)
goto retry;
/* don't restart after signals... */
if (error == ERESTART)
error = EINTR;
goto done;
}
/* The actual scan does not sleep on kq, so unlock the kernel. */
KERNEL_UNLOCK();
/*
* Put the end marker in the queue to limit the scan to the events
* that are currently active. This prevents events from being
* recollected if they reactivate during scan.
*
* If a partial scan has been performed already but no events have
* been collected, reposition the end marker to make any new events
* reachable.
*/
if (!scan->kqs_queued) {
TAILQ_INSERT_TAIL(&kq->kq_head, &scan->kqs_end, kn_tqe);
scan->kqs_queued = 1;
} else if (scan->kqs_nevent == 0) {
TAILQ_REMOVE(&kq->kq_head, &scan->kqs_end, kn_tqe);
TAILQ_INSERT_TAIL(&kq->kq_head, &scan->kqs_end, kn_tqe);
}
TAILQ_INSERT_HEAD(&kq->kq_head, &scan->kqs_start, kn_tqe);
while (nkev < maxevents) {
kn = TAILQ_NEXT(&scan->kqs_start, kn_tqe);
if (kn->kn_filter == EVFILT_MARKER) {
if (kn == &scan->kqs_end)
break;
/* Move start marker past another thread's marker. */
TAILQ_REMOVE(&kq->kq_head, &scan->kqs_start, kn_tqe);
TAILQ_INSERT_AFTER(&kq->kq_head, kn, &scan->kqs_start,
kn_tqe);
continue;
}
if (!knote_acquire(kn, NULL, 0)) {
/* knote_acquire() has released kq_lock. */
mtx_enter(&kq->kq_lock);
continue;
}
kqueue_check(kq);
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
kn->kn_status &= ~KN_QUEUED;
kq->kq_count--;
kqueue_check(kq);
if (kn->kn_status & KN_DISABLED) {
knote_release(kn);
continue;
}
mtx_leave(&kq->kq_lock);
/* Drop expired kqpoll knotes. */
if (p->p_kq == kq &&
p->p_kq_serial > (unsigned long)kn->kn_udata) {
filter_detach(kn);
knote_drop(kn, p);
mtx_enter(&kq->kq_lock);
continue;
}
/*
* Invalidate knotes whose vnodes have been revoked.
* This is a workaround; it is tricky to clear existing
* knotes and prevent new ones from being registered
* with the current revocation mechanism.
*/
if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
kn->kn_fp != NULL &&
kn->kn_fp->f_type == DTYPE_VNODE) {
struct vnode *vp = kn->kn_fp->f_data;
if (__predict_false(vp->v_op == &dead_vops &&
kn->kn_fop != &dead_filtops)) {
filter_detach(kn);
kn->kn_fop = &dead_filtops;
/*
* Check if the event should be delivered.
* Use f_event directly because this is
* a special situation.
