1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
|
/* $OpenBSD: subr_hibernate.c,v 1.101 2014/09/26 09:25:38 kettenis Exp $ */
/*
* Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
* Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/hibernate.h>
#include <sys/malloc.h>
#include <sys/param.h>
#include <sys/tree.h>
#include <sys/systm.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/conf.h>
#include <sys/buf.h>
#include <sys/fcntl.h>
#include <sys/stat.h>
#include <uvm/uvm.h>
#include <uvm/uvm_swap.h>
#include <machine/hibernate.h>
/*
* Hibernate piglet layout information
*
* The piglet is a scratch area of memory allocated by the suspending kernel.
* Its phys and virt addrs are recorded in the signature block. The piglet is
* used to guarantee an unused area of memory that can be used by the resuming
* kernel for various things. The piglet is excluded during unpack operations.
* The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB).
*
* Offset from piglet_base Purpose
* ----------------------------------------------------------------------------
* 0 Private page for suspend I/O write functions
* 1*PAGE_SIZE I/O page used during hibernate suspend
* 2*PAGE_SIZE I/O page used during hibernate suspend
* 3*PAGE_SIZE copy page used during hibernate suspend
* 4*PAGE_SIZE final chunk ordering list (8 pages)
* 12*PAGE_SIZE piglet chunk ordering list (8 pages)
* 20*PAGE_SIZE temp chunk ordering list (8 pages)
* 28*PAGE_SIZE RLE utility page
* 29*PAGE_SIZE start of hiballoc area
* 109*PAGE_SIZE end of hiballoc area (80 pages)
* ... unused
* HIBERNATE_CHUNK_SIZE start of hibernate chunk table
* 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked
* 4*HIBERNATE_CHUNK_SIZE end of piglet
*/
/* Temporary vaddr ranges used during hibernate */
vaddr_t hibernate_temp_page;
vaddr_t hibernate_copy_page;
vaddr_t hibernate_rle_page;
/* Hibernate info as read from disk during resume */
union hibernate_info disk_hib;
paddr_t global_pig_start;
vaddr_t global_piglet_va;
paddr_t global_piglet_pa;
/* #define HIB_DEBUG */
#ifdef HIB_DEBUG
int hib_debug = 99;
#define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0)
#define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0)
#else
#define DPRINTF(x...)
#define DNPRINTF(n,x...)
#endif
#ifndef NO_PROPOLICE
extern long __guard_local;
#endif /* ! NO_PROPOLICE */
void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
int hibernate_calc_rle(paddr_t, paddr_t);
int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *,
size_t *);
#define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE)
/*
* Hib alloc enforced alignment.
*/
#define HIB_ALIGN 8 /* bytes alignment */
/*
* sizeof builtin operation, but with alignment constraint.
*/
#define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN)
struct hiballoc_entry {
size_t hibe_use;
size_t hibe_space;
RB_ENTRY(hiballoc_entry) hibe_entry;
};
/*
* Sort hibernate memory ranges by ascending PA
*/
void
hibernate_sort_ranges(union hibernate_info *hib_info)
{
int i, j;
struct hibernate_memory_range *ranges;
paddr_t base, end;
ranges = hib_info->ranges;
for (i = 1; i < hib_info->nranges; i++) {
j = i;
while (j > 0 && ranges[j - 1].base > ranges[j].base) {
base = ranges[j].base;
end = ranges[j].end;
ranges[j].base = ranges[j - 1].base;
ranges[j].end = ranges[j - 1].end;
ranges[j - 1].base = base;
ranges[j - 1].end = end;
j--;
}
}
}
/*
* Compare hiballoc entries based on the address they manage.
*
* Since the address is fixed, relative to struct hiballoc_entry,
* we just compare the hiballoc_entry pointers.
*/
static __inline int
hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
{
return l < r ? -1 : (l > r);
}
RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
/*
* Given a hiballoc entry, return the address it manages.
*/
static __inline void *
hib_entry_to_addr(struct hiballoc_entry *entry)
{
caddr_t addr;
addr = (caddr_t)entry;
addr += HIB_SIZEOF(struct hiballoc_entry);
return addr;
}
/*
* Given an address, find the hiballoc that corresponds.
*/
static __inline struct hiballoc_entry*
hib_addr_to_entry(void *addr_param)
{
caddr_t addr;
addr = (caddr_t)addr_param;
addr -= HIB_SIZEOF(struct hiballoc_entry);
return (struct hiballoc_entry*)addr;
}
RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
/*
* Allocate memory from the arena.
*
* Returns NULL if no memory is available.
*/
void *
hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
{
struct hiballoc_entry *entry, *new_entry;
size_t find_sz;
/*
* Enforce alignment of HIB_ALIGN bytes.
*
* Note that, because the entry is put in front of the allocation,
* 0-byte allocations are guaranteed a unique address.
*/
alloc_sz = roundup(alloc_sz, HIB_ALIGN);
/*
* Find an entry with hibe_space >= find_sz.
*
* If the root node is not large enough, we switch to tree traversal.
* Because all entries are made at the bottom of the free space,
* traversal from the end has a slightly better chance of yielding
* a sufficiently large space.
*/
find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
entry = RB_ROOT(&arena->hib_addrs);
if (entry != NULL && entry->hibe_space < find_sz) {
RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
if (entry->hibe_space >= find_sz)
break;
}
}
/*
* Insufficient or too fragmented memory.
*/
if (entry == NULL)
return NULL;
/*
* Create new entry in allocated space.
*/
new_entry = (struct hiballoc_entry*)(
(caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
new_entry->hibe_space = entry->hibe_space - find_sz;
new_entry->hibe_use = alloc_sz;
/*
* Insert entry.
*/
if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
panic("hib_alloc: insert failure");
entry->hibe_space = 0;
/* Return address managed by entry. */
return hib_entry_to_addr(new_entry);
}
/*
* Free a pointer previously allocated from this arena.
*
* If addr is NULL, this will be silently accepted.
