1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
|
/* $OpenBSD: wg_noise.c,v 1.7 2024/03/05 17:48:01 mvs Exp $ */
/*
* Copyright (C) 2015-2020 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (C) 2019-2020 Matt Dunwoodie <ncon@noconroy.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <crypto/blake2s.h>
#include <crypto/curve25519.h>
#include <crypto/chachapoly.h>
#include <net/wg_noise.h>
/* Private functions */
static struct noise_keypair *
noise_remote_keypair_allocate(struct noise_remote *);
static void
noise_remote_keypair_free(struct noise_remote *,
struct noise_keypair *);
static uint32_t noise_remote_handshake_index_get(struct noise_remote *);
static void noise_remote_handshake_index_drop(struct noise_remote *);
static uint64_t noise_counter_send(struct noise_counter *);
static int noise_counter_recv(struct noise_counter *, uint64_t);
static void noise_kdf(uint8_t *, uint8_t *, uint8_t *, const uint8_t *,
size_t, size_t, size_t, size_t,
const uint8_t [NOISE_HASH_LEN]);
static int noise_mix_dh(
uint8_t [NOISE_HASH_LEN],
uint8_t [NOISE_SYMMETRIC_KEY_LEN],
const uint8_t [NOISE_PUBLIC_KEY_LEN],
const uint8_t [NOISE_PUBLIC_KEY_LEN]);
static int noise_mix_ss(
uint8_t ck[NOISE_HASH_LEN],
uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t ss[NOISE_PUBLIC_KEY_LEN]);
static void noise_mix_hash(
uint8_t [NOISE_HASH_LEN],
const uint8_t *,
size_t);
static void noise_mix_psk(
uint8_t [NOISE_HASH_LEN],
uint8_t [NOISE_HASH_LEN],
uint8_t [NOISE_SYMMETRIC_KEY_LEN],
const uint8_t [NOISE_SYMMETRIC_KEY_LEN]);
static void noise_param_init(
uint8_t [NOISE_HASH_LEN],
uint8_t [NOISE_HASH_LEN],
const uint8_t [NOISE_PUBLIC_KEY_LEN]);
static void noise_msg_encrypt(uint8_t *, const uint8_t *, size_t,
uint8_t [NOISE_SYMMETRIC_KEY_LEN],
uint8_t [NOISE_HASH_LEN]);
static int noise_msg_decrypt(uint8_t *, const uint8_t *, size_t,
uint8_t [NOISE_SYMMETRIC_KEY_LEN],
uint8_t [NOISE_HASH_LEN]);
static void noise_msg_ephemeral(
uint8_t [NOISE_HASH_LEN],
uint8_t [NOISE_HASH_LEN],
const uint8_t src[NOISE_PUBLIC_KEY_LEN]);
static void noise_tai64n_now(uint8_t [NOISE_TIMESTAMP_LEN]);
static int noise_timer_expired(struct timespec *, time_t, long);
/* Set/Get noise parameters */
void
noise_local_init(struct noise_local *l, struct noise_upcall *upcall)
{
bzero(l, sizeof(*l));
rw_init(&l->l_identity_lock, "noise_local_identity");
l->l_upcall = *upcall;
}
void
noise_local_lock_identity(struct noise_local *l)
{
rw_enter_write(&l->l_identity_lock);
}
void
noise_local_unlock_identity(struct noise_local *l)
{
rw_exit_write(&l->l_identity_lock);
}
int
noise_local_set_private(struct noise_local *l,
uint8_t private[NOISE_PUBLIC_KEY_LEN])
{
rw_assert_wrlock(&l->l_identity_lock);
memcpy(l->l_private, private, NOISE_PUBLIC_KEY_LEN);
curve25519_clamp_secret(l->l_private);
l->l_has_identity = curve25519_generate_public(l->l_public, private);
return l->l_has_identity ? 0 : ENXIO;
}
int
noise_local_keys(struct noise_local *l, uint8_t public[NOISE_PUBLIC_KEY_LEN],
uint8_t private[NOISE_PUBLIC_KEY_LEN])
{
int ret = 0;
rw_enter_read(&l->l_identity_lock);
if (l->l_has_identity) {
if (public != NULL)
memcpy(public, l->l_public, NOISE_PUBLIC_KEY_LEN);
if (private != NULL)
memcpy(private, l->l_private, NOISE_PUBLIC_KEY_LEN);
} else {
ret = ENXIO;
}
rw_exit_read(&l->l_identity_lock);
return ret;
}
void
noise_remote_init(struct noise_remote *r, uint8_t public[NOISE_PUBLIC_KEY_LEN],
struct noise_local *l)
{
bzero(r, sizeof(*r));
memcpy(r->r_public, public, NOISE_PUBLIC_KEY_LEN);
rw_init(&r->r_handshake_lock, "noise_handshake");
mtx_init_flags(&r->r_keypair_mtx, IPL_NET, "noise_keypair", 0);
SLIST_INSERT_HEAD(&r->r_unused_keypairs, &r->r_keypair[0], kp_entry);
SLIST_INSERT_HEAD(&r->r_unused_keypairs, &r->r_keypair[1], kp_entry);
SLIST_INSERT_HEAD(&r->r_unused_keypairs, &r->r_keypair[2], kp_entry);
KASSERT(l != NULL);
r->r_local = l;
rw_enter_write(&l->l_identity_lock);
noise_remote_precompute(r);
rw_exit_write(&l->l_identity_lock);
}
int
noise_remote_set_psk(struct noise_remote *r,
uint8_t psk[NOISE_SYMMETRIC_KEY_LEN])
{
int same;
rw_enter_write(&r->r_handshake_lock);
same = !timingsafe_bcmp(r->r_psk, psk, NOISE_SYMMETRIC_KEY_LEN);
if (!same) {
