1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
|
/*
* Copyright (C) 2015-2020 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (C) 2019-2020 Matt Dunwoodie <ncon@noconroy.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/rwlock.h>
#include <sys/malloc.h> /* Because systm doesn't include M_NOWAIT, M_DEVBUF */
#include <sys/pool.h>
#include <sys/socket.h>
#include <crypto/chachapoly.h>
#include <net/wg_cookie.h>
static void cookie_precompute_key(uint8_t *,
const uint8_t[COOKIE_INPUT_SIZE], const char *);
static void cookie_macs_mac1(struct cookie_macs *, const void *, size_t,
const uint8_t[COOKIE_KEY_SIZE]);
static void cookie_macs_mac2(struct cookie_macs *, const void *, size_t,
const uint8_t[COOKIE_COOKIE_SIZE]);
static int cookie_timer_expired(struct timespec *, time_t, long);
static void cookie_checker_make_cookie(struct cookie_checker *,
uint8_t[COOKIE_COOKIE_SIZE], struct sockaddr *);
static int ratelimit_init(struct ratelimit *, struct pool *pool);
static void ratelimit_deinit(struct ratelimit *);
static void ratelimit_gc(struct ratelimit *, int);
static int ratelimit_allow(struct ratelimit *, struct sockaddr *);
/* Public Functions */
void
cookie_maker_init(struct cookie_maker *cp, uint8_t key[COOKIE_INPUT_SIZE])
{
bzero(cp, sizeof(*cp));
cookie_precompute_key(cp->cp_mac1_key, key, COOKIE_MAC1_KEY_LABEL);
cookie_precompute_key(cp->cp_cookie_key, key, COOKIE_COOKIE_KEY_LABEL);
rw_init(&cp->cp_lock, "cookie_maker");
}
int
cookie_checker_init(struct cookie_checker *cc, struct pool *pool)
{
int res;
bzero(cc, sizeof(*cc));
rw_init(&cc->cc_key_lock, "cookie_checker_key");
rw_init(&cc->cc_secret_lock, "cookie_checker_secret");
if ((res = ratelimit_init(&cc->cc_ratelimit_v4, pool)) != 0)
return res;
#ifdef INET6
if ((res = ratelimit_init(&cc->cc_ratelimit_v6, pool)) != 0) {
ratelimit_deinit(&cc->cc_ratelimit_v4);
return res;
}
#endif
return 0;
}
void
cookie_checker_update(struct cookie_checker *cc,
uint8_t key[COOKIE_INPUT_SIZE])
{
rw_enter_write(&cc->cc_key_lock);
if (key) {
cookie_precompute_key(cc->cc_mac1_key, key, COOKIE_MAC1_KEY_LABEL);
cookie_precompute_key(cc->cc_cookie_key, key, COOKIE_COOKIE_KEY_LABEL);
} else {
bzero(cc->cc_mac1_key, sizeof(cc->cc_mac1_key));
bzero(cc->cc_cookie_key, sizeof(cc->cc_cookie_key));
}
rw_exit_write(&cc->cc_key_lock);
}
void
cookie_checker_deinit(struct cookie_checker *cc)
{
ratelimit_deinit(&cc->cc_ratelimit_v4);
#ifdef INET6
ratelimit_deinit(&cc->cc_ratelimit_v6);
#endif
}
void
cookie_checker_create_payload(struct cookie_checker *cc,
struct cookie_macs *cm, uint8_t nonce[COOKIE_NONCE_SIZE],
uint8_t ecookie[COOKIE_ENCRYPTED_SIZE], struct sockaddr *sa)
{
uint8_t cookie[COOKIE_COOKIE_SIZE];
cookie_checker_make_cookie(cc, cookie, sa);
arc4random_buf(nonce, COOKIE_NONCE_SIZE);
rw_enter_read(&cc->cc_key_lock);
xchacha20poly1305_encrypt(ecookie, cookie, COOKIE_COOKIE_SIZE,
cm->mac1, COOKIE_MAC_SIZE, nonce, cc->cc_cookie_key);
rw_exit_read(&cc->cc_key_lock);
explicit_bzero(cookie, sizeof(cookie));
}
int
cookie_maker_consume_payload(struct cookie_maker *cp,
uint8_t nonce[COOKIE_NONCE_SIZE], uint8_t ecookie[COOKIE_ENCRYPTED_SIZE])
{
int ret = 0;
uint8_t cookie[COOKIE_COOKIE_SIZE];
rw_enter_write(&cp->cp_lock);