*/
void
hib_free(struct hiballoc_arena *arena, void *addr)
{
struct hiballoc_entry *entry, *prev;
if (addr == NULL)
return;
/*
* Derive entry from addr and check it is really in this arena.
*/
entry = hib_addr_to_entry(addr);
if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
panic("hib_free: freed item %p not in hib arena", addr);
/*
* Give the space in entry to its predecessor.
*
* If entry has no predecessor, change its used space into free space
* instead.
*/
prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
if (prev != NULL &&
(void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
prev->hibe_use + prev->hibe_space) == entry) {
/* Merge entry. */
RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
entry->hibe_use + entry->hibe_space;
} else {
/* Flip used memory to free space. */
entry->hibe_space += entry->hibe_use;
entry->hibe_use = 0;
}
}
/*
* Initialize hiballoc.
*
* The allocator will manage memmory at ptr, which is len bytes.
*/
int
hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
{
struct hiballoc_entry *entry;
caddr_t ptr;
size_t len;
RB_INIT(&arena->hib_addrs);
/*
* Hib allocator enforces HIB_ALIGN alignment.
* Fixup ptr and len.
*/
ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
len = p_len - ((size_t)ptr - (size_t)p_ptr);
len &= ~((size_t)HIB_ALIGN - 1);
/*
* Insufficient memory to be able to allocate and also do bookkeeping.
*/
if (len <= HIB_SIZEOF(struct hiballoc_entry))
return ENOMEM;
/*
* Create entry describing space.
*/
entry = (struct hiballoc_entry*)ptr;
entry->hibe_use = 0;
entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
return 0;
}
/*
* Zero all free memory.
*/
void
uvm_pmr_zero_everything(void)
{
struct uvm_pmemrange *pmr;
struct vm_page *pg;
int i;
uvm_lock_fpageq();
TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
/* Zero single pages. */
while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
!= NULL) {
uvm_pmr_remove(pmr, pg);
uvm_pagezero(pg);
atomic_setbits_int(&pg->pg_flags, PG_ZERO);
uvmexp.zeropages++;
uvm_pmr_insert(pmr, pg, 0);
}
/* Zero multi page ranges. */
while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
!= NULL) {
pg--; /* Size tree always has second page. */
uvm_pmr_remove(pmr, pg);
for (i = 0; i < pg->fpgsz; i++) {
uvm_pagezero(&pg[i]);
atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
uvmexp.zeropages++;
}
uvm_pmr_insert(pmr, pg, 0);
}
}
uvm_unlock_fpageq();
}
/*
* Mark all memory as dirty.
*
* Used to inform the system that the clean memory isn't clean for some
* reason, for example because we just came back from hibernate.
*/
void
uvm_pmr_dirty_everything(void)
{
struct uvm_pmemrange *pmr;
struct vm_page *pg;
int i;
uvm_lock_fpageq();
TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
/* Dirty single pages. */
while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
!= NULL) {
uvm_pmr_remove(pmr, pg);
atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
uvm_pmr_insert(pmr, pg, 0);
}
/* Dirty multi page ranges. */
while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
!= NULL) {
pg--; /* Size tree always has second page. */
uvm_pmr_remove(pmr, pg);
for (i = 0; i < pg->fpgsz; i++)
atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
uvm_pmr_insert(pmr, pg, 0);
}
}
uvmexp.zeropages = 0;
uvm_unlock_fpageq();
}
/*
* Allocate an area that can hold sz bytes and doesn't overlap with
* the piglet at piglet_pa.
*/
int
uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa)
{
struct uvm_constraint_range pig_constraint;
struct kmem_pa_mode kp_pig = {
.kp_constraint = &pig_constraint,
.kp_maxseg = 1
};
vaddr_t va;
sz = round_page(sz);
pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE;
pig_constraint.ucr_high = -1;
va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
if (va == 0) {
pig_constraint.ucr_low = 0;
pig_constraint.ucr_high = piglet_pa - 1;
va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
if (va == 0)
return ENOMEM;
}
pmap_extract(pmap_kernel(), va, pa);
return 0;
}
/*
* Allocate a piglet area.
*
* This needs to be in DMA-safe memory.
* Piglets are aligned.
*
* sz and align in bytes.
*
* The call will sleep for the pagedaemon to attempt to free memory.
* The pagedaemon may decide its not possible to free enough memory, causing
* the allocation to fail.
*/
int
uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
{
struct kmem_pa_mode kp_piglet = {
.kp_constraint = &dma_constraint,
.kp_align = align,
.kp_maxseg = 1
};
/* Ensure align is a power of 2 */
KASSERT((align & (align - 1)) == 0);
/*
* Fixup arguments: align must be at least PAGE_SIZE,
* sz will be converted to pagecount, since that is what
* pmemrange uses internally.
*/
if (align < PAGE_SIZE)
align = PAGE_SIZE;
sz = round_page(sz);
*va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait);
if (*va == 0)
return ENOMEM;
pmap_extract(pmap_kernel(), *va, pa);
return 0;
}
/*
* Free a piglet area.
*/
void
uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
{
/*
* Fix parameters.
*/
sz = round_page(sz);
/*
* Free the physical and virtual memory.
*/
km_free((void *)va, sz, &kv_any, &kp_dma_contig);
}
/*
* Physmem RLE compression support.
*
* Given a physical page address, return the number of pages starting at the
* address that are free. Clamps to the number of pages in
* HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
*/
int
uvm_page_rle(paddr_t addr)
{
struct vm_page *pg, *pg_end;
struct vm_physseg *vmp;
int pseg_idx, off_idx;
pseg_idx = vm_physseg_find(atop(addr), &off_idx);
if (pseg_idx == -1)
return 0;
vmp = &vm_physmem[pseg_idx];
pg = &vmp->pgs[off_idx];
if (!(pg->pg_flags & PQ_FREE))
return 0;
/*
* Search for the first non-free page after pg.
* Note that the page may not be the first page in a free pmemrange,
* therefore pg->fpgsz cannot be used.