memcpy(r->r_psk, psk, NOISE_SYMMETRIC_KEY_LEN);
}
rw_exit_write(&r->r_handshake_lock);
return same ? EEXIST : 0;
}
int
noise_remote_keys(struct noise_remote *r, uint8_t public[NOISE_PUBLIC_KEY_LEN],
uint8_t psk[NOISE_SYMMETRIC_KEY_LEN])
{
static uint8_t null_psk[NOISE_SYMMETRIC_KEY_LEN];
int ret;
if (public != NULL)
memcpy(public, r->r_public, NOISE_PUBLIC_KEY_LEN);
rw_enter_read(&r->r_handshake_lock);
if (psk != NULL)
memcpy(psk, r->r_psk, NOISE_SYMMETRIC_KEY_LEN);
ret = timingsafe_bcmp(r->r_psk, null_psk, NOISE_SYMMETRIC_KEY_LEN);
rw_exit_read(&r->r_handshake_lock);
/* If r_psk != null_psk return 0, else ENOENT (no psk) */
return ret ? 0 : ENOENT;
}
void
noise_remote_precompute(struct noise_remote *r)
{
struct noise_local *l = r->r_local;
rw_assert_wrlock(&l->l_identity_lock);
if (!l->l_has_identity)
bzero(r->r_ss, NOISE_PUBLIC_KEY_LEN);
else if (!curve25519(r->r_ss, l->l_private, r->r_public))
bzero(r->r_ss, NOISE_PUBLIC_KEY_LEN);
rw_enter_write(&r->r_handshake_lock);
noise_remote_handshake_index_drop(r);
explicit_bzero(&r->r_handshake, sizeof(r->r_handshake));
rw_exit_write(&r->r_handshake_lock);
}
/* Handshake functions */
int
noise_create_initiation(struct noise_remote *r, uint32_t *s_idx,
uint8_t ue[NOISE_PUBLIC_KEY_LEN],
uint8_t es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN],
uint8_t ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN])
{
struct noise_handshake *hs = &r->r_handshake;
struct noise_local *l = r->r_local;
uint8_t key[NOISE_SYMMETRIC_KEY_LEN];
int ret = EINVAL;
rw_enter_read(&l->l_identity_lock);
rw_enter_write(&r->r_handshake_lock);
if (!l->l_has_identity)
goto error;
noise_param_init(hs->hs_ck, hs->hs_hash, r->r_public);
/* e */
curve25519_generate_secret(hs->hs_e);
if (curve25519_generate_public(ue, hs->hs_e) == 0)
goto error;
noise_msg_ephemeral(hs->hs_ck, hs->hs_hash, ue);
/* es */
if (noise_mix_dh(hs->hs_ck, key, hs->hs_e, r->r_public) != 0)
goto error;
/* s */
noise_msg_encrypt(es, l->l_public,
NOISE_PUBLIC_KEY_LEN, key, hs->hs_hash);
/* ss */
if (noise_mix_ss(hs->hs_ck, key, r->r_ss) != 0)
goto error;
/* {t} */
noise_tai64n_now(ets);
noise_msg_encrypt(ets, ets,
NOISE_TIMESTAMP_LEN, key, hs->hs_hash);
noise_remote_handshake_index_drop(r);
hs->hs_state = CREATED_INITIATION;
hs->hs_local_index = noise_remote_handshake_index_get(r);
*s_idx = hs->hs_local_index;
ret = 0;
error:
rw_exit_write(&r->r_handshake_lock);
rw_exit_read(&l->l_identity_lock);
explicit_bzero(key, NOISE_SYMMETRIC_KEY_LEN);
return ret;
}
int
noise_consume_initiation(struct noise_local *l, struct noise_remote **rp,
uint32_t s_idx, uint8_t ue[NOISE_PUBLIC_KEY_LEN],
uint8_t es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN],
uint8_t ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN])
{
struct noise_remote *r;
struct noise_handshake hs;
uint8_t key[NOISE_SYMMETRIC_KEY_LEN];
uint8_t r_public[NOISE_PUBLIC_KEY_LEN];
uint8_t timestamp[NOISE_TIMESTAMP_LEN];
int ret = EINVAL;
rw_enter_read(&l->l_identity_lock);
if (!l->l_has_identity)
goto error;
noise_param_init(hs.hs_ck, hs.hs_hash, l->l_public);
/* e */
noise_msg_ephemeral(hs.hs_ck, hs.hs_hash, ue);
/* es */
if (noise_mix_dh(hs.hs_ck, key, l->l_private, ue) != 0)
goto error;
/* s */
if (noise_msg_decrypt(r_public, es,
NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN, key, hs.hs_hash) != 0)
goto error;
/* Lookup the remote we received from */
if ((r = l->l_upcall.u_remote_get(l->l_upcall.u_arg, r_public)) == NULL)
goto error;
/* ss */
if (noise_mix_ss(hs.hs_ck, key, r->r_ss) != 0)
goto error;
/* {t} */
if (noise_msg_decrypt(timestamp, ets,
NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN, key, hs.hs_hash) != 0)
goto error;
memcpy(hs.hs_e, ue, NOISE_PUBLIC_KEY_LEN);
/* We have successfully computed the same results, now we ensure that
* this is not an initiation replay, or a flood attack */
rw_enter_write(&r->r_handshake_lock);
/* Replay */
if (memcmp(timestamp, r->r_timestamp, NOISE_TIMESTAMP_LEN) > 0)
memcpy(r->r_timestamp, timestamp, NOISE_TIMESTAMP_LEN);
else
goto error_set;
/* Flood attack */
if (noise_timer_expired(&r->r_last_init, 0, REJECT_INTERVAL))
getnanouptime(&r->r_last_init);
else
goto error_set;
