1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
/* $OpenBSD: vfs_biomem.c,v 1.24 2013/06/11 19:01:20 beck Exp $ */
/*
* Copyright (c) 2007 Artur Grabowski <art@openbsd.org>
* Copyright (c) 2012,2013 Bob Beck <beck@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/pool.h>
#include <sys/proc.h> /* XXX for atomic */
#include <sys/mount.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm.h>
vaddr_t buf_kva_start, buf_kva_end;
int buf_needva;
TAILQ_HEAD(,buf) buf_valist;
extern struct bcachestats bcstats;
/*
* Pages are allocated from a uvm object (we only use it for page storage,
* all pages are wired). Since every buffer contains a contiguous range of
* pages, reusing the pages could be very painful. Fortunately voff_t is
* 64 bits, so we can just increment buf_page_offset all the time and ignore
* wraparound. Even if you reuse 4GB worth of buffers every second
* you'll still run out of time_t faster than buffers.
*
*/
voff_t buf_page_offset;
struct uvm_object *buf_object, buf_object_store;
vaddr_t buf_unmap(struct buf *);
void
buf_mem_init(vsize_t size)
{
TAILQ_INIT(&buf_valist);
buf_kva_start = vm_map_min(kernel_map);
if (uvm_map(kernel_map, &buf_kva_start, size, NULL,
UVM_UNKNOWN_OFFSET, PAGE_SIZE, UVM_MAPFLAG(UVM_PROT_NONE,
UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_NORMAL, 0)))
panic("bufinit: can't reserve VM for buffers");
buf_kva_end = buf_kva_start + size;
/* Contiguous mapping */
bcstats.kvaslots = bcstats.kvaslots_avail = size / MAXPHYS;
buf_object = &buf_object_store;
uvm_objinit(buf_object, NULL, 1);
}
/*
* buf_acquire and buf_release manage the kvm mappings of buffers.
*/
void
buf_acquire(struct buf *bp)
{
KASSERT((bp->b_flags & B_BUSY) == 0);
splassert(IPL_BIO);
/*
* Busy before waiting for kvm.
*/
SET(bp->b_flags, B_BUSY);
buf_map(bp);
}
/*
* Acquire a buf but do not map it. Preserve any mapping it did have.
*/
void
buf_acquire_nomap(struct buf *bp)
{
splassert(IPL_BIO);
SET(bp->b_flags, B_BUSY);
if (bp->b_data != NULL) {
TAILQ_REMOVE(&buf_valist, bp, b_valist);
bcstats.kvaslots_avail--;
bcstats.busymapped++;
}
}
void
buf_map(struct buf *bp)
{
vaddr_t va;
splassert(IPL_BIO);
if (bp->b_data == NULL) {
unsigned long i;
/*
* First, just use the pre-allocated space until we run out.
*/
if (buf_kva_start < buf_kva_end) {
va = buf_kva_start;
buf_kva_start += MAXPHYS;
bcstats.kvaslots_avail--;
} else {
struct buf *vbp;
/*
* Find some buffer we can steal the space from.
*/
vbp = TAILQ_FIRST(&buf_valist);
while ((curproc != syncerproc &&
curproc != cleanerproc &&
bcstats.kvaslots_avail <= RESERVE_SLOTS) ||
vbp == NULL) {
buf_needva++;
tsleep(&buf_needva, PRIBIO, "buf_needva", 0);
vbp = TAILQ_FIRST(&buf_valist);
}
va = buf_unmap(vbp);
}
for (i = 0; i < atop(bp->b_bufsize); i++) {
struct vm_page *pg = uvm_pagelookup(bp->b_pobj,
bp->b_poffs + ptoa(i));
KASSERT(pg != NULL);
pmap_kenter_pa(va + ptoa(i), VM_PAGE_TO_PHYS(pg),
VM_PROT_READ|VM_PROT_WRITE);
pmap_update(pmap_kernel());
}
bp->b_data = (caddr_t)va;
} else {
TAILQ_REMOVE(&buf_valist, bp, b_valist);
bcstats.kvaslots_avail--;
}
bcstats.busymapped++;
}
void
buf_release(struct buf *bp)
{
KASSERT(bp->b_flags & B_BUSY);
splassert(IPL_BIO);
if (bp->b_data) {
bcstats.busymapped--;
TAILQ_INSERT_TAIL(&buf_valist, bp, b_valist);
bcstats.kvaslots_avail++;
if (buf_needva) {
buf_needva=0;
wakeup(&buf_needva);
}
}
CLR(bp->b_flags, B_BUSY);
}
/*
* Deallocate all memory resources for this buffer. We need to be careful
* to not drop kvm since we have no way to reclaim it. So, if the buffer
* has kvm, we need to free it later. We put it on the front of the
* freelist just so it gets picked up faster.
*
* Also, lots of assertions count on bp->b_data being NULL, so we
* set it temporarily to NULL.
*
* Return non-zero if we take care of the freeing later.
*/
int
buf_dealloc_mem(struct buf *bp)
{
caddr_t data;
splassert(IPL_BIO);
data = bp->b_data;
bp->b_data = NULL;
if (data) {
if (bp->b_flags & B_BUSY)
bcstats.busymapped--;
pmap_kremove((vaddr_t)data, bp->b_bufsize);
pmap_update(pmap_kernel());
}
if (bp->b_pobj)
buf_free_pages(bp);
if (data == NULL)
return (0);
bp->b_data = data;
if (!(bp->b_flags & B_BUSY)) { /* XXX - need better test */
TAILQ_REMOVE(&buf_valist, bp, b_valist);
bcstats.kvaslots_avail--;
} else {
CLR(bp->b_flags, B_BUSY);
if (buf_needva) {
buf_needva = 0;
wakeup(&buf_needva);
}
}
SET(bp->b_flags, B_RELEASED);
TAILQ_INSERT_HEAD(&buf_valist, bp, b_valist);
bcstats.kvaslots_avail++;
return (1);
}
/*
* Only used by bread_cluster.