if (cp->cp_mac1_valid == 0) {
ret = ETIMEDOUT;
goto error;
}
if (xchacha20poly1305_decrypt(cookie, ecookie, COOKIE_ENCRYPTED_SIZE,
cp->cp_mac1_last, COOKIE_MAC_SIZE, nonce, cp->cp_cookie_key) == 0) {
ret = EINVAL;
goto error;
}
memcpy(cp->cp_cookie, cookie, COOKIE_COOKIE_SIZE);
getnanouptime(&cp->cp_birthdate);
cp->cp_mac1_valid = 0;
error:
rw_exit_write(&cp->cp_lock);
return ret;
}
void
cookie_maker_mac(struct cookie_maker *cp, struct cookie_macs *cm, void *buf,
size_t len)
{
rw_enter_read(&cp->cp_lock);
cookie_macs_mac1(cm, buf, len, cp->cp_mac1_key);
memcpy(cp->cp_mac1_last, cm->mac1, COOKIE_MAC_SIZE);
cp->cp_mac1_valid = 1;
if (!cookie_timer_expired(&cp->cp_birthdate,
COOKIE_SECRET_MAX_AGE - COOKIE_SECRET_LATENCY, 0))
cookie_macs_mac2(cm, buf, len, cp->cp_cookie);
else
bzero(cm->mac2, COOKIE_MAC_SIZE);
rw_exit_read(&cp->cp_lock);
}
int
cookie_checker_validate_macs(struct cookie_checker *cc, struct cookie_macs *cm,
void *buf, size_t len, int busy, struct sockaddr *sa)
{
struct cookie_macs our_cm;
uint8_t cookie[COOKIE_COOKIE_SIZE];
/* Validate incoming MACs */
rw_enter_read(&cc->cc_key_lock);
cookie_macs_mac1(&our_cm, buf, len, cc->cc_mac1_key);
rw_exit_read(&cc->cc_key_lock);
/* If mac1 is invald, we want to drop the packet */
if (timingsafe_bcmp(our_cm.mac1, cm->mac1, COOKIE_MAC_SIZE) != 0)
return EINVAL;
if (busy != 0) {
cookie_checker_make_cookie(cc, cookie, sa);
cookie_macs_mac2(&our_cm, buf, len, cookie);
/* If the mac2 is invalid, we want to send a cookie response */
if (timingsafe_bcmp(our_cm.mac2, cm->mac2, COOKIE_MAC_SIZE) != 0)
return EAGAIN;
/* If the mac2 is valid, we may want rate limit the peer.
* ratelimit_allow will return either 0 or ECONNREFUSED,
* implying there is no ratelimiting, or we should ratelimit
* (refuse) respectively. */
if (sa->sa_family == AF_INET)
return ratelimit_allow(&cc->cc_ratelimit_v4, sa);
#ifdef INET6
else if (sa->sa_family == AF_INET6)
return ratelimit_allow(&cc->cc_ratelimit_v6, sa);
#endif
else
return EAFNOSUPPORT;
}
return 0;
}
/* Private functions */
static void
cookie_precompute_key(uint8_t *key, const uint8_t input[COOKIE_INPUT_SIZE],
const char *label)
{
struct blake2s_state blake;
blake2s_init(&blake, COOKIE_KEY_SIZE);
blake2s_update(&blake, label, strlen(label));
blake2s_update(&blake, input, COOKIE_INPUT_SIZE);
blake2s_final(&blake, key);
}
static void
cookie_macs_mac1(struct cookie_macs *cm, const void *buf, size_t len,
const uint8_t key[COOKIE_KEY_SIZE])
{
struct blake2s_state state;
blake2s_init_key(&state, COOKIE_MAC_SIZE, key, COOKIE_KEY_SIZE);
blake2s_update(&state, buf, len);
blake2s_final(&state, cm->mac1);
}
static void
cookie_macs_mac2(struct cookie_macs *cm, const void *buf, size_t len,
const uint8_t key[COOKIE_COOKIE_SIZE])
{
struct blake2s_state state;
blake2s_init_key(&state, COOKIE_MAC_SIZE, key, COOKIE_COOKIE_SIZE);
blake2s_update(&state, buf, len);
blake2s_update(&state, cm->mac1, COOKIE_MAC_SIZE);
blake2s_final(&state, cm->mac2);
}
static int
cookie_timer_expired(struct timespec *birthdate, time_t sec, long nsec)
{
struct timespec uptime;
struct timespec expire = { .tv_sec = sec, .tv_nsec = nsec };
if (birthdate->tv_sec == 0 && birthdate->tv_nsec == 0)
return ETIMEDOUT;
getnanouptime(&uptime);