/* Ok, we're happy to accept this initiation now */
noise_remote_handshake_index_drop(r);
hs.hs_state = CONSUMED_INITIATION;
hs.hs_local_index = noise_remote_handshake_index_get(r);
hs.hs_remote_index = s_idx;
r->r_handshake = hs;
*rp = r;
ret = 0;
error_set:
rw_exit_write(&r->r_handshake_lock);
error:
rw_exit_read(&l->l_identity_lock);
explicit_bzero(key, NOISE_SYMMETRIC_KEY_LEN);
explicit_bzero(&hs, sizeof(hs));
return ret;
}
int
noise_create_response(struct noise_remote *r, uint32_t *s_idx, uint32_t *r_idx,
uint8_t ue[NOISE_PUBLIC_KEY_LEN], uint8_t en[0 + NOISE_AUTHTAG_LEN])
{
struct noise_handshake *hs = &r->r_handshake;
uint8_t key[NOISE_SYMMETRIC_KEY_LEN];
uint8_t e[NOISE_PUBLIC_KEY_LEN];
int ret = EINVAL;
rw_enter_read(&r->r_local->l_identity_lock);
rw_enter_write(&r->r_handshake_lock);
if (hs->hs_state != CONSUMED_INITIATION)
goto error;
/* e */
curve25519_generate_secret(e);
if (curve25519_generate_public(ue, e) == 0)
goto error;
noise_msg_ephemeral(hs->hs_ck, hs->hs_hash, ue);
/* ee */
if (noise_mix_dh(hs->hs_ck, NULL, e, hs->hs_e) != 0)
goto error;
/* se */
if (noise_mix_dh(hs->hs_ck, NULL, e, r->r_public) != 0)
goto error;
/* psk */
noise_mix_psk(hs->hs_ck, hs->hs_hash, key, r->r_psk);
/* {} */
noise_msg_encrypt(en, NULL, 0, key, hs->hs_hash);
hs->hs_state = CREATED_RESPONSE;
*r_idx = hs->hs_remote_index;
*s_idx = hs->hs_local_index;
ret = 0;
error:
rw_exit_write(&r->r_handshake_lock);
rw_exit_read(&r->r_local->l_identity_lock);
explicit_bzero(key, NOISE_SYMMETRIC_KEY_LEN);
explicit_bzero(e, NOISE_PUBLIC_KEY_LEN);
return ret;
}
int
noise_consume_response(struct noise_remote *r, uint32_t s_idx, uint32_t r_idx,
uint8_t ue[NOISE_PUBLIC_KEY_LEN], uint8_t en[0 + NOISE_AUTHTAG_LEN])
{
struct noise_local *l = r->r_local;
struct noise_handshake hs;
uint8_t key[NOISE_SYMMETRIC_KEY_LEN];
uint8_t preshared_key[NOISE_PUBLIC_KEY_LEN];
int ret = EINVAL;
rw_enter_read(&l->l_identity_lock);
if (!l->l_has_identity)
goto error;
rw_enter_read(&r->r_handshake_lock);
hs = r->r_handshake;
memcpy(preshared_key, r->r_psk, NOISE_SYMMETRIC_KEY_LEN);
rw_exit_read(&r->r_handshake_lock);
if (hs.hs_state != CREATED_INITIATION ||
hs.hs_local_index != r_idx)
goto error;
/* e */
noise_msg_ephemeral(hs.hs_ck, hs.hs_hash, ue);
/* ee */
if (noise_mix_dh(hs.hs_ck, NULL, hs.hs_e, ue) != 0)
goto error;
/* se */
if (noise_mix_dh(hs.hs_ck, NULL, l->l_private, ue) != 0)
goto error;
/* psk */
noise_mix_psk(hs.hs_ck, hs.hs_hash, key, preshared_key);
/* {} */
if (noise_msg_decrypt(NULL, en,
0 + NOISE_AUTHTAG_LEN, key, hs.hs_hash) != 0)
goto error;
hs.hs_remote_index = s_idx;
rw_enter_write(&r->r_handshake_lock);
if (r->r_handshake.hs_state == hs.hs_state &&
r->r_handshake.hs_local_index == hs.hs_local_index) {
r->r_handshake = hs;
r->r_handshake.hs_state = CONSUMED_RESPONSE;
ret = 0;
}
rw_exit_write(&r->r_handshake_lock);
error:
rw_exit_read(&l->l_identity_lock);
explicit_bzero(&hs, sizeof(hs));
explicit_bzero(key, NOISE_SYMMETRIC_KEY_LEN);
return ret;
}
int
noise_remote_begin_session(struct noise_remote *r)
{
struct noise_handshake *hs = &r->r_handshake;
struct noise_keypair kp, *next, *current, *previous;
rw_enter_write(&r->r_handshake_lock);
/* We now derive the keypair from the handshake */
if (hs->hs_state == CONSUMED_RESPONSE) {
kp.kp_is_initiator = 1;
noise_kdf(kp.kp_send, kp.kp_recv, NULL, NULL,
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
hs->hs_ck);
} else if (hs->hs_state == CREATED_RESPONSE) {
kp.kp_is_initiator = 0;
noise_kdf(kp.kp_recv, kp.kp_send, NULL, NULL,
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
hs->hs_ck);
} else {
rw_exit_write(&r->r_handshake_lock);
return EINVAL;
}
kp.kp_valid = 1;
kp.kp_local_index = hs->hs_local_index;
kp.kp_remote_index = hs->hs_remote_index;
getnanouptime(&kp.kp_birthdate);
bzero(&kp.kp_ctr, sizeof(kp.kp_ctr));
mtx_init_flags(&kp.kp_ctr.c_mtx, IPL_NET, "noise_counter", 0);
/* Now we need to add_new_keypair */
mtx_enter(&r->r_keypair_mtx);
next = r->r_next;
current = r->r_current;
previous = r->r_previous;
if (kp.kp_is_initiator) {
if (next != NULL) {
r->r_next = NULL;
r->r_previous = next;
noise_remote_keypair_free(r, current);
} else {
r->r_previous = current;
}
noise_remote_keypair_free(r, previous);