*/
for (pg_end = pg; pg_end <= vmp->lastpg &&
(pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
;
return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
}
/*
* Fills out the hibernate_info union pointed to by hib
* with information about this machine (swap signature block
* offsets, number of memory ranges, kernel in use, etc)
*/
int
get_hibernate_info(union hibernate_info *hib, int suspend)
{
int chunktable_size;
struct disklabel dl;
char err_string[128], *dl_ret;
#ifndef NO_PROPOLICE
/* Save propolice guard */
hib->guard = __guard_local;
#endif /* ! NO_PROPOLICE */
/* Determine I/O function to use */
hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev);
if (hib->io_func == NULL)
return (1);
/* Calculate hibernate device */
hib->dev = swdevt[0].sw_dev;
/* Read disklabel (used to calculate signature and image offsets) */
dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string));
if (dl_ret) {
printf("Hibernate error reading disklabel: %s\n", dl_ret);
return (1);
}
/* Make sure we have a swap partition. */
if (dl.d_partitions[1].p_fstype != FS_SWAP ||
DL_GETPSIZE(&dl.d_partitions[1]) == 0)
return (1);
/* Make sure the signature can fit in one block */
if (sizeof(union hibernate_info) > DEV_BSIZE)
return (1);
/* Magic number */
hib->magic = HIBERNATE_MAGIC;
/* Calculate signature block location */
hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) -
sizeof(union hibernate_info)/DEV_BSIZE;
chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
/* Stash kernel version information */
memset(&hib->kernel_version, 0, 128);
bcopy(version, &hib->kernel_version,
min(strlen(version), sizeof(hib->kernel_version)-1));
if (suspend) {
hib->piglet_va = global_piglet_va;
hib->piglet_pa = global_piglet_pa;
hib->io_page = (void *)hib->piglet_va;
/*
* Initialization of the hibernate IO function for drivers
* that need to do prep work (such as allocating memory or
* setting up data structures that cannot safely be done
* during suspend without causing side effects). There is
* a matching HIB_DONE call performed after the write is
* completed.
*/
if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]),
(vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]),
HIB_INIT, hib->io_page))
goto fail;
} else {
/*
* Resuming kernels use a regular private page for the driver
* No need to free this I/O page as it will vanish as part of
* the resume.
*/
hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
if (!hib->io_page)
goto fail;
}
if (get_hibernate_info_md(hib))
goto fail;
return (0);
fail:
return (1);
}
/*
* Allocate nitems*size bytes from the hiballoc area presently in use
*/
void *
hibernate_zlib_alloc(void *unused, int nitems, int size)
{
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
}
/*
* Free the memory pointed to by addr in the hiballoc area presently in
* use
*/
void
hibernate_zlib_free(void *unused, void *addr)
{
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
hib_free(&hibernate_state->hiballoc_arena, addr);
}
/*
* Inflate next page of data from the image stream.
* The rle parameter is modified on exit to contain the number of pages to
* skip in the output stream (or 0 if this page was inflated into).
*
* Returns 0 if the stream contains additional data, or 1 if the stream is
* finished.
*/
int
hibernate_inflate_page(int *rle)
{
struct hibernate_zlib_state *hibernate_state;
int i;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
/* Set up the stream for RLE code inflate */
hibernate_state->hib_stream.next_out = (char *)rle;
hibernate_state->hib_stream.avail_out = sizeof(*rle);
/* Inflate RLE code */
i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
if (i != Z_OK && i != Z_STREAM_END) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("rle inflate stream error");
}
if (hibernate_state->hib_stream.avail_out != 0) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("rle short inflate error");
}
if (*rle < 0 || *rle > 1024) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("invalid rle count");
}
if (i == Z_STREAM_END)
return (1);
if (*rle != 0)
return (0);
/* Set up the stream for page inflate */
hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE;
hibernate_state->hib_stream.avail_out = PAGE_SIZE;
/* Process next block of data */
i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
if (i != Z_OK && i != Z_STREAM_END) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("inflate error");
}
/* We should always have extracted a full page ... */
if (hibernate_state->hib_stream.avail_out != 0) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("incomplete page");
}
return (i == Z_STREAM_END);
}
/*
* Inflate size bytes from src into dest, skipping any pages in
* [src..dest] that are special (see hibernate_inflate_skip)
*
* This function executes while using the resume-time stack
* and pmap, and therefore cannot use ddb/printf/etc. Doing so
* will likely hang or reset the machine since the console output buffer
* will be unmapped.
*/
void
hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
paddr_t src, size_t size)
{
int end_stream = 0, rle;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
hibernate_state->hib_stream.next_in = (char *)src;
hibernate_state->hib_stream.avail_in = size;
do {
/*
* Is this a special page? If yes, redirect the
* inflate output to a scratch page (eg, discard it)
*/
if (hibernate_inflate_skip(hib, dest)) {
hibernate_enter_resume_mapping(
HIBERNATE_INFLATE_PAGE,
HIBERNATE_INFLATE_PAGE, 0);
} else {
hibernate_enter_resume_mapping(
HIBERNATE_INFLATE_PAGE, dest, 0);
}
hibernate_flush();
end_stream = hibernate_inflate_page(&rle);
if (rle == 0)
dest += PAGE_SIZE;
else
dest += (rle * PAGE_SIZE);
} while (!end_stream);
}
/*
* deflate from src into the I/O page, up to 'remaining' bytes
*
* Returns number of input bytes consumed, and may reset
* the 'remaining' parameter if not all the output space was consumed
* (this information is needed to know how much to write to disk
*/
size_t
hibernate_deflate(union hibernate_info *hib, paddr_t src,
size_t *remaining)
{
vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
/* Set up the stream for deflate */
hibernate_state->hib_stream.next_in = (caddr_t)src;
hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
(PAGE_SIZE - *remaining);
hibernate_state->hib_stream.avail_out = *remaining;
/* Process next block of data */
if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK)
panic("hibernate zlib deflate error");
/* Update pointers and return number of bytes consumed */
*remaining = hibernate_state->hib_stream.avail_out;
return (PAGE_SIZE - (src & PAGE_MASK)) -
hibernate_state->hib_stream.avail_in;
}
/*
* Write the hibernation information specified in hiber_info
* to the location in swap previously calculated (last block of
* swap), called the "signature block".