timespecadd(birthdate, &expire, &expire);
return timespeccmp(&uptime, &expire, >) ? ETIMEDOUT : 0;
}
static void
cookie_checker_make_cookie(struct cookie_checker *cc,
uint8_t cookie[COOKIE_COOKIE_SIZE], struct sockaddr *sa)
{
struct blake2s_state state;
rw_enter_write(&cc->cc_secret_lock);
if (cookie_timer_expired(&cc->cc_secret_birthdate,
COOKIE_SECRET_MAX_AGE, 0)) {
arc4random_buf(cc->cc_secret, COOKIE_SECRET_SIZE);
getnanouptime(&cc->cc_secret_birthdate);
}
blake2s_init_key(&state, COOKIE_COOKIE_SIZE, cc->cc_secret,
COOKIE_SECRET_SIZE);
rw_exit_write(&cc->cc_secret_lock);
if (sa->sa_family == AF_INET) {
blake2s_update(&state, (uint8_t *)&satosin(sa)->sin_addr,
sizeof(struct in_addr));
blake2s_update(&state, (uint8_t *)&satosin(sa)->sin_port,
sizeof(in_port_t));
blake2s_final(&state, cookie);
#ifdef INET6
} else if (sa->sa_family == AF_INET6) {
blake2s_update(&state, (uint8_t *)&satosin6(sa)->sin6_addr,
sizeof(struct in6_addr));
blake2s_update(&state, (uint8_t *)&satosin6(sa)->sin6_port,
sizeof(in_port_t));
blake2s_final(&state, cookie);
#endif
} else {
arc4random_buf(cookie, COOKIE_COOKIE_SIZE);
}
}
static int
ratelimit_init(struct ratelimit *rl, struct pool *pool)
{
rw_init(&rl->rl_lock, "ratelimit_lock");
arc4random_buf(&rl->rl_secret, sizeof(rl->rl_secret));
rl->rl_table = hashinit(RATELIMIT_SIZE, M_DEVBUF, M_NOWAIT,
&rl->rl_table_mask);
rl->rl_pool = pool;
rl->rl_table_num = 0;
return rl->rl_table == NULL ? ENOBUFS : 0;
}
static void
ratelimit_deinit(struct ratelimit *rl)
{
rw_enter_write(&rl->rl_lock);
ratelimit_gc(rl, 1);
hashfree(rl->rl_table, RATELIMIT_SIZE, M_DEVBUF);
rw_exit_write(&rl->rl_lock);
}
static void
ratelimit_gc(struct ratelimit *rl, int force)
{
size_t i;
struct ratelimit_entry *r, *tr;
struct timespec expiry;
rw_assert_wrlock(&rl->rl_lock);
if (force) {
for (i = 0; i < RATELIMIT_SIZE; i++) {
LIST_FOREACH_SAFE(r, &rl->rl_table[i], r_entry, tr) {
rl->rl_table_num--;
LIST_REMOVE(r, r_entry);
pool_put(rl->rl_pool, r);
}
}
return;
}
if ((cookie_timer_expired(&rl->rl_last_gc, ELEMENT_TIMEOUT, 0) &&
rl->rl_table_num > 0)) {
getnanouptime(&rl->rl_last_gc);
getnanouptime(&expiry);
expiry.tv_sec -= ELEMENT_TIMEOUT;
for (i = 0; i < RATELIMIT_SIZE; i++) {
LIST_FOREACH_SAFE(r, &rl->rl_table[i], r_entry, tr) {
if (timespeccmp(&r->r_last_time, &expiry, <)) {
rl->rl_table_num--;
LIST_REMOVE(r, r_entry);
pool_put(rl->rl_pool, r);
}
}
}
}
}
static int
ratelimit_allow(struct ratelimit *rl, struct sockaddr *sa)
{
uint64_t key, tokens;
struct timespec diff;
struct ratelimit_entry *r;
int ret = ECONNREFUSED;
if (sa->sa_family == AF_INET)
key = SipHash24(&rl->rl_secret, &satosin(sa)->sin_addr,
IPV4_MASK_SIZE);
#ifdef INET6
else if (sa->sa_family == AF_INET6)
key = SipHash24(&rl->rl_secret, &satosin6(sa)->sin6_addr,
IPV6_MASK_SIZE);
#endif
else
return ret;
rw_enter_write(&rl->rl_lock);
LIST_FOREACH(r, &rl->rl_table[key & rl->rl_table_mask], r_entry) {
if (r->r_af != sa->sa_family)
continue;
if (r->r_af == AF_INET && bcmp(&r->r_in,
&satosin(sa)->sin_addr, IPV4_MASK_SIZE) != 0)
continue;
#ifdef INET6
if (r->r_af == AF_INET6 && bcmp(&r->r_in6,
&satosin6(sa)->sin6_addr, IPV6_MASK_SIZE) != 0)
continue;
#endif
/* If we get to here, we've found an entry for the endpoint.