r->r_current = noise_remote_keypair_allocate(r);
*r->r_current = kp;
} else {
noise_remote_keypair_free(r, next);
r->r_previous = NULL;
noise_remote_keypair_free(r, previous);
r->r_next = noise_remote_keypair_allocate(r);
*r->r_next = kp;
}
mtx_leave(&r->r_keypair_mtx);
explicit_bzero(&r->r_handshake, sizeof(r->r_handshake));
rw_exit_write(&r->r_handshake_lock);
explicit_bzero(&kp, sizeof(kp));
return 0;
}
void
noise_remote_clear(struct noise_remote *r)
{
rw_enter_write(&r->r_handshake_lock);
noise_remote_handshake_index_drop(r);
explicit_bzero(&r->r_handshake, sizeof(r->r_handshake));
rw_exit_write(&r->r_handshake_lock);
mtx_enter(&r->r_keypair_mtx);
noise_remote_keypair_free(r, r->r_next);
noise_remote_keypair_free(r, r->r_current);
noise_remote_keypair_free(r, r->r_previous);
r->r_next = NULL;
r->r_current = NULL;
r->r_previous = NULL;
mtx_leave(&r->r_keypair_mtx);
}
void
noise_remote_expire_current(struct noise_remote *r)
{
mtx_enter(&r->r_keypair_mtx);
if (r->r_next != NULL)
r->r_next->kp_valid = 0;
if (r->r_current != NULL)
r->r_current->kp_valid = 0;
mtx_leave(&r->r_keypair_mtx);
}
int
noise_remote_ready(struct noise_remote *r)
{
struct noise_keypair *kp;
int ret;
mtx_enter(&r->r_keypair_mtx);
/* kp_ctr isn't locked here, we're happy to accept a racy read. */
if ((kp = r->r_current) == NULL ||
!kp->kp_valid ||
noise_timer_expired(&kp->kp_birthdate, REJECT_AFTER_TIME, 0) ||
kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES ||
kp->kp_ctr.c_send >= REJECT_AFTER_MESSAGES)
ret = EINVAL;
else
ret = 0;
mtx_leave(&r->r_keypair_mtx);
return ret;
}
int
noise_remote_encrypt(struct noise_remote *r, uint32_t *r_idx, uint64_t *nonce,
uint8_t *buf, size_t buflen)
{
struct noise_keypair *kp;
int ret = EINVAL;
mtx_enter(&r->r_keypair_mtx);
if ((kp = r->r_current) == NULL)
goto error;
/* We confirm that our values are within our tolerances. We want:
* - a valid keypair
* - our keypair to be less than REJECT_AFTER_TIME seconds old
* - our receive counter to be less than REJECT_AFTER_MESSAGES
* - our send counter to be less than REJECT_AFTER_MESSAGES
*
* kp_ctr isn't locked here, we're happy to accept a racy read. */
if (!kp->kp_valid ||
noise_timer_expired(&kp->kp_birthdate, REJECT_AFTER_TIME, 0) ||
kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES ||
((*nonce = noise_counter_send(&kp->kp_ctr)) > REJECT_AFTER_MESSAGES))
goto error;
/* We encrypt into the same buffer, so the caller must ensure that buf
* has NOISE_AUTHTAG_LEN bytes to store the MAC. The nonce and index
* are passed back out to the caller through the provided data pointer. */
*r_idx = kp->kp_remote_index;
chacha20poly1305_encrypt(buf, buf, buflen,
NULL, 0, *nonce, kp->kp_send);
/* If our values are still within tolerances, but we are approaching
* the tolerances, we notify the caller with ESTALE that they should
* establish a new keypair. The current keypair can continue to be used
* until the tolerances are hit. We notify if:
* - our send counter is valid and not less than REKEY_AFTER_MESSAGES
* - we're the initiator and our keypair is older than
* REKEY_AFTER_TIME seconds */
ret = ESTALE;
if ((kp->kp_valid && *nonce >= REKEY_AFTER_MESSAGES) ||
(kp->kp_is_initiator &&
noise_timer_expired(&kp->kp_birthdate, REKEY_AFTER_TIME, 0)))
goto error;
ret = 0;
error:
mtx_leave(&r->r_keypair_mtx);
return ret;
}
int
noise_remote_decrypt(struct noise_remote *r, uint32_t r_idx, uint64_t nonce,
uint8_t *buf, size_t buflen)
{
struct noise_keypair *kp;
int ret = EINVAL;
/* We retrieve the keypair corresponding to the provided index. We
* attempt the current keypair first as that is most likely. We also
* want to make sure that the keypair is valid as it would be
* catastrophic to decrypt against a zero'ed keypair. */
mtx_enter(&r->r_keypair_mtx);
if (r->r_current != NULL && r->r_current->kp_local_index == r_idx) {
kp = r->r_current;
} else if (r->r_previous != NULL && r->r_previous->kp_local_index == r_idx) {
kp = r->r_previous;
} else if (r->r_next != NULL && r->r_next->kp_local_index == r_idx) {
kp = r->r_next;
} else {
goto error;
}
/* We confirm that our values are within our tolerances. These values
* are the same as the encrypt routine.