*/
int
hibernate_write_signature(union hibernate_info *hib)
{
/* Write hibernate info to disk */
return (hib->io_func(hib->dev, hib->sig_offset,
(vaddr_t)hib, DEV_BSIZE, HIB_W,
hib->io_page));
}
/*
* Write the memory chunk table to the area in swap immediately
* preceding the signature block. The chunk table is stored
* in the piglet when this function is called. Returns errno.
*/
int
hibernate_write_chunktable(union hibernate_info *hib)
{
struct hibernate_disk_chunk *chunks;
vaddr_t hibernate_chunk_table_start;
size_t hibernate_chunk_table_size;
int i, err;
hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
hibernate_chunk_table_start = hib->piglet_va +
HIBERNATE_CHUNK_SIZE;
chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
HIBERNATE_CHUNK_SIZE);
/* Write chunk table */
for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
if ((err = hib->io_func(hib->dev,
hib->chunktable_offset + (i/DEV_BSIZE),
(vaddr_t)(hibernate_chunk_table_start + i),
MAXPHYS, HIB_W, hib->io_page))) {
DPRINTF("chunktable write error: %d\n", err);
return (err);
}
}
return (0);
}
/*
* Write an empty hiber_info to the swap signature block, which is
* guaranteed to not match any valid hib.
*/
int
hibernate_clear_signature(void)
{
union hibernate_info blank_hiber_info;
union hibernate_info hib;
/* Zero out a blank hiber_info */
memset(&blank_hiber_info, 0, sizeof(union hibernate_info));
/* Get the signature block location */
if (get_hibernate_info(&hib, 0))
return (1);
/* Write (zeroed) hibernate info to disk */
DPRINTF("clearing hibernate signature block location: %lld\n",
hib.sig_offset);
if (hibernate_block_io(&hib,
hib.sig_offset,
DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
printf("Warning: could not clear hibernate signature\n");
return (0);
}
/*
* Check chunk range overlap when calculating whether or not to copy a
* compressed chunk to the piglet area before decompressing.
*
* returns zero if the ranges do not overlap, non-zero otherwise.
*/
int
hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
{
/* case A : end of r1 overlaps start of r2 */
if (r1s < r2s && r1e > r2s)
return (1);
/* case B : r1 entirely inside r2 */
if (r1s >= r2s && r1e <= r2e)
return (1);
/* case C : r2 entirely inside r1 */
if (r2s >= r1s && r2e <= r1e)
return (1);
/* case D : end of r2 overlaps start of r1 */
if (r2s < r1s && r2e > r1s)
return (1);
return (0);
}
/*
* Compare two hibernate_infos to determine if they are the same (eg,
* we should be performing a hibernate resume on this machine.
* Not all fields are checked - just enough to verify that the machine
* has the same memory configuration and kernel as the one that
* wrote the signature previously.
*/
int
hibernate_compare_signature(union hibernate_info *mine,
union hibernate_info *disk)
{
u_int i;
if (mine->nranges != disk->nranges) {
DPRINTF("hibernate memory range count mismatch\n");
return (1);
}
if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
DPRINTF("hibernate kernel version mismatch\n");
return (1);
}
for (i = 0; i < mine->nranges; i++) {
if ((mine->ranges[i].base != disk->ranges[i].base) ||
(mine->ranges[i].end != disk->ranges[i].end) ) {
DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
i,
(void *)mine->ranges[i].base,
(void *)mine->ranges[i].end,
(void *)disk->ranges[i].base,
(void *)disk->ranges[i].end);
return (1);
}
}
return (0);
}
/*
* Transfers xfer_size bytes between the hibernate device specified in
* hib_info at offset blkctr and the vaddr specified at dest.
*
* Separate offsets and pages are used to handle misaligned reads (reads
* that span a page boundary).
*
* blkctr specifies a relative offset (relative to the start of swap),
* not an absolute disk offset
*
*/
int
hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
size_t xfer_size, vaddr_t dest, int iswrite)
{
struct buf *bp;
struct bdevsw *bdsw;
int error;
bp = geteblk(xfer_size);
bdsw = &bdevsw[major(hib->dev)];
error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc);
if (error) {
printf("hibernate_block_io open failed\n");
return (1);
}
if (iswrite)
bcopy((caddr_t)dest, bp->b_data, xfer_size);
bp->b_bcount = xfer_size;
bp->b_blkno = blkctr;
CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
bp->b_dev = hib->dev;
(*bdsw->d_strategy)(bp);
error = biowait(bp);
if (error) {
printf("hib block_io biowait error %d blk %lld size %zu\n",
error, (long long)blkctr, xfer_size);
error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR,
curproc);
if (error)
printf("hibernate_block_io error close failed\n");
return (1);
}
error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc);
if (error) {
printf("hibernate_block_io close failed\n");
return (1);
}
if (!iswrite)
bcopy(bp->b_data, (caddr_t)dest, xfer_size);
bp->b_flags |= B_INVAL;
brelse(bp);
return (0);
}
/*
* Reads the signature block from swap, checks against the current machine's
* information. If the information matches, perform a resume by reading the
* saved image into the pig area, and unpacking.
*/
void
hibernate_resume(void)
{
union hibernate_info hib;
int s;
/* Get current running machine's hibernate info */
memset(&hib, 0, sizeof(hib));
if (get_hibernate_info(&hib, 0)) {
DPRINTF("couldn't retrieve machine's hibernate info\n");
return;
}
/* Read hibernate info from disk */
s = splbio();
DPRINTF("reading hibernate signature block location: %lld\n",
hib.sig_offset);
if (hibernate_block_io(&hib,
hib.sig_offset,
DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
DPRINTF("error in hibernate read");
splx(s);
return;
}
/* Check magic number */
if (disk_hib.magic != HIBERNATE_MAGIC) {
DPRINTF("wrong magic number in hibernate signature: %x\n",
disk_hib.magic);
splx(s);
return;
}
/*
* We (possibly) found a hibernate signature. Clear signature first,
* to prevent accidental resume or endless resume cycles later.