*/
if (kn->kn_fop->f_event(kn, 0) == 0) {
filter_detach(kn);
knote_drop(kn, p);
mtx_enter(&kq->kq_lock);
continue;
}
}
}
memset(kevp, 0, sizeof(*kevp));
if (filter_process(kn, kevp) == 0) {
mtx_enter(&kq->kq_lock);
if ((kn->kn_status & KN_QUEUED) == 0)
kn->kn_status &= ~KN_ACTIVE;
knote_release(kn);
kqueue_check(kq);
continue;
}
/*
* Post-event action on the note
*/
if (kevp->flags & EV_ONESHOT) {
filter_detach(kn);
knote_drop(kn, p);
mtx_enter(&kq->kq_lock);
} else if (kevp->flags & (EV_CLEAR | EV_DISPATCH)) {
mtx_enter(&kq->kq_lock);
if (kevp->flags & EV_DISPATCH)
kn->kn_status |= KN_DISABLED;
if ((kn->kn_status & KN_QUEUED) == 0)
kn->kn_status &= ~KN_ACTIVE;
knote_release(kn);
} else {
mtx_enter(&kq->kq_lock);
if ((kn->kn_status & KN_QUEUED) == 0) {
kqueue_check(kq);
kq->kq_count++;
kn->kn_status |= KN_QUEUED;
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
}
knote_release(kn);
}
kqueue_check(kq);
kevp++;
nkev++;
scan->kqs_nevent++;
}
TAILQ_REMOVE(&kq->kq_head, &scan->kqs_start, kn_tqe);
mtx_leave(&kq->kq_lock);
if (scan->kqs_nevent == 0)
goto retry;
done:
*errorp = error;
return (nkev);
}
void
kqueue_scan_setup(struct kqueue_scan_state *scan, struct kqueue *kq)
{
memset(scan, 0, sizeof(*scan));
KQREF(kq);
scan->kqs_kq = kq;
scan->kqs_start.kn_filter = EVFILT_MARKER;
scan->kqs_start.kn_status = KN_PROCESSING;
scan->kqs_end.kn_filter = EVFILT_MARKER;
scan->kqs_end.kn_status = KN_PROCESSING;
}
void
kqueue_scan_finish(struct kqueue_scan_state *scan)
{
struct kqueue *kq = scan->kqs_kq;
KASSERT(scan->kqs_start.kn_filter == EVFILT_MARKER);
KASSERT(scan->kqs_start.kn_status == KN_PROCESSING);
KASSERT(scan->kqs_end.kn_filter == EVFILT_MARKER);
KASSERT(scan->kqs_end.kn_status == KN_PROCESSING);
if (scan->kqs_queued) {
scan->kqs_queued = 0;
mtx_enter(&kq->kq_lock);
TAILQ_REMOVE(&kq->kq_head, &scan->kqs_end, kn_tqe);
mtx_leave(&kq->kq_lock);
}
KQRELE(kq);
}
/*
* XXX
* This could be expanded to call kqueue_scan, if desired.
*/
int
kqueue_read(struct file *fp, struct uio *uio, int fflags)
{
return (ENXIO);
}
int
kqueue_write(struct file *fp, struct uio *uio, int fflags)
{
return (ENXIO);
}
int
kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
{
return (ENOTTY);
}
int
kqueue_poll(struct file *fp, int events, struct proc *p)
{
struct kqueue *kq = (struct kqueue *)fp->f_data;
int revents = 0;
if (events & (POLLIN | POLLRDNORM)) {
mtx_enter(&kq->kq_lock);
if (kq->kq_count) {
revents |= events & (POLLIN | POLLRDNORM);
} else {
selrecord(p, &kq->kq_sel);
kq->kq_state |= KQ_SEL;
}
mtx_leave(&kq->kq_lock);
}
return (revents);
}
int
kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
{
struct kqueue *kq = fp->f_data;
memset(st, 0, sizeof(*st));
st->st_size = kq->kq_count; /* unlocked read */
st->st_blksize = sizeof(struct kevent);
st->st_mode = S_IFIFO;
return (0);
}
void
kqueue_purge(struct proc *p, struct kqueue *kq)
{
int i;
mtx_enter(&kq->kq_lock);
for (i = 0; i < kq->kq_knlistsize; i++)
knote_remove(p, kq, &kq->kq_knlist[i], 1);
if (kq->kq_knhashmask != 0) {
for (i = 0; i < kq->kq_knhashmask + 1; i++)
knote_remove(p, kq, &kq->kq_knhash[i], 1);
}
mtx_leave(&kq->kq_lock);
}
void
kqueue_terminate(struct proc *p, struct kqueue *kq)
{
struct knote *kn;
mtx_enter(&kq->kq_lock);
/*
* Any remaining entries should be scan markers.
* They are removed when the ongoing scans finish.