*
* kp_ctr isn't locked here, we're happy to accept a racy read. */
if (noise_timer_expired(&kp->kp_birthdate, REJECT_AFTER_TIME, 0) ||
kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES)
goto error;
/* Decrypt, then validate the counter. We don't want to validate the
* counter before decrypting as we do not know the message is authentic
* prior to decryption. */
if (chacha20poly1305_decrypt(buf, buf, buflen,
NULL, 0, nonce, kp->kp_recv) == 0)
goto error;
if (noise_counter_recv(&kp->kp_ctr, nonce) != 0)
goto error;
/* If we've received the handshake confirming data packet then move the
* next keypair into current. If we do slide the next keypair in, then
* we skip the REKEY_AFTER_TIME_RECV check. This is safe to do as a
* data packet can't confirm a session that we are an INITIATOR of. */
if (kp == r->r_next) {
if (kp == r->r_next && kp->kp_local_index == r_idx) {
noise_remote_keypair_free(r, r->r_previous);
r->r_previous = r->r_current;
r->r_current = r->r_next;
r->r_next = NULL;
ret = ECONNRESET;
goto error;
}
}
/* Similar to when we encrypt, we want to notify the caller when we
* are approaching our tolerances. We notify if:
* - we're the initiator and the current keypair is older than
* REKEY_AFTER_TIME_RECV seconds. */
ret = ESTALE;
kp = r->r_current;
if (kp != NULL &&
kp->kp_valid &&
kp->kp_is_initiator &&
noise_timer_expired(&kp->kp_birthdate, REKEY_AFTER_TIME_RECV, 0))
goto error;
ret = 0;
error:
mtx_leave(&r->r_keypair_mtx);
return ret;
}
/* Private functions - these should not be called outside this file under any
* circumstances. */
static struct noise_keypair *
noise_remote_keypair_allocate(struct noise_remote *r)
{
struct noise_keypair *kp;
kp = SLIST_FIRST(&r->r_unused_keypairs);
SLIST_REMOVE_HEAD(&r->r_unused_keypairs, kp_entry);
return kp;
}
static void
noise_remote_keypair_free(struct noise_remote *r, struct noise_keypair *kp)
{
struct noise_upcall *u = &r->r_local->l_upcall;
if (kp != NULL) {
SLIST_INSERT_HEAD(&r->r_unused_keypairs, kp, kp_entry);
u->u_index_drop(u->u_arg, kp->kp_local_index);
bzero(kp->kp_send, sizeof(kp->kp_send));
bzero(kp->kp_recv, sizeof(kp->kp_recv));
}
}
static uint32_t
noise_remote_handshake_index_get(struct noise_remote *r)
{
struct noise_upcall *u = &r->r_local->l_upcall;
return u->u_index_set(u->u_arg, r);
}
static void
noise_remote_handshake_index_drop(struct noise_remote *r)
{
struct noise_handshake *hs = &r->r_handshake;
struct noise_upcall *u = &r->r_local->l_upcall;
rw_assert_wrlock(&r->r_handshake_lock);
if (hs->hs_state != HS_ZEROED)
u->u_index_drop(u->u_arg, hs->hs_local_index);
}
static uint64_t
noise_counter_send(struct noise_counter *ctr)
{
#ifdef __LP64__
return atomic_inc_long_nv((u_long *)&ctr->c_send) - 1;
#else
uint64_t ret;
mtx_enter(&ctr->c_mtx);
ret = ctr->c_send++;
mtx_leave(&ctr->c_mtx);
return ret;
#endif
}
static int
noise_counter_recv(struct noise_counter *ctr, uint64_t recv)
{
uint64_t i, top, index_recv, index_ctr;
unsigned long bit;
int ret = EEXIST;
mtx_enter(&ctr->c_mtx);
/* Check that the recv counter is valid */
if (ctr->c_recv >= REJECT_AFTER_MESSAGES ||
recv >= REJECT_AFTER_MESSAGES)
goto error;
/* If the packet is out of the window, invalid */
if (recv + COUNTER_WINDOW_SIZE < ctr->c_recv)
goto error;
/* If the new counter is ahead of the current counter, we'll need to
* zero out the bitmap that has previously been used */
index_recv = recv / COUNTER_BITS;
index_ctr = ctr->c_recv / COUNTER_BITS;
if (recv > ctr->c_recv) {
top = MIN(index_recv - index_ctr, COUNTER_NUM);
for (i = 1; i <= top; i++)
ctr->c_backtrack[
(i + index_ctr) & (COUNTER_NUM - 1)] = 0;
ctr->c_recv = recv;
}
index_recv %= COUNTER_NUM;
bit = 1ul << (recv % COUNTER_BITS);
if (ctr->c_backtrack[index_recv] & bit)
goto error;
ctr->c_backtrack[index_recv] |= bit;
ret = 0;
error:
mtx_leave(&ctr->c_mtx);
return ret;
}
static void
noise_kdf(uint8_t *a, uint8_t *b, uint8_t *c, const uint8_t *x,
size_t a_len, size_t b_len, size_t c_len, size_t x_len,
const uint8_t ck[NOISE_HASH_LEN])
{
uint8_t out[BLAKE2S_HASH_SIZE + 1];
uint8_t sec[BLAKE2S_HASH_SIZE];
KASSERT(a_len <= BLAKE2S_HASH_SIZE && b_len <= BLAKE2S_HASH_SIZE &&
c_len <= BLAKE2S_HASH_SIZE);
KASSERT(!(b || b_len || c || c_len) || (a && a_len));
KASSERT(!(c || c_len) || (b && b_len));
/* Extract entropy from "x" into sec */
blake2s_hmac(sec, x, ck, BLAKE2S_HASH_SIZE, x_len, NOISE_HASH_LEN);
if (a == NULL || a_len == 0)
goto out;
/* Expand first key: key = sec, data = 0x1 */
out[0] = 1;
blake2s_hmac(out, out, sec, BLAKE2S_HASH_SIZE, 1, BLAKE2S_HASH_SIZE);
memcpy(a, out, a_len);