*/
if (hibernate_clear_signature()) {
DPRINTF("error clearing hibernate signature block\n");
splx(s);
return;
}
/*
* If on-disk and in-memory hibernate signatures match,
* this means we should do a resume from hibernate.
*/
if (hibernate_compare_signature(&hib, &disk_hib)) {
DPRINTF("mismatched hibernate signature block\n");
splx(s);
return;
}
#ifdef MULTIPROCESSOR
/* XXX - if we fail later, we may need to rehatch APs on some archs */
DPRINTF("hibernate: quiescing APs\n");
hibernate_quiesce_cpus();
#endif /* MULTIPROCESSOR */
/* Read the image from disk into the image (pig) area */
if (hibernate_read_image(&disk_hib))
goto fail;
DPRINTF("hibernate: quiescing devices\n");
if (config_suspend_all(DVACT_QUIESCE) != 0)
goto fail;
(void) splhigh();
hibernate_disable_intr_machdep();
cold = 1;
DPRINTF("hibernate: suspending devices\n");
if (config_suspend_all(DVACT_SUSPEND) != 0) {
cold = 0;
hibernate_enable_intr_machdep();
goto fail;
}
pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
VM_PROT_ALL);
pmap_activate(curproc);
printf("Unpacking image...\n");
/* Switch stacks */
DPRINTF("hibernate: switching stacks\n");
hibernate_switch_stack_machdep();
#ifndef NO_PROPOLICE
/* Start using suspended kernel's propolice guard */
__guard_local = disk_hib.guard;
#endif /* ! NO_PROPOLICE */
/* Unpack and resume */
hibernate_unpack_image(&disk_hib);
fail:
splx(s);
printf("\nUnable to resume hibernated image\n");
}
/*
* Unpack image from pig area to original location by looping through the
* list of output chunks in the order they should be restored (fchunks).
*
* Note that due to the stack smash protector and the fact that we have
* switched stacks, it is not permitted to return from this function.
*/
void
hibernate_unpack_image(union hibernate_info *hib)
{
struct hibernate_disk_chunk *chunks;
union hibernate_info local_hib;
paddr_t image_cur = global_pig_start;
short i, *fchunks;
char *pva;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
/* Piglet will be identity mapped (VA == PA) */
pva = (char *)hib->piglet_pa;
fchunks = (short *)(pva + (4 * PAGE_SIZE));
chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE);
/* Can't use hiber_info that's passed in after this point */
bcopy(hib, &local_hib, sizeof(union hibernate_info));
/* VA == PA */
local_hib.piglet_va = local_hib.piglet_pa;
/*
* Point of no return. Once we pass this point, only kernel code can
* be accessed. No global variables or other kernel data structures
* are guaranteed to be coherent after unpack starts.
*
* The image is now in high memory (pig area), we unpack from the pig
* to the correct location in memory. We'll eventually end up copying
* on top of ourself, but we are assured the kernel code here is the
* same between the hibernated and resuming kernel, and we are running
* on our own stack, so the overwrite is ok.
*/
DPRINTF("hibernate: activating alt. pagetable and starting unpack\n");
hibernate_activate_resume_pt_machdep();
for (i = 0; i < local_hib.chunk_ctr; i++) {
/* Reset zlib for inflate */
if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
panic("hibernate failed to reset zlib for inflate");
hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
image_cur);
image_cur += chunks[fchunks[i]].compressed_size;
}
/*
* Resume the loaded kernel by jumping to the MD resume vector.
* We won't be returning from this call.
*/
hibernate_resume_machdep();
}
/*
* Bounce a compressed image chunk to the piglet, entering mappings for the
* copied pages as needed
*/
void
hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
{
size_t ct, ofs;
paddr_t src = img_cur;
vaddr_t dest = piglet;
/* Copy first partial page */
ct = (PAGE_SIZE) - (src & PAGE_MASK);
ofs = (src & PAGE_MASK);
if (ct < PAGE_SIZE) {
hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
(src - ofs), 0);
hibernate_flush();
bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
src += ct;
dest += ct;
}
/* Copy remaining pages */
while (src < size + img_cur) {
hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
hibernate_flush();
ct = PAGE_SIZE;
bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
hibernate_flush();
src += ct;
dest += ct;
}
}
/*
* Process a chunk by bouncing it to the piglet, followed by unpacking
*/
void
hibernate_process_chunk(union hibernate_info *hib,
struct hibernate_disk_chunk *chunk, paddr_t img_cur)
{
char *pva = (char *)hib->piglet_va;
hibernate_copy_chunk_to_piglet(img_cur,
(vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
hibernate_inflate_region(hib, chunk->base,
(vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
chunk->compressed_size);
}
/*
* Calculate RLE component for 'inaddr'. Clamps to max RLE pages between
* inaddr and range_end.
*/
int
hibernate_calc_rle(paddr_t inaddr, paddr_t range_end)
{
int rle;
rle = uvm_page_rle(inaddr);
KASSERT(rle >= 0 && rle <= MAX_RLE);
/* Clamp RLE to range end */
if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end)
rle = (range_end - inaddr) / PAGE_SIZE;
return (rle);
}
/*
* Write the RLE byte for page at 'inaddr' to the output stream.
* Returns the number of pages to be skipped at 'inaddr'.