*/
KASSERT(kq->kq_count == 0);
TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe)
KASSERT(kn->kn_filter == EVFILT_MARKER);
kq->kq_state |= KQ_DYING;
kqueue_wakeup(kq);
mtx_leave(&kq->kq_lock);
KASSERT(klist_empty(&kq->kq_sel.si_note));
task_del(systq, &kq->kq_task);
}
int
kqueue_close(struct file *fp, struct proc *p)
{
struct kqueue *kq = fp->f_data;
fp->f_data = NULL;
kqueue_purge(p, kq);
kqueue_terminate(p, kq);
KQRELE(kq);
return (0);
}
static void
kqueue_task(void *arg)
{
struct kqueue *kq = arg;
/* Kernel lock is needed inside selwakeup(). */
KERNEL_ASSERT_LOCKED();
mtx_enter(&kqueue_klist_lock);
mtx_enter(&kq->kq_lock);
if (kq->kq_state & KQ_SEL) {
kq->kq_state &= ~KQ_SEL;
mtx_leave(&kq->kq_lock);
selwakeup(&kq->kq_sel);
} else {
mtx_leave(&kq->kq_lock);
KNOTE(&kq->kq_sel.si_note, 0);
}
mtx_leave(&kqueue_klist_lock);
KQRELE(kq);
}
void
kqueue_wakeup(struct kqueue *kq)
{
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
if (kq->kq_state & KQ_SLEEP) {
kq->kq_state &= ~KQ_SLEEP;
wakeup(kq);
}
if ((kq->kq_state & KQ_SEL) || !klist_empty(&kq->kq_sel.si_note)) {
/* Defer activation to avoid recursion. */
KQREF(kq);
if (!task_add(systq, &kq->kq_task))
KQRELE(kq);
}
}
static void
kqueue_expand_hash(struct kqueue *kq)
{
struct knlist *hash;
u_long hashmask;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
if (kq->kq_knhashmask == 0) {
mtx_leave(&kq->kq_lock);
hash = hashinit(KN_HASHSIZE, M_KEVENT, M_WAITOK, &hashmask);
mtx_enter(&kq->kq_lock);
if (kq->kq_knhashmask == 0) {
kq->kq_knhash = hash;
kq->kq_knhashmask = hashmask;
} else {
/* Another thread has allocated the hash. */
mtx_leave(&kq->kq_lock);
hashfree(hash, KN_HASHSIZE, M_KEVENT);
mtx_enter(&kq->kq_lock);
}
}
}
static void
kqueue_expand_list(struct kqueue *kq, int fd)
{
struct knlist *list, *olist;
int size, osize;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
if (kq->kq_knlistsize <= fd) {
size = kq->kq_knlistsize;
mtx_leave(&kq->kq_lock);
while (size <= fd)
size += KQEXTENT;
list = mallocarray(size, sizeof(*list), M_KEVENT, M_WAITOK);
mtx_enter(&kq->kq_lock);
if (kq->kq_knlistsize <= fd) {
memcpy(list, kq->kq_knlist,
kq->kq_knlistsize * sizeof(*list));
memset(&list[kq->kq_knlistsize], 0,
(size - kq->kq_knlistsize) * sizeof(*list));
olist = kq->kq_knlist;
osize = kq->kq_knlistsize;
kq->kq_knlist = list;
kq->kq_knlistsize = size;
mtx_leave(&kq->kq_lock);
free(olist, M_KEVENT, osize * sizeof(*list));
mtx_enter(&kq->kq_lock);
} else {
/* Another thread has expanded the list. */
mtx_leave(&kq->kq_lock);
free(list, M_KEVENT, size * sizeof(*list));
mtx_enter(&kq->kq_lock);
}
}
}
/*
* Acquire a knote, return non-zero on success, 0 on failure.
*
* If we cannot acquire the knote we sleep and return 0. The knote
* may be stale on return in this case and the caller must restart
* whatever loop they are in.
*
* If we are about to sleep and klist is non-NULL, the list is unlocked
* before sleep and remains unlocked on return.
*/
int
knote_acquire(struct knote *kn, struct klist *klist, int ls)
{
struct kqueue *kq = kn->kn_kq;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
KASSERT(kn->kn_filter != EVFILT_MARKER);
if (kn->kn_status & KN_PROCESSING) {
kn->kn_status |= KN_WAITING;
if (klist != NULL) {
mtx_leave(&kq->kq_lock);
klist_unlock(klist, ls);
/* XXX Timeout resolves potential loss of wakeup. */
tsleep_nsec(kn, 0, "kqepts", SEC_TO_NSEC(1));
} else {
msleep_nsec(kn, &kq->kq_lock, PNORELOCK, "kqepts",
SEC_TO_NSEC(1));
}
/* knote may be stale now */
return (0);
}
kn->kn_status |= KN_PROCESSING;
return (1);
}
/*
* Release an acquired knote, clearing KN_PROCESSING.