if (b == NULL || b_len == 0)
goto out;
/* Expand second key: key = sec, data = "a" || 0x2 */
out[BLAKE2S_HASH_SIZE] = 2;
blake2s_hmac(out, out, sec, BLAKE2S_HASH_SIZE, BLAKE2S_HASH_SIZE + 1,
BLAKE2S_HASH_SIZE);
memcpy(b, out, b_len);
if (c == NULL || c_len == 0)
goto out;
/* Expand third key: key = sec, data = "b" || 0x3 */
out[BLAKE2S_HASH_SIZE] = 3;
blake2s_hmac(out, out, sec, BLAKE2S_HASH_SIZE, BLAKE2S_HASH_SIZE + 1,
BLAKE2S_HASH_SIZE);
memcpy(c, out, c_len);
out:
/* Clear sensitive data from stack */
explicit_bzero(sec, BLAKE2S_HASH_SIZE);
explicit_bzero(out, BLAKE2S_HASH_SIZE + 1);
}
static int
noise_mix_dh(uint8_t ck[NOISE_HASH_LEN], uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t private[NOISE_PUBLIC_KEY_LEN],
const uint8_t public[NOISE_PUBLIC_KEY_LEN])
{
uint8_t dh[NOISE_PUBLIC_KEY_LEN];
if (!curve25519(dh, private, public))
return EINVAL;
noise_kdf(ck, key, NULL, dh,
NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, ck);
explicit_bzero(dh, NOISE_PUBLIC_KEY_LEN);
return 0;
}
static int
noise_mix_ss(uint8_t ck[NOISE_HASH_LEN], uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t ss[NOISE_PUBLIC_KEY_LEN])
{
static uint8_t null_point[NOISE_PUBLIC_KEY_LEN];
if (timingsafe_bcmp(ss, null_point, NOISE_PUBLIC_KEY_LEN) == 0)
return ENOENT;
noise_kdf(ck, key, NULL, ss,
NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, ck);
return 0;
}
static void
noise_mix_hash(uint8_t hash[NOISE_HASH_LEN], const uint8_t *src,
size_t src_len)
{
struct blake2s_state blake;
blake2s_init(&blake, NOISE_HASH_LEN);
blake2s_update(&blake, hash, NOISE_HASH_LEN);
blake2s_update(&blake, src, src_len);
blake2s_final(&blake, hash);
}
static void
noise_mix_psk(uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t psk[NOISE_SYMMETRIC_KEY_LEN])
{
uint8_t tmp[NOISE_HASH_LEN];
noise_kdf(ck, tmp, key, psk,
NOISE_HASH_LEN, NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN,
NOISE_SYMMETRIC_KEY_LEN, ck);
noise_mix_hash(hash, tmp, NOISE_HASH_LEN);
explicit_bzero(tmp, NOISE_HASH_LEN);
}
static void
noise_param_init(uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
const uint8_t s[NOISE_PUBLIC_KEY_LEN])
{
struct blake2s_state blake;
blake2s(ck, (uint8_t *)NOISE_HANDSHAKE_NAME, NULL,
NOISE_HASH_LEN, strlen(NOISE_HANDSHAKE_NAME), 0);
blake2s_init(&blake, NOISE_HASH_LEN);
blake2s_update(&blake, ck, NOISE_HASH_LEN);
blake2s_update(&blake, (uint8_t *)NOISE_IDENTIFIER_NAME,
strlen(NOISE_IDENTIFIER_NAME));
blake2s_final(&blake, hash);
noise_mix_hash(hash, s, NOISE_PUBLIC_KEY_LEN);
}
static void
noise_msg_encrypt(uint8_t *dst, const uint8_t *src, size_t src_len,
uint8_t key[NOISE_SYMMETRIC_KEY_LEN], uint8_t hash[NOISE_HASH_LEN])
{
/* Nonce always zero for Noise_IK */
chacha20poly1305_encrypt(dst, src, src_len,
hash, NOISE_HASH_LEN, 0, key);
noise_mix_hash(hash, dst, src_len + NOISE_AUTHTAG_LEN);
}
static int
noise_msg_decrypt(uint8_t *dst, const uint8_t *src, size_t src_len,
uint8_t key[NOISE_SYMMETRIC_KEY_LEN], uint8_t hash[NOISE_HASH_LEN])
{
/* Nonce always zero for Noise_IK */
if (!chacha20poly1305_decrypt(dst, src, src_len,
hash, NOISE_HASH_LEN, 0, key))
return EINVAL;
noise_mix_hash(hash, src, src_len);
return 0;
}
static void
noise_msg_ephemeral(uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
const uint8_t src[NOISE_PUBLIC_KEY_LEN])
{
noise_mix_hash(hash, src, NOISE_PUBLIC_KEY_LEN);
noise_kdf(ck, NULL, NULL, src, NOISE_HASH_LEN, 0, 0,
NOISE_PUBLIC_KEY_LEN, ck);
}
static void
noise_tai64n_now(uint8_t output[NOISE_TIMESTAMP_LEN])
{
struct timespec time;
uint64_t sec;
uint32_t nsec;
getnanotime(&time);
/* Round down the nsec counter to limit precise timing leak. */
time.tv_nsec &= REJECT_INTERVAL_MASK;
/* https://cr.yp.to/libtai/tai64.html */
sec = htobe64(0x400000000000000aULL + time.tv_sec);
nsec = htobe32(time.tv_nsec);
/* memcpy to output buffer, assuming output could be unaligned. */
memcpy(output, &sec, sizeof(sec));
memcpy(output + sizeof(sec), &nsec, sizeof(nsec));
}
static int
noise_timer_expired(struct timespec *birthdate, time_t sec, long nsec)
{
struct timespec uptime;
struct timespec expire = { .tv_sec = sec, .tv_nsec = nsec };
/* We don't really worry about a zeroed birthdate, to avoid the extra
* check on every encrypt/decrypt. This does mean that r_last_init
* check may fail if getnanouptime is < REJECT_INTERVAL from 0. */
getnanouptime(&uptime);
timespecadd(birthdate, &expire, &expire);
return timespeccmp(&uptime, &expire, >) ? ETIMEDOUT : 0;
}
#ifdef WGTEST
#define MESSAGE_LEN 64
#define LARGE_MESSAGE_LEN 1420
#define T_LIM (COUNTER_WINDOW_SIZE + 1)
#define T_INIT do { \