*/
void
buf_fix_mapping(struct buf *bp, vsize_t newsize)
{
vaddr_t va = (vaddr_t)bp->b_data;
if (newsize < bp->b_bufsize) {
pmap_kremove(va + newsize, bp->b_bufsize - newsize);
pmap_update(pmap_kernel());
/*
* Note: the size we lost is actually with the other
* buffers read in by bread_cluster
*/
bp->b_bufsize = newsize;
}
}
vaddr_t
buf_unmap(struct buf *bp)
{
vaddr_t va;
KASSERT((bp->b_flags & B_BUSY) == 0);
KASSERT(bp->b_data != NULL);
splassert(IPL_BIO);
TAILQ_REMOVE(&buf_valist, bp, b_valist);
bcstats.kvaslots_avail--;
va = (vaddr_t)bp->b_data;
bp->b_data = 0;
pmap_kremove(va, bp->b_bufsize);
pmap_update(pmap_kernel());
if (bp->b_flags & B_RELEASED)
pool_put(&bufpool, bp);
return (va);
}
/* Always allocates in dma-reachable memory */
void
buf_alloc_pages(struct buf *bp, vsize_t size)
{
voff_t offs;
int i;
KASSERT(size == round_page(size));
KASSERT(bp->b_pobj == NULL);
KASSERT(bp->b_data == NULL);
splassert(IPL_BIO);
offs = buf_page_offset;
buf_page_offset += size;
KASSERT(buf_page_offset > 0);
do {
i = uvm_pagealloc_multi(buf_object, offs, size,
UVM_PLA_NOWAIT);
if (i == 0)
break;
} while (bufbackoff(&dma_constraint, 100) == 0);
if (i != 0)
i = uvm_pagealloc_multi(buf_object, offs, size,
UVM_PLA_WAITOK);
bcstats.numbufpages += atop(size);
bcstats.dmapages += atop(size);
SET(bp->b_flags, B_DMA);
bp->b_pobj = buf_object;
bp->b_poffs = offs;
bp->b_bufsize = size;
}
void
buf_free_pages(struct buf *bp)
{
struct uvm_object *uobj = bp->b_pobj;
struct vm_page *pg;
voff_t off, i;
KASSERT(bp->b_data == NULL);
KASSERT(uobj != NULL);
splassert(IPL_BIO);
off = bp->b_poffs;
bp->b_pobj = NULL;
bp->b_poffs = 0;
for (i = 0; i < atop(bp->b_bufsize); i++) {
pg = uvm_pagelookup(uobj, off + ptoa(i));
KASSERT(pg != NULL);
KASSERT(pg->wire_count == 1);
pg->wire_count = 0;
uvm_pagefree(pg);
bcstats.numbufpages--;
if (ISSET(bp->b_flags, B_DMA))
bcstats.dmapages--;
}
CLR(bp->b_flags, B_DMA);
}
/* Reallocate a buf into a particular pmem range specified by "where". */
int
buf_realloc_pages(struct buf *bp, struct uvm_constraint_range *where,
int flags)
{
vaddr_t va;
int dma;
int i, r;
KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
splassert(IPL_BIO);
KASSERT(ISSET(bp->b_flags, B_BUSY));
dma = ISSET(bp->b_flags, B_DMA);
/* if the original buf is mapped, unmap it */
if (bp->b_data != NULL) {
va = (vaddr_t)bp->b_data;
pmap_kremove(va, bp->b_bufsize);
pmap_update(pmap_kernel());
}
r = 0;
do {
r = uvm_pagerealloc_multi(bp->b_pobj, bp->b_poffs,
bp->b_bufsize, UVM_PLA_NOWAIT, where);
if (r == 0)
break;
} while ((bufbackoff(where, 100) == 0) && (flags & UVM_PLA_WAITOK));
if (r != 0 && (! flags & UVM_PLA_NOWAIT))
r = uvm_pagerealloc_multi(bp->b_pobj, bp->b_poffs,
bp->b_bufsize, flags, where);
/*
* do this now, and put it back later when we know where we are
*/
if (dma)
bcstats.dmapages -= atop(bp->b_bufsize);
dma = 1;
/* if the original buf was mapped, re-map it */
for (i = 0; i < atop(bp->b_bufsize); i++) {
struct vm_page *pg = uvm_pagelookup(bp->b_pobj,
bp->b_poffs + ptoa(i));
KASSERT(pg != NULL);
if (!PADDR_IS_DMA_REACHABLE(VM_PAGE_TO_PHYS(pg)))
dma = 0;
if (bp->b_data != NULL) {
pmap_kenter_pa(va + ptoa(i), VM_PAGE_TO_PHYS(pg),
VM_PROT_READ|VM_PROT_WRITE);
pmap_update(pmap_kernel());
}
}
if (dma) {
SET(bp->b_flags, B_DMA);
bcstats.dmapages += atop(bp->b_bufsize);
} else
CLR(bp->b_flags, B_DMA);
return(r);
}
|