*/
int
hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr,
paddr_t range_end, daddr_t *blkctr,
size_t *out_remaining)
{
int rle, err, *rleloc;
struct hibernate_zlib_state *hibernate_state;
vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
rle = hibernate_calc_rle(inaddr, range_end);
rleloc = (int *)hibernate_rle_page + MAX_RLE - 1;
*rleloc = rle;
/* Deflate the RLE byte into the stream */
hibernate_deflate(hib, (paddr_t)rleloc, out_remaining);
/* Did we fill the output page? If so, flush to disk */
if (*out_remaining == 0) {
if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset,
(vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W,
hib->io_page))) {
DPRINTF("hib write error %d\n", err);
return (err);
}
*blkctr += PAGE_SIZE / DEV_BSIZE;
*out_remaining = PAGE_SIZE;
/* If we didn't deflate the entire RLE byte, finish it now */
if (hibernate_state->hib_stream.avail_in != 0)
hibernate_deflate(hib,
(vaddr_t)hibernate_state->hib_stream.next_in,
out_remaining);
}
return (rle);
}
/*
* Write a compressed version of this machine's memory to disk, at the
* precalculated swap offset:
*
* end of swap - signature block size - chunk table size - memory size
*
* The function begins by looping through each phys mem range, cutting each
* one into MD sized chunks. These chunks are then compressed individually
* and written out to disk, in phys mem order. Some chunks might compress
* more than others, and for this reason, each chunk's size is recorded
* in the chunk table, which is written to disk after the image has
* properly been compressed and written (in hibernate_write_chunktable).
*
* When this function is called, the machine is nearly suspended - most
* devices are quiesced/suspended, interrupts are off, and cold has
* been set. This means that there can be no side effects once the
* write has started, and the write function itself can also have no
* side effects. This also means no printfs are permitted (since printf
* has side effects.)
*
* Return values :
*
* 0 - success
* EIO - I/O error occurred writing the chunks
* EINVAL - Failed to write a complete range
* ENOMEM - Memory allocation failure during preparation of the zlib arena
*/
int
hibernate_write_chunks(union hibernate_info *hib)
{
paddr_t range_base, range_end, inaddr, temp_inaddr;
size_t nblocks, out_remaining, used;
struct hibernate_disk_chunk *chunks;
vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
daddr_t blkctr = 0;
int i, rle, err;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
hib->chunk_ctr = 0;
/*
* Map the utility VAs to the piglet. See the piglet map at the
* top of this file for piglet layout information.
*/
pmap_kenter_pa(hibernate_copy_page,
(hib->piglet_pa + 3 * PAGE_SIZE), VM_PROT_ALL);
pmap_kenter_pa(hibernate_rle_page,
(hib->piglet_pa + 28 * PAGE_SIZE), VM_PROT_ALL);
pmap_activate(curproc);
chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
HIBERNATE_CHUNK_SIZE);
/* Calculate the chunk regions */
for (i = 0; i < hib->nranges; i++) {
range_base = hib->ranges[i].base;
range_end = hib->ranges[i].end;
inaddr = range_base;
while (inaddr < range_end) {
chunks[hib->chunk_ctr].base = inaddr;
if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
chunks[hib->chunk_ctr].end = inaddr +
HIBERNATE_CHUNK_SIZE;
else
chunks[hib->chunk_ctr].end = range_end;
inaddr += HIBERNATE_CHUNK_SIZE;
hib->chunk_ctr ++;
}
}
uvm_pmr_dirty_everything();
uvm_pmr_zero_everything();
/* Compress and write the chunks in the chunktable */
for (i = 0; i < hib->chunk_ctr; i++) {
range_base = chunks[i].base;
range_end = chunks[i].end;
chunks[i].offset = blkctr + hib->image_offset;
/* Reset zlib for deflate */
if (hibernate_zlib_reset(hib, 1) != Z_OK) {
DPRINTF("hibernate_zlib_reset failed for deflate\n");
return (ENOMEM);
}
inaddr = range_base;
/*
* For each range, loop through its phys mem region
* and write out the chunks (the last chunk might be
* smaller than the chunk size).
*/
while (inaddr < range_end) {
out_remaining = PAGE_SIZE;
while (out_remaining > 0 && inaddr < range_end) {
/*
* Adjust for regions that are not evenly
* divisible by PAGE_SIZE or overflowed
* pages from the previous iteration.
*/
temp_inaddr = (inaddr & PAGE_MASK) +
hibernate_copy_page;
/* Deflate from temp_inaddr to IO page */
if (inaddr != range_end) {
if (inaddr % PAGE_SIZE == 0) {
rle = hibernate_write_rle(hib,
inaddr,
range_end,
&blkctr,
&out_remaining);
}
if (rle == 0) {
pmap_kenter_pa(hibernate_temp_page,
inaddr & PMAP_PA_MASK,
VM_PROT_ALL);
pmap_activate(curproc);
bcopy((caddr_t)hibernate_temp_page,
(caddr_t)hibernate_copy_page,
PAGE_SIZE);
inaddr += hibernate_deflate(hib,
temp_inaddr,
&out_remaining);
} else {
inaddr += rle * PAGE_SIZE;
if (inaddr > range_end)
inaddr = range_end;
}
}
if (out_remaining == 0) {
/* Filled up the page */
nblocks = PAGE_SIZE / DEV_BSIZE;
if ((err = hib->io_func(hib->dev,
blkctr + hib->image_offset,
(vaddr_t)hibernate_io_page,
PAGE_SIZE, HIB_W, hib->io_page))) {
DPRINTF("hib write error %d\n",
err);
return (err);
}
blkctr += nblocks;
}
}
}
if (inaddr != range_end) {
DPRINTF("deflate range ended prematurely\n");
return (EINVAL);
}
/*
* End of range. Round up to next secsize bytes
* after finishing compress
*/
if (out_remaining == 0)
out_remaining = PAGE_SIZE;
/* Finish compress */
hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
hibernate_state->hib_stream.avail_in = 0;
hibernate_state->hib_stream.next_out =
(caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
/* We have an extra output page available for finalize */
hibernate_state->hib_stream.avail_out =
out_remaining + PAGE_SIZE;
if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
Z_STREAM_END) {
DPRINTF("deflate error in output stream: %d\n", err);
return (err);
}
out_remaining = hibernate_state->hib_stream.avail_out;
used = 2 * PAGE_SIZE - out_remaining;
nblocks = used / DEV_BSIZE;
/* Round up to next block if needed */
if (used % DEV_BSIZE != 0)
nblocks ++;
/* Write final block(s) for this chunk */
if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset,
(vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
HIB_W, hib->io_page))) {
DPRINTF("hib final write error %d\n", err);
return (err);
}
blkctr += nblocks;
chunks[i].compressed_size = (blkctr + hib->image_offset -
chunks[i].offset) * DEV_BSIZE;
}
hib->chunktable_offset = hib->image_offset + blkctr;
return (0);
}
/*
* Reset the zlib stream state and allocate a new hiballoc area for either
* inflate or deflate. This function is called once for each hibernate chunk.