bzero(&ctr, sizeof(ctr)); \
mtx_init_flags(&ctr.c_mtx, IPL_NET, "counter", 0); \
} while (0)
#define T(num, v, e) do { \
if (noise_counter_recv(&ctr, v) != e) { \
printf("%s, test %d: failed.\n", __func__, num); \
return; \
} \
} while (0)
#define T_FAILED(test) do { \
printf("%s %s: failed\n", __func__, test); \
return; \
} while (0)
#define T_PASSED printf("%s: passed.\n", __func__)
static struct noise_local al, bl;
static struct noise_remote ar, br;
static struct noise_initiation {
uint32_t s_idx;
uint8_t ue[NOISE_PUBLIC_KEY_LEN];
uint8_t es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN];
uint8_t ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN];
} init;
static struct noise_response {
uint32_t s_idx;
uint32_t r_idx;
uint8_t ue[NOISE_PUBLIC_KEY_LEN];
uint8_t en[0 + NOISE_AUTHTAG_LEN];
} resp;
static uint64_t nonce;
static uint32_t index;
static uint8_t data[MESSAGE_LEN + NOISE_AUTHTAG_LEN];
static uint8_t largedata[LARGE_MESSAGE_LEN + NOISE_AUTHTAG_LEN];
static struct noise_remote *
upcall_get(void *x0, uint8_t *x1) { return x0; }
static uint32_t
upcall_set(void *x0, struct noise_remote *x1) { return 5; }
static void
upcall_drop(void *x0, uint32_t x1) { }
static void
noise_counter_test()
{
struct noise_counter ctr;
int i;
T_INIT;
/* T(test number, nonce, expected_response) */
T( 1, 0, 0);
T( 2, 1, 0);
T( 3, 1, EEXIST);
T( 4, 9, 0);
T( 5, 8, 0);
T( 6, 7, 0);
T( 7, 7, EEXIST);
T( 8, T_LIM, 0);
T( 9, T_LIM - 1, 0);
T(10, T_LIM - 1, EEXIST);
T(11, T_LIM - 2, 0);
T(12, 2, 0);
T(13, 2, EEXIST);
T(14, T_LIM + 16, 0);
T(15, 3, EEXIST);
T(16, T_LIM + 16, EEXIST);
T(17, T_LIM * 4, 0);
T(18, T_LIM * 4 - (T_LIM - 1), 0);
T(19, 10, EEXIST);
T(20, T_LIM * 4 - T_LIM, EEXIST);
T(21, T_LIM * 4 - (T_LIM + 1), EEXIST);
T(22, T_LIM * 4 - (T_LIM - 2), 0);
T(23, T_LIM * 4 + 1 - T_LIM, EEXIST);
T(24, 0, EEXIST);
T(25, REJECT_AFTER_MESSAGES, EEXIST);
T(26, REJECT_AFTER_MESSAGES - 1, 0);
T(27, REJECT_AFTER_MESSAGES, EEXIST);
T(28, REJECT_AFTER_MESSAGES - 1, EEXIST);
T(29, REJECT_AFTER_MESSAGES - 2, 0);
T(30, REJECT_AFTER_MESSAGES + 1, EEXIST);
T(31, REJECT_AFTER_MESSAGES + 2, EEXIST);
T(32, REJECT_AFTER_MESSAGES - 2, EEXIST);
T(33, REJECT_AFTER_MESSAGES - 3, 0);
T(34, 0, EEXIST);
T_INIT;
for (i = 1; i <= COUNTER_WINDOW_SIZE; ++i)
T(35, i, 0);
T(36, 0, 0);
T(37, 0, EEXIST);
T_INIT;
for (i = 2; i <= COUNTER_WINDOW_SIZE + 1; ++i)
T(38, i, 0);
T(39, 1, 0);
T(40, 0, EEXIST);
T_INIT;
for (i = COUNTER_WINDOW_SIZE + 1; i-- > 0;)
T(41, i, 0);
T_INIT;
for (i = COUNTER_WINDOW_SIZE + 2; i-- > 1;)
T(42, i, 0);
T(43, 0, EEXIST);
T_INIT;
for (i = COUNTER_WINDOW_SIZE + 1; i-- > 1;)
T(44, i, 0);
T(45, COUNTER_WINDOW_SIZE + 1, 0);
T(46, 0, EEXIST);
T_INIT;
for (i = COUNTER_WINDOW_SIZE + 1; i-- > 1;)
T(47, i, 0);
T(48, 0, 0);
T(49, COUNTER_WINDOW_SIZE + 1, 0);
T_PASSED;
}
static void
noise_handshake_init(struct noise_local *al, struct noise_remote *ar,
struct noise_local *bl, struct noise_remote *br)
{
uint8_t apriv[NOISE_PUBLIC_KEY_LEN], bpriv[NOISE_PUBLIC_KEY_LEN];
uint8_t apub[NOISE_PUBLIC_KEY_LEN], bpub[NOISE_PUBLIC_KEY_LEN];
uint8_t psk[NOISE_SYMMETRIC_KEY_LEN];
struct noise_upcall upcall = {
.u_arg = NULL,
.u_remote_get = upcall_get,
.u_index_set = upcall_set,
.u_index_drop = upcall_drop,
};
upcall.u_arg = ar;
noise_local_init(al, &upcall);
upcall.u_arg = br;
noise_local_init(bl, &upcall);
arc4random_buf(apriv, NOISE_PUBLIC_KEY_LEN);
arc4random_buf(bpriv, NOISE_PUBLIC_KEY_LEN);
noise_local_lock_identity(al);
noise_local_set_private(al, apriv);
noise_local_unlock_identity(al);
noise_local_lock_identity(bl);
noise_local_set_private(bl, bpriv);
noise_local_unlock_identity(bl);
noise_local_keys(al, apub, NULL);
noise_local_keys(bl, bpub, NULL);
noise_remote_init(ar, bpub, al);
noise_remote_init(br, apub, bl);
arc4random_buf(psk, NOISE_SYMMETRIC_KEY_LEN);
noise_remote_set_psk(ar, psk);
noise_remote_set_psk(br, psk);
}
static void
noise_handshake_test()
{
struct noise_remote *r;
int i;
noise_handshake_init(&al, &ar, &bl, &br);
/* Create initiation */
if (noise_create_initiation(&ar, &init.s_idx,
init.ue, init.es, init.ets) != 0)
T_FAILED("create_initiation");
/* Check encrypted (es) validation */
for (i = 0; i < sizeof(init.es); i++) {
init.es[i] = ~init.es[i];
if (noise_consume_initiation(&bl, &r, init.s_idx,
init.ue, init.es, init.ets) != EINVAL)
T_FAILED("consume_initiation_es");
init.es[i] = ~init.es[i];
}
/* Check encrypted (ets) validation */
for (i = 0; i < sizeof(init.ets); i++) {
init.ets[i] = ~init.ets[i];
if (noise_consume_initiation(&bl, &r, init.s_idx,
init.ue, init.es, init.ets) != EINVAL)
