1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
/* $OpenBSD: kern_timeout.c,v 1.40 2013/10/06 04:34:35 guenther Exp $ */
/*
* Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
* Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/timeout.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/queue.h> /* _Q_INVALIDATE */
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_interface.h>
#include <ddb/db_access.h>
#include <ddb/db_sym.h>
#include <ddb/db_output.h>
#endif
/*
* Timeouts are kept in a hierarchical timing wheel. The to_time is the value
* of the global variable "ticks" when the timeout should be called. There are
* four levels with 256 buckets each. See 'Scheme 7' in
* "Hashed and Hierarchical Timing Wheels: Efficient Data Structures for
* Implementing a Timer Facility" by George Varghese and Tony Lauck.
*/
#define BUCKETS 1024
#define WHEELSIZE 256
#define WHEELMASK 255
#define WHEELBITS 8
struct circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
struct circq timeout_todo; /* Worklist */
#define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
#define BUCKET(rel, abs) \
(timeout_wheel[ \
((rel) <= (1 << (2*WHEELBITS))) \
? ((rel) <= (1 << WHEELBITS)) \
? MASKWHEEL(0, (abs)) \
: MASKWHEEL(1, (abs)) + WHEELSIZE \
: ((rel) <= (1 << (3*WHEELBITS))) \
? MASKWHEEL(2, (abs)) + 2*WHEELSIZE \
: MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
#define MOVEBUCKET(wheel, time) \
CIRCQ_APPEND(&timeout_todo, \
&timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
/*
* The first thing in a struct timeout is its struct circq, so we
* can get back from a pointer to the latter to a pointer to the
* whole timeout with just a cast.
*/
static __inline struct timeout *
timeout_from_circq(struct circq *p)
{
return ((struct timeout *)(p));
}
/*
* All wheels are locked with the same mutex.
*
* We need locking since the timeouts are manipulated from hardclock that's
* not behind the big lock.
*/
struct mutex timeout_mutex = MUTEX_INITIALIZER(IPL_HIGH);
/*
* Circular queue definitions.
*/
#define CIRCQ_INIT(elem) do { \
(elem)->next = (elem); \
(elem)->prev = (elem); \
} while (0)
#define CIRCQ_INSERT(elem, list) do { \
(elem)->prev = (list)->prev; \
(elem)->next = (list); \
(list)->prev->next = (elem); \
(list)->prev = (elem); \
} while (0)
#define CIRCQ_APPEND(fst, snd) do { \
if (!CIRCQ_EMPTY(snd)) { \
(fst)->prev->next = (snd)->next;\
(snd)->next->prev = (fst)->prev;\
(snd)->prev->next = (fst); \
(fst)->prev = (snd)->prev; \
CIRCQ_INIT(snd); \
} \
} while (0)
#define CIRCQ_REMOVE(elem) do { \
(elem)->next->prev = (elem)->prev; \
(elem)->prev->next = (elem)->next; \
_Q_INVALIDATE((elem)->prev); \
_Q_INVALIDATE((elem)->next); \
} while (0)
#define CIRCQ_FIRST(elem) ((elem)->next)
#define CIRCQ_EMPTY(elem) (CIRCQ_FIRST(elem) == (elem))
/*
* Some of the "math" in here is a bit tricky.
*
* We have to beware of wrapping ints.
* We use the fact that any element added to the queue must be added with a
* positive time. That means that any element `to' on the queue cannot be
* scheduled to timeout further in time than INT_MAX, but to->to_time can
* be positive or negative so comparing it with anything is dangerous.
* The only way we can use the to->to_time value in any predictable way
* is when we calculate how far in the future `to' will timeout -
* "to->to_time - ticks". The result will always be positive for future
* timeouts and 0 or negative for due timeouts.
*/
extern int ticks; /* XXX - move to sys/X.h */
void
timeout_startup(void)
{
int b;
CIRCQ_INIT(&timeout_todo);
for (b = 0; b < nitems(timeout_wheel); b++)
CIRCQ_INIT(&timeout_wheel[b]);
}
void
timeout_set(struct timeout *new, void (*fn)(void *), void *arg)
{
new->to_func = fn;
new->to_arg = arg;
new->to_flags = TIMEOUT_INITIALIZED;
}
void
timeout_add(struct timeout *new, int to_ticks)
{
int old_time;
#ifdef DIAGNOSTIC
if (!(new->to_flags & TIMEOUT_INITIALIZED))
panic("timeout_add: not initialized");
if (to_ticks < 0)
panic("timeout_add: to_ticks (%d) < 0", to_ticks);
#endif
mtx_enter(&timeout_mutex);
/* Initialize the time here, it won't change. */
old_time = new->to_time;
new->to_time = to_ticks + ticks;
new->to_flags &= ~TIMEOUT_TRIGGERED;
/*
* If this timeout already is scheduled and now is moved
* earlier, reschedule it now. Otherwise leave it in place
* and let it be rescheduled later.