* Calling hiballoc_init multiple times is acceptable since the memory it is
* provided is unmanaged memory (stolen). We use the memory provided to us
* by the piglet allocated via the supplied hib.
*/
int
hibernate_zlib_reset(union hibernate_info *hib, int deflate)
{
vaddr_t hibernate_zlib_start;
size_t hibernate_zlib_size;
char *pva = (char *)hib->piglet_va;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
if (!deflate)
pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
/*
* See piglet layout information at the start of this file for
* information on the zlib page assignments.
*/
hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE));
hibernate_zlib_size = 80 * PAGE_SIZE;
memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size);
memset(hibernate_state, 0, PAGE_SIZE);
/* Set up stream structure */
hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
/* Initialize the hiballoc arena for zlib allocs/frees */
hiballoc_init(&hibernate_state->hiballoc_arena,
(caddr_t)hibernate_zlib_start, hibernate_zlib_size);
if (deflate) {
return deflateInit(&hibernate_state->hib_stream,
Z_BEST_SPEED);
} else
return inflateInit(&hibernate_state->hib_stream);
}
/*
* Reads the hibernated memory image from disk, whose location and
* size are recorded in hib. Begin by reading the persisted
* chunk table, which records the original chunk placement location
* and compressed size for each. Next, allocate a pig region of
* sufficient size to hold the compressed image. Next, read the
* chunks into the pig area (calling hibernate_read_chunks to do this),
* and finally, if all of the above succeeds, clear the hibernate signature.
* The function will then return to hibernate_resume, which will proceed
* to unpack the pig image to the correct place in memory.
*/
int
hibernate_read_image(union hibernate_info *hib)
{
size_t compressed_size, disk_size, chunktable_size, pig_sz;
paddr_t image_start, image_end, pig_start, pig_end;
struct hibernate_disk_chunk *chunks;
daddr_t blkctr;
vaddr_t chunktable = (vaddr_t)NULL;
paddr_t piglet_chunktable = hib->piglet_pa +
HIBERNATE_CHUNK_SIZE;
int i, status;
status = 0;
pmap_activate(curproc);
/* Calculate total chunk table size in disk blocks */
chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
blkctr = hib->chunktable_offset;
chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
&kp_none, &kd_nowait);
if (!chunktable)
return (1);
/* Map chunktable pages */
for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE)
pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
VM_PROT_ALL);
pmap_update(pmap_kernel());
/* Read the chunktable from disk into the piglet chunktable */
for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE)
hibernate_block_io(hib, blkctr, MAXPHYS,
chunktable + i, 0);
blkctr = hib->image_offset;
compressed_size = 0;
chunks = (struct hibernate_disk_chunk *)chunktable;
for (i = 0; i < hib->chunk_ctr; i++)
compressed_size += chunks[i].compressed_size;
disk_size = compressed_size;
printf("unhibernating @ block %lld length %lu bytes\n",
hib->sig_offset - chunktable_size,
compressed_size);
/* Allocate the pig area */
pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) {
status = 1;
goto unmap;
}
pig_end = pig_start + pig_sz;
/* Calculate image extents. Pig image must end on a chunk boundary. */
image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
image_start = image_end - disk_size;
hibernate_read_chunks(hib, image_start, image_end, disk_size,
chunks);
/* Prepare the resume time pmap/page table */
hibernate_populate_resume_pt(hib, image_start, image_end);
unmap:
/* Unmap chunktable pages */
pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE);
pmap_update(pmap_kernel());
return (status);
}
/*
* Read the hibernated memory chunks from disk (chunk information at this
* point is stored in the piglet) into the pig area specified by
* [pig_start .. pig_end]. Order the chunks so that the final chunk is the
* only chunk with overlap possibilities.
*/
int
hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
paddr_t pig_end, size_t image_compr_size,
struct hibernate_disk_chunk *chunks)
{
paddr_t img_cur, piglet_base;
daddr_t blkctr;
size_t processed, compressed_size, read_size;
int nchunks, nfchunks, num_io_pages;
vaddr_t tempva, hibernate_fchunk_area;
short *fchunks, i, j;
tempva = (vaddr_t)NULL;
hibernate_fchunk_area = (vaddr_t)NULL;
nfchunks = 0;
piglet_base = hib->piglet_pa;
global_pig_start = pig_start;
pmap_activate(curproc);
/*
* These mappings go into the resuming kernel's page table, and are
* used only during image read. They dissappear from existence
* when the suspended kernel is unpacked on top of us.
*/
tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none,
&kd_nowait);
if (!tempva)
return (1);
hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any,
&kp_none, &kd_nowait);
if (!hibernate_fchunk_area)
return (1);
/* Final output chunk ordering VA */
fchunks = (short *)hibernate_fchunk_area;
/* Map the chunk ordering region */
for(i = 0; i < 24 ; i++)
pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE),
piglet_base + ((4 + i) * PAGE_SIZE), VM_PROT_ALL);
pmap_update(pmap_kernel());
nchunks = hib->chunk_ctr;
/* Initially start all chunks as unplaced */
for (i = 0; i < nchunks; i++)
chunks[i].flags = 0;
/*
* Search the list for chunks that are outside the pig area. These
* can be placed first in the final output list.