* We apply standard token bucket, by calculating the time
* lapsed since our last_time, adding that, ensuring that we
* cap the tokens at TOKEN_MAX. If the endpoint has no tokens
* left (that is tokens <= INITIATION_COST) then we block the
* request, otherwise we subtract the INITITIATION_COST and
* return OK. */
diff = r->r_last_time;
getnanouptime(&r->r_last_time);
timespecsub(&r->r_last_time, &diff, &diff);
tokens = r->r_tokens + diff.tv_sec * NSEC_PER_SEC + diff.tv_nsec;
if (tokens > TOKEN_MAX)
tokens = TOKEN_MAX;
if (tokens >= INITIATION_COST) {
r->r_tokens = tokens - INITIATION_COST;
goto ok;
} else {
r->r_tokens = tokens;
goto error;
}
}
/* If we get to here, we didn't have an entry for the endpoint. */
ratelimit_gc(rl, 0);
/* Hard limit on number of entries */
if (rl->rl_table_num >= RATELIMIT_SIZE_MAX)
goto error;
/* Goto error if out of memory */
if ((r = pool_get(rl->rl_pool, PR_NOWAIT)) == NULL)
goto error;
rl->rl_table_num++;
/* Insert entry into the hashtable and ensure it's initialised */
LIST_INSERT_HEAD(&rl->rl_table[key & rl->rl_table_mask], r, r_entry);
r->r_af = sa->sa_family;
if (r->r_af == AF_INET)
memcpy(&r->r_in, &satosin(sa)->sin_addr, IPV4_MASK_SIZE);
#ifdef INET6
else if (r->r_af == AF_INET6)
memcpy(&r->r_in6, &satosin6(sa)->sin6_addr, IPV6_MASK_SIZE);
#endif
getnanouptime(&r->r_last_time);
r->r_tokens = TOKEN_MAX - INITIATION_COST;
ok:
ret = 0;
error:
rw_exit_write(&rl->rl_lock);
return ret;
}
#ifdef WGTEST
#define MESSAGE_LEN 64
#define T_FAILED_ITER(test) do { \
printf("%s %s: failed. iter: %d\n", __func__, test, i); \
goto cleanup; \
} while (0)
#define T_FAILED(test) do { \
printf("%s %s: failed.\n", __func__, test); \
goto cleanup; \
} while (0)
#define T_PASSED printf("%s: passed.\n", __func__)
static const struct expected_results {
int result;
int sleep_time;
} rl_expected[] = {
[0 ... INITIATIONS_BURSTABLE - 1] = { 0, 0 },
[INITIATIONS_BURSTABLE] = { ECONNREFUSED, 0 },
[INITIATIONS_BURSTABLE + 1] = { 0, NSEC_PER_SEC / INITIATIONS_PER_SECOND },
[INITIATIONS_BURSTABLE + 2] = { ECONNREFUSED, 0 },
[INITIATIONS_BURSTABLE + 3] = { 0, (NSEC_PER_SEC / INITIATIONS_PER_SECOND) * 2 },
[INITIATIONS_BURSTABLE + 4] = { 0, 0 },
[INITIATIONS_BURSTABLE + 5] = { ECONNREFUSED, 0 }
};
static void
cookie_ratelimit_timings_test()
{
struct ratelimit rl;
struct pool rl_pool;
struct sockaddr_in sin;
#ifdef INET6
struct sockaddr_in6 sin6;
#endif
int i;
pool_init(&rl_pool, sizeof(struct ratelimit_entry), 0,
IPL_NONE, 0, "rl", NULL);
ratelimit_init(&rl, &rl_pool);
sin.sin_family = AF_INET;
#ifdef INET6
sin6.sin6_family = AF_INET6;
#endif
for (i = 0; i < sizeof(rl_expected)/sizeof(*rl_expected); i++) {
if (rl_expected[i].sleep_time != 0)
tsleep_nsec(&rl, PWAIT, "rl", rl_expected[i].sleep_time);
/* The first v4 ratelimit_allow is against a constant address,