*/
void
knote_release(struct knote *kn)
{
MUTEX_ASSERT_LOCKED(&kn->kn_kq->kq_lock);
KASSERT(kn->kn_filter != EVFILT_MARKER);
KASSERT(kn->kn_status & KN_PROCESSING);
if (kn->kn_status & KN_WAITING) {
kn->kn_status &= ~KN_WAITING;
wakeup(kn);
}
kn->kn_status &= ~KN_PROCESSING;
/* kn should not be accessed anymore */
}
/*
* activate one knote.
*/
void
knote_activate(struct knote *kn)
{
MUTEX_ASSERT_LOCKED(&kn->kn_kq->kq_lock);
kn->kn_status |= KN_ACTIVE;
if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)
knote_enqueue(kn);
}
/*
* walk down a list of knotes, activating them if their event has triggered.
*/
void
knote(struct klist *list, long hint)
{
struct knote *kn, *kn0;
struct kqueue *kq;
KLIST_ASSERT_LOCKED(list);
SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, kn0) {
if (filter_event(kn, hint)) {
kq = kn->kn_kq;
mtx_enter(&kq->kq_lock);
knote_activate(kn);
mtx_leave(&kq->kq_lock);
}
}
}
/*
* remove all knotes from a specified knlist
*/
void
knote_remove(struct proc *p, struct kqueue *kq, struct knlist *list, int purge)
{
struct knote *kn;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
while ((kn = SLIST_FIRST(list)) != NULL) {
KASSERT(kn->kn_kq == kq);
if (!purge) {
/* Skip pending badfd knotes. */
while (kn->kn_fop == &badfd_filtops) {
kn = SLIST_NEXT(kn, kn_link);
if (kn == NULL)
return;
KASSERT(kn->kn_kq == kq);
}
}
if (!knote_acquire(kn, NULL, 0)) {
/* knote_acquire() has released kq_lock. */
mtx_enter(&kq->kq_lock);
continue;
}
mtx_leave(&kq->kq_lock);
filter_detach(kn);
/*
* Notify poll(2) and select(2) when a monitored
* file descriptor is closed.
*
* This reuses the original knote for delivering the
* notification so as to avoid allocating memory.
*/
if (!purge && (kn->kn_flags & (__EV_POLL | __EV_SELECT)) &&
!(p->p_kq == kq &&
p->p_kq_serial > (unsigned long)kn->kn_udata) &&
kn->kn_fop != &badfd_filtops) {
KASSERT(kn->kn_fop->f_flags & FILTEROP_ISFD);
FRELE(kn->kn_fp, p);
kn->kn_fp = NULL;
kn->kn_fop = &badfd_filtops;
filter_event(kn, 0);
mtx_enter(&kq->kq_lock);
knote_activate(kn);
knote_release(kn);
continue;
}
knote_drop(kn, p);
mtx_enter(&kq->kq_lock);
}
}
/*
* remove all knotes referencing a specified fd
*/
void
knote_fdclose(struct proc *p, int fd)
{
struct filedesc *fdp = p->p_p->ps_fd;
struct kqueue *kq;
/*
* fdplock can be ignored if the file descriptor table is being freed
* because no other thread can access the fdp.
