1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
|
/* $OpenBSD: kern_sched.c,v 1.22 2010/05/28 14:23:37 guenther Exp $ */
/*
* Copyright (c) 2007, 2008 Artur Grabowski <art@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/sched.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/systm.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/mutex.h>
#include <uvm/uvm_extern.h>
#include <sys/malloc.h>
void sched_kthreads_create(void *);
int sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p);
struct proc *sched_steal_proc(struct cpu_info *);
/*
* To help choosing which cpu should run which process we keep track
* of cpus which are currently idle and which cpus have processes
* queued.
*/
struct cpuset sched_idle_cpus;
struct cpuset sched_queued_cpus;
struct cpuset sched_all_cpus;
/*
* A few notes about cpu_switchto that is implemented in MD code.
*
* cpu_switchto takes two arguments, the old proc and the proc
* it should switch to. The new proc will never be NULL, so we always have
* a saved state that we need to switch to. The old proc however can
* be NULL if the process is exiting. NULL for the old proc simply
* means "don't bother saving old state".
*
* cpu_switchto is supposed to atomically load the new state of the process
* including the pcb, pmap and setting curproc, the p_cpu pointer in the
* proc and p_stat to SONPROC. Atomically with respect to interrupts, other
* cpus in the system must not depend on this state being consistent.
* Therefore no locking is necessary in cpu_switchto other than blocking
* interrupts during the context switch.
*/
/*
* sched_init_cpu is called from main() for the boot cpu, then it's the
* responsibility of the MD code to call it for all other cpus.
*/
void
sched_init_cpu(struct cpu_info *ci)
{
struct schedstate_percpu *spc = &ci->ci_schedstate;
int i;
for (i = 0; i < SCHED_NQS; i++)
TAILQ_INIT(&spc->spc_qs[i]);
spc->spc_idleproc = NULL;
kthread_create_deferred(sched_kthreads_create, ci);
LIST_INIT(&spc->spc_deadproc);
/*
* Slight hack here until the cpuset code handles cpu_info
* structures.
*/
cpuset_init_cpu(ci);
cpuset_add(&sched_all_cpus, ci);
}
void
sched_kthreads_create(void *v)
{
struct cpu_info *ci = v;
struct schedstate_percpu *spc = &ci->ci_schedstate;
static int num;
if (kthread_create(sched_idle, ci, &spc->spc_idleproc, "idle%d", num))
panic("fork idle");
num++;
}
void
sched_idle(void *v)
{
struct schedstate_percpu *spc;
struct proc *p = curproc;
struct cpu_info *ci = v;
int s;
KERNEL_PROC_UNLOCK(p);
spc = &ci->ci_schedstate;
/*
* First time we enter here, we're not supposed to idle,
* just go away for a while.
*/
SCHED_LOCK(s);
cpuset_add(&sched_idle_cpus, ci);
p->p_stat = SSLEEP;
p->p_cpu = ci;
atomic_setbits_int(&p->p_flag, P_CPUPEG);
mi_switch();
cpuset_del(&sched_idle_cpus, ci);
SCHED_UNLOCK(s);
KASSERT(ci == curcpu());
KASSERT(curproc == spc->spc_idleproc);
while (1) {
while (!curcpu_is_idle()) {
struct proc *dead;
SCHED_LOCK(s);
p->p_stat = SSLEEP;
mi_switch();
SCHED_UNLOCK(s);
while ((dead = LIST_FIRST(&spc->spc_deadproc))) {
LIST_REMOVE(dead, p_hash);
exit2(dead);
}
}
splassert(IPL_NONE);
cpuset_add(&sched_idle_cpus, ci);
cpu_idle_enter();
while (spc->spc_whichqs == 0) {
if (spc->spc_schedflags & SPCF_SHOULDHALT &&
(spc->spc_schedflags & SPCF_HALTED) == 0) {
cpuset_del(&sched_idle_cpus, ci);
SCHED_LOCK(s);
atomic_setbits_int(&spc->spc_schedflags,
spc->spc_whichqs ? 0 : SPCF_HALTED);
SCHED_UNLOCK(s);
wakeup(spc);
}
cpu_idle_cycle();
}
cpu_idle_leave();
cpuset_del(&sched_idle_cpus, ci);
}
}
/*
* To free our address space we have to jump through a few hoops.
* The freeing is done by the reaper, but until we have one reaper
* per cpu, we have no way of putting this proc on the deadproc list
* and waking up the reaper without risking having our address space and
* stack torn from under us before we manage to switch to another proc.