*/
if (new->to_flags & TIMEOUT_ONQUEUE) {
if (new->to_time - ticks < old_time - ticks) {
CIRCQ_REMOVE(&new->to_list);
CIRCQ_INSERT(&new->to_list, &timeout_todo);
}
} else {
new->to_flags |= TIMEOUT_ONQUEUE;
CIRCQ_INSERT(&new->to_list, &timeout_todo);
}
mtx_leave(&timeout_mutex);
}
void
timeout_add_tv(struct timeout *to, const struct timeval *tv)
{
long long to_ticks;
to_ticks = (long long)hz * tv->tv_sec + tv->tv_usec / tick;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
timeout_add(to, (int)to_ticks);
}
void
timeout_add_ts(struct timeout *to, const struct timespec *ts)
{
long long to_ticks;
to_ticks = (long long)hz * ts->tv_sec + ts->tv_nsec / (tick * 1000);
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
timeout_add(to, (int)to_ticks);
}
void
timeout_add_bt(struct timeout *to, const struct bintime *bt)
{
long long to_ticks;
to_ticks = (long long)hz * bt->sec + (long)(((uint64_t)1000000 *
(uint32_t)(bt->frac >> 32)) >> 32) / tick;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
timeout_add(to, (int)to_ticks);
}
void
timeout_add_sec(struct timeout *to, int secs)
{
long long to_ticks;
to_ticks = (long long)hz * secs;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
timeout_add(to, (int)to_ticks);
}
void
timeout_add_msec(struct timeout *to, int msecs)
{
long long to_ticks;
to_ticks = (long long)msecs * 1000 / tick;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
timeout_add(to, (int)to_ticks);
}
void
timeout_add_usec(struct timeout *to, int usecs)
{
int to_ticks = usecs / tick;
timeout_add(to, to_ticks);
}
void
timeout_add_nsec(struct timeout *to, int nsecs)
{
int to_ticks = nsecs / (tick * 1000);
timeout_add(to, to_ticks);
}
int
timeout_del(struct timeout *to)
{
int ret = 0;
mtx_enter(&timeout_mutex);
if (to->to_flags & TIMEOUT_ONQUEUE) {
CIRCQ_REMOVE(&to->to_list);
to->to_flags &= ~TIMEOUT_ONQUEUE;
ret = 1;
}
to->to_flags &= ~TIMEOUT_TRIGGERED;
mtx_leave(&timeout_mutex);
return (ret);
}
/*
* This is called from hardclock() once every tick.
* We return !0 if we need to schedule a softclock.
*/
int
timeout_hardclock_update(void)
{
int ret;
mtx_enter(&timeout_mutex);
ticks++;
MOVEBUCKET(0, ticks);
if (MASKWHEEL(0, ticks) == 0) {
MOVEBUCKET(1, ticks);
if (MASKWHEEL(1, ticks) == 0) {
MOVEBUCKET(2, ticks);
if (MASKWHEEL(2, ticks) == 0)
MOVEBUCKET(3, ticks);
}
}
ret = !CIRCQ_EMPTY(&timeout_todo);
mtx_leave(&timeout_mutex);
return (ret);
}
void
softclock(void *arg)
{
struct timeout *to;
void (*fn)(void *);
mtx_enter(&timeout_mutex);
while (!CIRCQ_EMPTY(&timeout_todo)) {
to = timeout_from_circq(CIRCQ_FIRST(&timeout_todo));
CIRCQ_REMOVE(&to->to_list);
/* If due run it, otherwise insert it into the right bucket. */
if (to->to_time - ticks > 0) {
CIRCQ_INSERT(&to->to_list,
&BUCKET((to->to_time - ticks), to->to_time));
} else {
#ifdef DEBUG
if (to->to_time - ticks < 0)
printf("timeout delayed %d\n", to->to_time -
ticks);
#endif
to->to_flags &= ~TIMEOUT_ONQUEUE;
to->to_flags |= TIMEOUT_TRIGGERED;
fn = to->to_func;
arg = to->to_arg;
mtx_leave(&timeout_mutex);
fn(arg);
mtx_enter(&timeout_mutex);
}
}
mtx_leave(&timeout_mutex);
}
#ifndef SMALL_KERNEL
void
timeout_adjust_ticks(int adj)
{
struct timeout *to;
struct circq *p;
int new_ticks, b;
/* adjusting the monotonic clock backwards would be a Bad Thing */
if (adj <= 0)
return;
mtx_enter(&timeout_mutex);
new_ticks = ticks + adj;
for (b = 0; b < nitems(timeout_wheel); b++) {
p = CIRCQ_FIRST(&timeout_wheel[b]);
while (p != &timeout_wheel[b]) {
to = timeout_from_circq(p);
p = CIRCQ_FIRST(p);
/* when moving a timeout forward need to reinsert it */
if (to->to_time - ticks < adj)
to->to_time = new_ticks;
CIRCQ_REMOVE(&to->to_list);
CIRCQ_INSERT(&to->to_list, &timeout_todo);
}
}
ticks = new_ticks;
mtx_leave(&timeout_mutex);
}
#endif
#ifdef DDB
void db_show_callout_bucket(struct circq *);
void
db_show_callout_bucket(struct circq *bucket)
{
struct timeout *to;
struct circq *p;
db_expr_t offset;
char *name;
for (p = CIRCQ_FIRST(bucket); p != bucket; p = CIRCQ_FIRST(p)) {
to = timeout_from_circq(p);
db_find_sym_and_offset((db_addr_t)to->to_func, &name, &offset);
name = name ? name : "?";
db_printf("%9d %2td/%-4td %p %s\n", to->to_time - ticks,
(bucket - timeout_wheel) / WHEELSIZE,
bucket - timeout_wheel, to->to_arg, name);
}
}
void
db_show_callout(db_expr_t addr, int haddr, db_expr_t count, char *modif)
{
int b;
db_printf("ticks now: %d\n", ticks);
db_printf(" ticks wheel arg func\n");
db_show_callout_bucket(&timeout_todo);
for (b = 0; b < nitems(timeout_wheel); b++)
db_show_callout_bucket(&timeout_wheel[b]);
}
#endif
|