*/
if (fdp->fd_refcnt != 0)
fdpassertlocked(fdp);
LIST_FOREACH(kq, &fdp->fd_kqlist, kq_next) {
mtx_enter(&kq->kq_lock);
if (fd < kq->kq_knlistsize)
knote_remove(p, kq, &kq->kq_knlist[fd], 0);
mtx_leave(&kq->kq_lock);
}
}
/*
* handle a process exiting, including the triggering of NOTE_EXIT notes
* XXX this could be more efficient, doing a single pass down the klist
*/
void
knote_processexit(struct proc *p)
{
struct process *pr = p->p_p;
KERNEL_ASSERT_LOCKED();
KASSERT(p == curproc);
KNOTE(&pr->ps_klist, NOTE_EXIT);
/* remove other knotes hanging off the process */
klist_invalidate(&pr->ps_klist);
}
void
knote_attach(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
struct knlist *list;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
KASSERT(kn->kn_status & KN_PROCESSING);
if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
KASSERT(kq->kq_knlistsize > kn->kn_id);
list = &kq->kq_knlist[kn->kn_id];
} else {
KASSERT(kq->kq_knhashmask != 0);
list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
}
SLIST_INSERT_HEAD(list, kn, kn_link);
kq->kq_nknotes++;
}
void
knote_detach(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
struct knlist *list;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
KASSERT(kn->kn_status & KN_PROCESSING);
kq->kq_nknotes--;
if (kn->kn_fop->f_flags & FILTEROP_ISFD)
list = &kq->kq_knlist[kn->kn_id];
else
list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
SLIST_REMOVE(list, kn, knote, kn_link);
}
/*
* should be called at spl == 0, since we don't want to hold spl
* while calling FRELE and pool_put.
*/
void
knote_drop(struct knote *kn, struct proc *p)
{
struct kqueue *kq = kn->kn_kq;
KASSERT(kn->kn_filter != EVFILT_MARKER);
mtx_enter(&kq->kq_lock);
knote_detach(kn);
if (kn->kn_status & KN_QUEUED)
knote_dequeue(kn);
if (kn->kn_status & KN_WAITING) {
kn->kn_status &= ~KN_WAITING;
wakeup(kn);
}
mtx_leave(&kq->kq_lock);
if ((kn->kn_fop->f_flags & FILTEROP_ISFD) && kn->kn_fp != NULL)
FRELE(kn->kn_fp, p);
pool_put(&knote_pool, kn);
}
void
knote_enqueue(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
KASSERT(kn->kn_filter != EVFILT_MARKER);
KASSERT((kn->kn_status & KN_QUEUED) == 0);
kqueue_check(kq);
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
kn->kn_status |= KN_QUEUED;
kq->kq_count++;
kqueue_check(kq);
kqueue_wakeup(kq);
}
void
knote_dequeue(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
MUTEX_ASSERT_LOCKED(&kq->kq_lock);
KASSERT(kn->kn_filter != EVFILT_MARKER);
KASSERT(kn->kn_status & KN_QUEUED);
kqueue_check(kq);
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
kn->kn_status &= ~KN_QUEUED;
kq->kq_count--;
kqueue_check(kq);
}
/*
* Assign parameters to the knote.
*
* The knote's object lock must be held.
*/
void
knote_assign(const struct kevent *kev, struct knote *kn)
{
if ((kn->kn_fop->f_flags & FILTEROP_MPSAFE) == 0)
KERNEL_ASSERT_LOCKED();
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
kn->kn_udata = kev->udata;
}
/*
* Submit the knote's event for delivery.
*
* The knote's object lock must be held.
*/
void
knote_submit(struct knote *kn, struct kevent *kev)
{
if ((kn->kn_fop->f_flags & FILTEROP_MPSAFE) == 0)
KERNEL_ASSERT_LOCKED();
if (kev != NULL) {
*kev = kn->kn_kevent;
if (kn->kn_flags & EV_CLEAR) {
kn->kn_fflags = 0;
kn->kn_data = 0;
}
}
}
void
klist_init(struct klist *klist, const struct klistops *ops, void *arg)
{
SLIST_INIT(&klist->kl_list);
klist->kl_ops = ops;
klist->kl_arg = arg;
}
void
klist_free(struct klist *klist)
{
KASSERT(SLIST_EMPTY(&klist->kl_list));
}
void
klist_insert(struct klist *klist, struct knote *kn)
{
int ls;
ls = klist_lock(klist);
SLIST_INSERT_HEAD(&klist->kl_list, kn, kn_selnext);
klist_unlock(klist, ls);
}
void
klist_insert_locked(struct klist *klist, struct knote *kn)
{
KLIST_ASSERT_LOCKED(klist);
SLIST_INSERT_HEAD(&klist->kl_list, kn, kn_selnext);
}
void
klist_remove(struct klist *klist, struct knote *kn)
{
int ls;
ls = klist_lock(klist);
SLIST_REMOVE(&klist->kl_list, kn, knote, kn_selnext);
klist_unlock(klist, ls);
}
void
klist_remove_locked(struct klist *klist, struct knote *kn)
{
KLIST_ASSERT_LOCKED(klist);
SLIST_REMOVE(&klist->kl_list, kn, knote, kn_selnext);
}
/*
* Detach all knotes from klist. The knotes are rewired to indicate EOF.