* Therefore we have a per-cpu list of dead processes where we put this
* proc and have idle clean up that list and move it to the reaper list.
* All this will be unnecessary once we can bind the reaper this cpu
* and not risk having it switch to another in case it sleeps.
*/
void
sched_exit(struct proc *p)
{
struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
struct timeval tv;
struct proc *idle;
int s;
microuptime(&tv);
timersub(&tv, &spc->spc_runtime, &tv);
timeradd(&p->p_rtime, &tv, &p->p_rtime);
LIST_INSERT_HEAD(&spc->spc_deadproc, p, p_hash);
/* This process no longer needs to hold the kernel lock. */
KERNEL_PROC_UNLOCK(p);
SCHED_LOCK(s);
idle = spc->spc_idleproc;
idle->p_stat = SRUN;
cpu_switchto(NULL, idle);
panic("cpu_switchto returned");
}
/*
* Run queue management.
*/
void
sched_init_runqueues(void)
{
}
void
setrunqueue(struct proc *p)
{
struct schedstate_percpu *spc;
int queue = p->p_priority >> 2;
SCHED_ASSERT_LOCKED();
spc = &p->p_cpu->ci_schedstate;
spc->spc_nrun++;
TAILQ_INSERT_TAIL(&spc->spc_qs[queue], p, p_runq);
spc->spc_whichqs |= (1 << queue);
cpuset_add(&sched_queued_cpus, p->p_cpu);
if (cpuset_isset(&sched_idle_cpus, p->p_cpu))
cpu_unidle(p->p_cpu);
}
void
remrunqueue(struct proc *p)
{
struct schedstate_percpu *spc;
int queue = p->p_priority >> 2;
SCHED_ASSERT_LOCKED();
spc = &p->p_cpu->ci_schedstate;
spc->spc_nrun--;
TAILQ_REMOVE(&spc->spc_qs[queue], p, p_runq);
if (TAILQ_EMPTY(&spc->spc_qs[queue])) {
spc->spc_whichqs &= ~(1 << queue);
if (spc->spc_whichqs == 0)
cpuset_del(&sched_queued_cpus, p->p_cpu);
}
}
struct proc *
sched_chooseproc(void)
{
struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
struct proc *p;
int queue;
SCHED_ASSERT_LOCKED();
if (spc->spc_schedflags & SPCF_SHOULDHALT) {
if (spc->spc_whichqs) {
for (queue = 0; queue < SCHED_NQS; queue++) {
TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) {
remrunqueue(p);
p->p_cpu = sched_choosecpu(p);
setrunqueue(p);
}
}
}
p = spc->spc_idleproc;
KASSERT(p);
p->p_stat = SRUN;
return (p);
}
again:
if (spc->spc_whichqs) {
queue = ffs(spc->spc_whichqs) - 1;
p = TAILQ_FIRST(&spc->spc_qs[queue]);
remrunqueue(p);
} else if ((p = sched_steal_proc(curcpu())) == NULL) {
p = spc->spc_idleproc;
if (p == NULL) {
int s;
/*
* We get here if someone decides to switch during
* boot before forking kthreads, bleh.
* This is kind of like a stupid idle loop.
*/
#ifdef MULTIPROCESSOR
__mp_unlock(&sched_lock);
#endif
spl0();
delay(10);
SCHED_LOCK(s);
goto again;
}
KASSERT(p);
p->p_stat = SRUN;
}
return (p);
}
uint64_t sched_nmigrations;
uint64_t sched_noidle;
uint64_t sched_stolen;
uint64_t sched_choose;
uint64_t sched_wasidle;
uint64_t sched_nomigrations;
struct cpu_info *
sched_choosecpu_fork(struct proc *parent, int flags)
{
struct cpu_info *choice = NULL;
fixpt_t load, best_load = ~0;
int run, best_run = INT_MAX;
struct cpu_info *ci;
struct cpuset set;
#if 0
/*
* XXX
* Don't do this until we have a painless way to move the cpu in exec.
* Preferably when nuking the old pmap and getting a new one on a
* new cpu.
*/
/*
* PPWAIT forks are simple. We know that the parent will not
* run until we exec and choose another cpu, so we just steal its
* cpu.
*/
if (flags & FORK_PPWAIT)
return (parent->p_cpu);
#endif
/*
* Look at all cpus that are currently idle and have nothing queued.