*/
for (i = 0; i < nchunks; i++) {
if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
fchunks[nfchunks] = i;
nfchunks++;
chunks[i].flags |= HIBERNATE_CHUNK_PLACED;
}
}
/*
* Walk the ordering, place the chunks in ascending memory order.
*/
for (i = 0; i < nchunks; i++) {
if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) {
fchunks[nfchunks] = i;
nfchunks++;
chunks[i].flags = HIBERNATE_CHUNK_PLACED;
}
}
img_cur = pig_start;
for (i = 0; i < nfchunks; i++) {
blkctr = chunks[fchunks[i]].offset;
processed = 0;
compressed_size = chunks[fchunks[i]].compressed_size;
while (processed < compressed_size) {
if (compressed_size - processed >= MAXPHYS)
read_size = MAXPHYS;
else
read_size = compressed_size - processed;
/*
* We're reading read_size bytes, offset from the
* start of a page by img_cur % PAGE_SIZE, so the
* end will be read_size + (img_cur % PAGE_SIZE)
* from the start of the first page. Round that
* up to the next page size.
*/
num_io_pages = (read_size + (img_cur % PAGE_SIZE)
+ PAGE_SIZE - 1) / PAGE_SIZE;
KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1);
/* Map pages for this read */
for (j = 0; j < num_io_pages; j ++)
pmap_kenter_pa(tempva + j * PAGE_SIZE,
img_cur + j * PAGE_SIZE, VM_PROT_ALL);
pmap_update(pmap_kernel());
hibernate_block_io(hib, blkctr, read_size,
tempva + (img_cur & PAGE_MASK), 0);
blkctr += (read_size / DEV_BSIZE);
pmap_kremove(tempva, num_io_pages * PAGE_SIZE);
pmap_update(pmap_kernel());
processed += read_size;
img_cur += read_size;
}
}
pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE);
pmap_update(pmap_kernel());
return (0);
}
/*
* Hibernating a machine comprises the following operations:
* 1. Calculating this machine's hibernate_info information
* 2. Allocating a piglet and saving the piglet's physaddr
* 3. Calculating the memory chunks
* 4. Writing the compressed chunks to disk
* 5. Writing the chunk table
* 6. Writing the signature block (hibernate_info)
*
* On most architectures, the function calling hibernate_suspend would
* then power off the machine using some MD-specific implementation.
*/
int
hibernate_suspend(void)
{
union hibernate_info hib;
u_long start, end;
/*
* Calculate memory ranges, swap offsets, etc.
* This also allocates a piglet whose physaddr is stored in
* hib->piglet_pa and vaddr stored in hib->piglet_va
*/
if (get_hibernate_info(&hib, 1)) {
DPRINTF("failed to obtain hibernate info\n");
return (1);
}
/* Find a page-addressed region in swap [start,end] */
if (uvm_hibswap(hib.dev, &start, &end)) {
printf("hibernate: cannot find any swap\n");
return (1);
}
if (end - start < 1000) {
printf("hibernate: insufficient swap (%lu is too small)\n",
end - start);
return (1);
}
/* Calculate block offsets in swap */
hib.image_offset = ctod(start);
DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
hib.image_offset, ctod(end) - ctod(start));
pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
VM_PROT_ALL);
pmap_activate(curproc);
DPRINTF("hibernate: writing chunks\n");
if (hibernate_write_chunks(&hib)) {
DPRINTF("hibernate_write_chunks failed\n");
return (1);
}
DPRINTF("hibernate: writing chunktable\n");
if (hibernate_write_chunktable(&hib)) {
DPRINTF("hibernate_write_chunktable failed\n");
return (1);
}
DPRINTF("hibernate: writing signature\n");
if (hibernate_write_signature(&hib)) {
DPRINTF("hibernate_write_signature failed\n");
return (1);
}
/* Allow the disk to settle */
delay(500000);
/*
* Give the device-specific I/O function a notification that we're
* done, and that it can clean up or shutdown as needed.
*/
hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page);
return (0);
}
int
hibernate_alloc(void)
{
KASSERT(global_piglet_va == 0);
KASSERT(hibernate_temp_page == 0);
KASSERT(hibernate_copy_page == 0);
KASSERT(hibernate_rle_page == 0);
if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa,
HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE))
return (ENOMEM);
/*
* Allocate VA for the temp and copy page.
*
* These will become part of the suspended kernel and will
* be freed in hibernate_free, upon resume.
*/
hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
&kp_none, &kd_nowait);
if (!hibernate_temp_page) {
DPRINTF("out of memory allocating hibernate_temp_page\n");
return (ENOMEM);
}
hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
&kp_none, &kd_nowait);
if (!hibernate_copy_page) {
DPRINTF("out of memory allocating hibernate_copy_page\n");
return (ENOMEM);
}
hibernate_rle_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
&kp_none, &kd_nowait);
if (!hibernate_rle_page) {
DPRINTF("out of memory allocating hibernate_rle_page\n");
return (ENOMEM);
}
return (0);
}
/*
* Free items allocated by hibernate_alloc()
*/
void
hibernate_free(void)
{
if (global_piglet_va)
uvm_pmr_free_piglet(global_piglet_va,
4 * HIBERNATE_CHUNK_SIZE);
if (hibernate_copy_page)
pmap_kremove(hibernate_copy_page, PAGE_SIZE);
if (hibernate_temp_page)
pmap_kremove(hibernate_temp_page, PAGE_SIZE);
if (hibernate_rle_page)
pmap_kremove(hibernate_rle_page, PAGE_SIZE);
pmap_update(pmap_kernel());
if (hibernate_copy_page)
km_free((void *)hibernate_copy_page, PAGE_SIZE,
&kv_any, &kp_none);
if (hibernate_temp_page)
km_free((void *)hibernate_temp_page, PAGE_SIZE,
&kv_any, &kp_none);
if (hibernate_rle_page)
km_free((void *)hibernate_rle_page, PAGE_SIZE,
&kv_any, &kp_none);
global_piglet_va = 0;
hibernate_copy_page = 0;
hibernate_temp_page = 0;
hibernate_rle_page = 0;
}
|