*
* The caller of this function must not hold any locks that can block
* filterops callbacks that run with KN_PROCESSING.
* Otherwise this function might deadlock.
*/
void
klist_invalidate(struct klist *list)
{
struct knote *kn;
struct kqueue *kq;
struct proc *p = curproc;
int ls;
NET_ASSERT_UNLOCKED();
ls = klist_lock(list);
while ((kn = SLIST_FIRST(&list->kl_list)) != NULL) {
kq = kn->kn_kq;
mtx_enter(&kq->kq_lock);
if (!knote_acquire(kn, list, ls)) {
/* knote_acquire() has released kq_lock
* and klist lock. */
ls = klist_lock(list);
continue;
}
mtx_leave(&kq->kq_lock);
klist_unlock(list, ls);
filter_detach(kn);
if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
kn->kn_fop = &dead_filtops;
filter_event(kn, 0);
mtx_enter(&kq->kq_lock);
knote_activate(kn);
knote_release(kn);
mtx_leave(&kq->kq_lock);
} else {
knote_drop(kn, p);
}
ls = klist_lock(list);
}
klist_unlock(list, ls);
}
static int
klist_lock(struct klist *list)
{
int ls = 0;
if (list->kl_ops != NULL) {
ls = list->kl_ops->klo_lock(list->kl_arg);
} else {
KERNEL_LOCK();
ls = splhigh();
}
return ls;
}
static void
klist_unlock(struct klist *list, int ls)
{
if (list->kl_ops != NULL) {
list->kl_ops->klo_unlock(list->kl_arg, ls);
} else {
splx(ls);
KERNEL_UNLOCK();
}
}
static void
klist_mutex_assertlk(void *arg)
{
struct mutex *mtx = arg;
(void)mtx;
MUTEX_ASSERT_LOCKED(mtx);
}
static int
klist_mutex_lock(void *arg)
{
struct mutex *mtx = arg;
mtx_enter(mtx);
return 0;
}
static void
klist_mutex_unlock(void *arg, int s)
{
struct mutex *mtx = arg;
mtx_leave(mtx);
}
static const struct klistops mutex_klistops = {
.klo_assertlk = klist_mutex_assertlk,
.klo_lock = klist_mutex_lock,
.klo_unlock = klist_mutex_unlock,
};
void
klist_init_mutex(struct klist *klist, struct mutex *mtx)
{
klist_init(klist, &mutex_klistops, mtx);
}
static void
klist_rwlock_assertlk(void *arg)
{
struct rwlock *rwl = arg;
(void)rwl;
rw_assert_wrlock(rwl);
}
static int
klist_rwlock_lock(void *arg)
{
struct rwlock *rwl = arg;
rw_enter_write(rwl);
return 0;
}
static void
klist_rwlock_unlock(void *arg, int s)
{
struct rwlock *rwl = arg;
rw_exit_write(rwl);
}
static const struct klistops rwlock_klistops = {
.klo_assertlk = klist_rwlock_assertlk,
.klo_lock = klist_rwlock_lock,
.klo_unlock = klist_rwlock_unlock,
};
void
klist_init_rwlock(struct klist *klist, struct rwlock *rwl)
{
klist_init(klist, &rwlock_klistops, rwl);
}
|