* If there are none, pick the one with least queued procs first,
* then the one with lowest load average.
*/
cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
if (cpuset_first(&set) == NULL)
cpuset_copy(&set, &sched_all_cpus);
while ((ci = cpuset_first(&set)) != NULL) {
cpuset_del(&set, ci);
load = ci->ci_schedstate.spc_ldavg;
run = ci->ci_schedstate.spc_nrun;
if (choice == NULL || run < best_run ||
(run == best_run &&load < best_load)) {
choice = ci;
best_load = load;
best_run = run;
}
}
return (choice);
}
struct cpu_info *
sched_choosecpu(struct proc *p)
{
struct cpu_info *choice = NULL;
int last_cost = INT_MAX;
struct cpu_info *ci;
struct cpuset set;
/*
* If pegged to a cpu, don't allow it to move.
*/
if (p->p_flag & P_CPUPEG)
return (p->p_cpu);
sched_choose++;
/*
* Look at all cpus that are currently idle and have nothing queued.
* If there are none, pick the cheapest of those.
* (idle + queued could mean that the cpu is handling an interrupt
* at this moment and haven't had time to leave idle yet).
*/
cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
/*
* First, just check if our current cpu is in that set, if it is,
* this is simple.
* Also, our cpu might not be idle, but if it's the current cpu
* and it has nothing else queued and we're curproc, take it.
*/
if (cpuset_isset(&set, p->p_cpu) ||
(p->p_cpu == curcpu() && p->p_cpu->ci_schedstate.spc_nrun == 0 &&
curproc == p)) {
sched_wasidle++;
return (p->p_cpu);
}
if (cpuset_first(&set) == NULL)
cpuset_copy(&set, &sched_all_cpus);
while ((ci = cpuset_first(&set)) != NULL) {
int cost = sched_proc_to_cpu_cost(ci, p);
if (choice == NULL || cost < last_cost) {
choice = ci;
last_cost = cost;
}
cpuset_del(&set, ci);
}
if (p->p_cpu != choice)
sched_nmigrations++;
else
sched_nomigrations++;
return (choice);
}
/*
* Attempt to steal a proc from some cpu.
*/
struct proc *
sched_steal_proc(struct cpu_info *self)
{
struct schedstate_percpu *spc;
struct proc *best = NULL;
int bestcost = INT_MAX;
struct cpu_info *ci;
struct cpuset set;
cpuset_copy(&set, &sched_queued_cpus);
while ((ci = cpuset_first(&set)) != NULL) {
struct proc *p;
int queue;
int cost;
cpuset_del(&set, ci);
spc = &ci->ci_schedstate;
queue = ffs(spc->spc_whichqs) - 1;
TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) {
if (p->p_flag & P_CPUPEG)
continue;
cost = sched_proc_to_cpu_cost(self, p);
if (best == NULL || cost < bestcost) {
best = p;
bestcost = cost;
}
}
}
if (best == NULL)
return (NULL);
spc = &best->p_cpu->ci_schedstate;
remrunqueue(best);
best->p_cpu = self;
sched_stolen++;
return (best);
}
/*
* Base 2 logarithm of an int. returns 0 for 0 (yeye, I know).
*/
static int
log2(unsigned int i)
{
int ret = 0;
while (i >>= 1)
ret++;
return (ret);
}
/*
* Calculate the cost of moving the proc to this cpu.
*
* What we want is some guesstimate of how much "performance" it will
* cost us to move the proc here. Not just for caches and TLBs and NUMA
* memory, but also for the proc itself. A highly loaded cpu might not
* be the best candidate for this proc since it won't get run.
*
* Just total guesstimates for now.
*/
int sched_cost_load = 1;
int sched_cost_priority = 1;
int sched_cost_runnable = 3;
int sched_cost_resident = 1;
int
sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p)
{
struct schedstate_percpu *spc;
int l2resident = 0;
int cost;
spc = &ci->ci_schedstate;
cost = 0;
/*
* First, account for the priority of the proc we want to move.
* More willing to move, the lower the priority of the destination
* and the higher the priority of the proc.
*/
if (!cpuset_isset(&sched_idle_cpus, ci)) {
cost += (p->p_priority - spc->spc_curpriority) *
sched_cost_priority;
cost += sched_cost_runnable;
}
if (cpuset_isset(&sched_queued_cpus, ci)) {
cost += spc->spc_nrun * sched_cost_runnable;
}
/*
* Higher load on the destination means we don't want to go there.