* and should be indifferent to the port. */
sin.sin_addr.s_addr = 0x01020304;
sin.sin_port = arc4random();
if (ratelimit_allow(&rl, sintosa(&sin)) != rl_expected[i].result)
T_FAILED_ITER("malicious v4");
/* The second ratelimit_allow is to test that an arbitrary
* address is still allowed. */
sin.sin_addr.s_addr += i + 1;
sin.sin_port = arc4random();
if (ratelimit_allow(&rl, sintosa(&sin)) != 0)
T_FAILED_ITER("non-malicious v4");
#ifdef INET6
/* The first v6 ratelimit_allow is against a constant address,
* and should be indifferent to the port. We also mutate the
* lower 64 bits of the address as we want to ensure ratelimit
* occurs against the higher 64 bits (/64 network). */
sin6.sin6_addr.s6_addr32[0] = 0x01020304;
sin6.sin6_addr.s6_addr32[1] = 0x05060708;
sin6.sin6_addr.s6_addr32[2] = i;
sin6.sin6_addr.s6_addr32[3] = i;
sin6.sin6_port = arc4random();
if (ratelimit_allow(&rl, sin6tosa(&sin6)) != rl_expected[i].result)
T_FAILED_ITER("malicious v6");
/* Again, test that an address different to above is still
* allowed. */
sin6.sin6_addr.s6_addr32[0] += i + 1;
sin6.sin6_port = arc4random();
if (ratelimit_allow(&rl, sintosa(&sin)) != 0)
T_FAILED_ITER("non-malicious v6");
#endif
}
T_PASSED;
cleanup:
ratelimit_deinit(&rl);
pool_destroy(&rl_pool);
}
static void
cookie_ratelimit_capacity_test()
{
struct ratelimit rl;
struct pool rl_pool;
struct sockaddr_in sin;
int i;
pool_init(&rl_pool, sizeof(struct ratelimit_entry), 0,
IPL_NONE, 0, "rl", NULL);
ratelimit_init(&rl, &rl_pool);
sin.sin_family = AF_INET;
sin.sin_port = 1234;
/* Here we test that the ratelimiter has an upper bound on the number
* of addresses to be limited */
for (i = 0; i <= RATELIMIT_SIZE_MAX; i++) {
sin.sin_addr.s_addr = i;
if (i == RATELIMIT_SIZE_MAX) {
if (ratelimit_allow(&rl, sintosa(&sin)) != ECONNREFUSED)
T_FAILED_ITER("reject");
} else {
if (ratelimit_allow(&rl, sintosa(&sin)) != 0)
T_FAILED_ITER("allow");
}
}
T_PASSED;
cleanup:
ratelimit_deinit(&rl);
pool_destroy(&rl_pool);
}
static void
cookie_mac_test()
{
struct pool rl_pool;
struct cookie_checker checker;
struct cookie_maker maker;
struct cookie_macs cm;
struct sockaddr_in sin;
int res, i;
uint8_t nonce[COOKIE_NONCE_SIZE];
uint8_t cookie[COOKIE_ENCRYPTED_SIZE];
uint8_t shared[COOKIE_INPUT_SIZE];
uint8_t message[MESSAGE_LEN];
arc4random_buf(shared, COOKIE_INPUT_SIZE);
arc4random_buf(message, MESSAGE_LEN);
/* Init cookie_maker. */
cookie_maker_init(&maker, shared);
/* Init cookie_checker. */
pool_init(&rl_pool, sizeof(struct ratelimit_entry), 0,
IPL_NONE, 0, "rl", NULL);
if (cookie_checker_init(&checker, &rl_pool) != 0)
T_FAILED("cookie_checker_allocate");
cookie_checker_update(&checker, shared);
/* Create dummy sockaddr */
sin.sin_family = AF_INET;
sin.sin_len = sizeof(sin);
sin.sin_addr.s_addr = 1;