T_FAILED("consume_initiation_ets");
init.ets[i] = ~init.ets[i];
}
/* Consume initiation properly */
if (noise_consume_initiation(&bl, &r, init.s_idx,
init.ue, init.es, init.ets) != 0)
T_FAILED("consume_initiation");
if (r != &br)
T_FAILED("remote_lookup");
/* Replay initiation */
if (noise_consume_initiation(&bl, &r, init.s_idx,
init.ue, init.es, init.ets) != EINVAL)
T_FAILED("consume_initiation_replay");
if (r != &br)
T_FAILED("remote_lookup_r_unchanged");
/* Create response */
if (noise_create_response(&br, &resp.s_idx,
&resp.r_idx, resp.ue, resp.en) != 0)
T_FAILED("create_response");
/* Check encrypted (en) validation */
for (i = 0; i < sizeof(resp.en); i++) {
resp.en[i] = ~resp.en[i];
if (noise_consume_response(&ar, resp.s_idx,
resp.r_idx, resp.ue, resp.en) != EINVAL)
T_FAILED("consume_response_en");
resp.en[i] = ~resp.en[i];
}
/* Consume response properly */
if (noise_consume_response(&ar, resp.s_idx,
resp.r_idx, resp.ue, resp.en) != 0)
T_FAILED("consume_response");
/* Derive keys on both sides */
if (noise_remote_begin_session(&ar) != 0)
T_FAILED("promote_ar");
if (noise_remote_begin_session(&br) != 0)
T_FAILED("promote_br");
for (i = 0; i < MESSAGE_LEN; i++)
data[i] = i;
/* Since bob is responder, he must not encrypt until confirmed */
if (noise_remote_encrypt(&br, &index, &nonce,
data, MESSAGE_LEN) != EINVAL)
T_FAILED("encrypt_kci_wait");
/* Alice now encrypt and gets bob to decrypt */
if (noise_remote_encrypt(&ar, &index, &nonce,
data, MESSAGE_LEN) != 0)
T_FAILED("encrypt_akp");
if (noise_remote_decrypt(&br, index, nonce,
data, MESSAGE_LEN + NOISE_AUTHTAG_LEN) != ECONNRESET)
T_FAILED("decrypt_bkp");
for (i = 0; i < MESSAGE_LEN; i++)
if (data[i] != i)
T_FAILED("decrypt_message_akp_bkp");
/* Now bob has received confirmation, he can encrypt */
if (noise_remote_encrypt(&br, &index, &nonce,
data, MESSAGE_LEN) != 0)
T_FAILED("encrypt_kci_ready");
if (noise_remote_decrypt(&ar, index, nonce,
data, MESSAGE_LEN + NOISE_AUTHTAG_LEN) != 0)
T_FAILED("decrypt_akp");
for (i = 0; i < MESSAGE_LEN; i++)
if (data[i] != i)
T_FAILED("decrypt_message_bkp_akp");
T_PASSED;
}
static void
noise_speed_test()
{
#define SPEED_ITER (1<<16)
struct timespec start, end;
struct noise_remote *r;
int nsec, i;
#define NSEC 1000000000
#define T_TIME_START(iter, size) do { \
printf("%s %d %d byte encryptions\n", __func__, iter, size); \
nanouptime(&start); \
} while (0)
#define T_TIME_END(iter, size) do { \
nanouptime(&end); \
timespecsub(&end, &start, &end); \
nsec = (end.tv_sec * NSEC + end.tv_nsec) / iter; \
printf("%s %d nsec/iter, %d iter/sec, %d byte/sec\n", \
__func__, nsec, NSEC / nsec, NSEC / nsec * size); \
} while (0)
#define T_TIME_START_SINGLE(name) do { \
printf("%s %s\n", __func__, name); \
nanouptime(&start); \
} while (0)
#define T_TIME_END_SINGLE() do { \
nanouptime(&end); \
timespecsub(&end, &start, &end); \
nsec = (end.tv_sec * NSEC + end.tv_nsec); \
printf("%s %d nsec/iter, %d iter/sec\n", \
__func__, nsec, NSEC / nsec); \
} while (0)
noise_handshake_init(&al, &ar, &bl, &br);
T_TIME_START_SINGLE("create_initiation");
if (noise_create_initiation(&ar, &init.s_idx,
init.ue, init.es, init.ets) != 0)
T_FAILED("create_initiation");
T_TIME_END_SINGLE();
T_TIME_START_SINGLE("consume_initiation");
if (noise_consume_initiation(&bl, &r, init.s_idx,
init.ue, init.es, init.ets) != 0)
T_FAILED("consume_initiation");
T_TIME_END_SINGLE();
T_TIME_START_SINGLE("create_response");
if (noise_create_response(&br, &resp.s_idx,
&resp.r_idx, resp.ue, resp.en) != 0)
T_FAILED("create_response");
T_TIME_END_SINGLE();
T_TIME_START_SINGLE("consume_response");
if (noise_consume_response(&ar, resp.s_idx,
resp.r_idx, resp.ue, resp.en) != 0)
T_FAILED("consume_response");
T_TIME_END_SINGLE();
/* Derive keys on both sides */
T_TIME_START_SINGLE("derive_keys");
if (noise_remote_begin_session(&ar) != 0)
T_FAILED("begin_ar");
T_TIME_END_SINGLE();
if (noise_remote_begin_session(&br) != 0)
T_FAILED("begin_br");
/* Small data encryptions */
T_TIME_START(SPEED_ITER, MESSAGE_LEN);
for (i = 0; i < SPEED_ITER; i++) {
if (noise_remote_encrypt(&ar, &index, &nonce,
data, MESSAGE_LEN) != 0)
T_FAILED("encrypt_akp");
}
T_TIME_END(SPEED_ITER, MESSAGE_LEN);
/* Large data encryptions */
T_TIME_START(SPEED_ITER, LARGE_MESSAGE_LEN);
for (i = 0; i < SPEED_ITER; i++) {
if (noise_remote_encrypt(&ar, &index, &nonce,
largedata, LARGE_MESSAGE_LEN) != 0)
T_FAILED("encrypt_akp");
}
T_TIME_END(SPEED_ITER, LARGE_MESSAGE_LEN);
}
void
noise_test()
{
noise_counter_test();
noise_handshake_test();
noise_speed_test();
}
#endif /* WGTEST */
|