*/
cost += ((sched_cost_load * spc->spc_ldavg) >> FSHIFT);
/*
* If the proc is on this cpu already, lower the cost by how much
* it has been running and an estimate of its footprint.
*/
if (p->p_cpu == ci && p->p_slptime == 0) {
l2resident =
log2(pmap_resident_count(p->p_vmspace->vm_map.pmap));
cost -= l2resident * sched_cost_resident;
}
return (cost);
}
/*
* Peg a proc to a cpu.
*/
void
sched_peg_curproc(struct cpu_info *ci)
{
struct proc *p = curproc;
int s;
SCHED_LOCK(s);
p->p_priority = p->p_usrpri;
p->p_stat = SRUN;
p->p_cpu = ci;
atomic_setbits_int(&p->p_flag, P_CPUPEG);
setrunqueue(p);
p->p_stats->p_ru.ru_nvcsw++;
mi_switch();
SCHED_UNLOCK(s);
}
#ifdef MULTIPROCESSOR
void
sched_start_secondary_cpus(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
CPU_INFO_FOREACH(cii, ci) {
struct schedstate_percpu *spc = &ci->ci_schedstate;
if (CPU_IS_PRIMARY(ci))
continue;
cpuset_add(&sched_all_cpus, ci);
atomic_clearbits_int(&spc->spc_schedflags,
SPCF_SHOULDHALT | SPCF_HALTED);
}
}
void
sched_stop_secondary_cpus(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
/*
* Make sure we stop the secondary CPUs.
*/
CPU_INFO_FOREACH(cii, ci) {
struct schedstate_percpu *spc = &ci->ci_schedstate;
if (CPU_IS_PRIMARY(ci))
continue;
cpuset_del(&sched_all_cpus, ci);
atomic_setbits_int(&spc->spc_schedflags, SPCF_SHOULDHALT);
}
CPU_INFO_FOREACH(cii, ci) {
struct schedstate_percpu *spc = &ci->ci_schedstate;
struct sleep_state sls;
if (CPU_IS_PRIMARY(ci))
continue;
while ((spc->spc_schedflags & SPCF_HALTED) == 0) {
sleep_setup(&sls, spc, PZERO, "schedstate");
sleep_finish(&sls,
(spc->spc_schedflags & SPCF_HALTED) == 0);
}
}
}
#endif
/*
* Functions to manipulate cpu sets.
*/
struct cpu_info *cpuset_infos[MAXCPUS];
static struct cpuset cpuset_all;
void
cpuset_init_cpu(struct cpu_info *ci)
{
cpuset_add(&cpuset_all, ci);
cpuset_infos[CPU_INFO_UNIT(ci)] = ci;
}
void
cpuset_clear(struct cpuset *cs)
{
memset(cs, 0, sizeof(*cs));
}
void
cpuset_add(struct cpuset *cs, struct cpu_info *ci)
{
unsigned int num = CPU_INFO_UNIT(ci);
atomic_setbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
}
void
cpuset_del(struct cpuset *cs, struct cpu_info *ci)
{
unsigned int num = CPU_INFO_UNIT(ci);
atomic_clearbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
}
int
cpuset_isset(struct cpuset *cs, struct cpu_info *ci)
{
unsigned int num = CPU_INFO_UNIT(ci);
return (cs->cs_set[num/32] & (1 << (num % 32)));
}
void
cpuset_add_all(struct cpuset *cs)
{
cpuset_copy(cs, &cpuset_all);
}
void
cpuset_copy(struct cpuset *to, struct cpuset *from)
{
memcpy(to, from, sizeof(*to));
}
struct cpu_info *
cpuset_first(struct cpuset *cs)
{
int i;
for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
if (cs->cs_set[i])
return (cpuset_infos[i * 32 + ffs(cs->cs_set[i]) - 1]);
return (NULL);
}
void
cpuset_union(struct cpuset *to, struct cpuset *a, struct cpuset *b)
{
int i;
for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
to->cs_set[i] = a->cs_set[i] | b->cs_set[i];
}
void
cpuset_intersection(struct cpuset *to, struct cpuset *a, struct cpuset *b)
{
int i;
for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
to->cs_set[i] = a->cs_set[i] & b->cs_set[i];
}
void
cpuset_complement(struct cpuset *to, struct cpuset *a, struct cpuset *b)
{
int i;
for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
to->cs_set[i] = b->cs_set[i] & ~a->cs_set[i];
}
|