sin.sin_port = 51820;
/* MAC message */
cookie_maker_mac(&maker, &cm, message, MESSAGE_LEN);
/* Check we have a null mac2 */
for (i = 0; i < sizeof(cm.mac2); i++)
if (cm.mac2[i] != 0)
T_FAILED("validate_macs_noload_mac2_zeroed");
/* Validate all bytes are checked in mac1 */
for (i = 0; i < sizeof(cm.mac1); i++) {
cm.mac1[i] = ~cm.mac1[i];
if (cookie_checker_validate_macs(&checker, &cm, message,
MESSAGE_LEN, 0, sintosa(&sin)) != EINVAL)
T_FAILED("validate_macs_noload_munge");
cm.mac1[i] = ~cm.mac1[i];
}
/* Check mac2 is zeroed */
res = 0;
for (i = 0; i < sizeof(cm.mac2); i++)
res |= cm.mac2[i];
if (res != 0)
T_FAILED("validate_macs_mac2_checkzero");
/* Check we can successfully validate the MAC */
if (cookie_checker_validate_macs(&checker, &cm, message,
MESSAGE_LEN, 0, sintosa(&sin)) != 0)
T_FAILED("validate_macs_noload_normal");
/* Check we get a EAGAIN if no mac2 and under load */
if (cookie_checker_validate_macs(&checker, &cm, message,
MESSAGE_LEN, 1, sintosa(&sin)) != EAGAIN)
T_FAILED("validate_macs_load_normal");
/* Simulate a cookie message */
cookie_checker_create_payload(&checker, &cm, nonce, cookie, sintosa(&sin));
/* Validate all bytes are checked in cookie */
for (i = 0; i < sizeof(cookie); i++) {
cookie[i] = ~cookie[i];
if (cookie_maker_consume_payload(&maker, nonce, cookie) != EINVAL)
T_FAILED("consume_payload_munge");
cookie[i] = ~cookie[i];
}
/* Check we can actually consume the payload */
if (cookie_maker_consume_payload(&maker, nonce, cookie) != 0)
T_FAILED("consume_payload_normal");
/* Check replay isn't allowed */
if (cookie_maker_consume_payload(&maker, nonce, cookie) != ETIMEDOUT)
T_FAILED("consume_payload_normal_replay");
/* MAC message again, with MAC2 */
cookie_maker_mac(&maker, &cm, message, MESSAGE_LEN);
/* Check we added a mac2 */
res = 0;
for (i = 0; i < sizeof(cm.mac2); i++)
res |= cm.mac2[i];
if (res == 0)
T_FAILED("validate_macs_make_mac2");
/* Check we get OK if mac2 and under load */
if (cookie_checker_validate_macs(&checker, &cm, message,
MESSAGE_LEN, 1, sintosa(&sin)) != 0)
T_FAILED("validate_macs_load_normal_mac2");
sin.sin_addr.s_addr = ~sin.sin_addr.s_addr;
/* Check we get EAGAIN if we munge the source IP */
if (cookie_checker_validate_macs(&checker, &cm, message,
MESSAGE_LEN, 1, sintosa(&sin)) != EAGAIN)
T_FAILED("validate_macs_load_spoofip_mac2");
sin.sin_addr.s_addr = ~sin.sin_addr.s_addr;
/* Check we get OK if mac2 and under load */
if (cookie_checker_validate_macs(&checker, &cm, message,
MESSAGE_LEN, 1, sintosa(&sin)) != 0)
T_FAILED("validate_macs_load_normal_mac2_retry");
printf("cookie_mac: passed.\n");
cleanup:
cookie_checker_deinit(&checker);
pool_destroy(&rl_pool);
}
void
cookie_test()
{
cookie_ratelimit_timings_test();
cookie_ratelimit_capacity_test();
cookie_mac_test();
}
#endif /* WGTEST */
|