1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
|
/* $OpenBSD: ieee80211.c,v 1.82 2019/12/27 09:46:13 stsp Exp $ */
/* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */
/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* IEEE 802.11 generic handler
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_priv.h>
#ifdef IEEE80211_DEBUG
int ieee80211_debug = 0;
#endif
int ieee80211_cache_size = IEEE80211_CACHE_SIZE;
void ieee80211_setbasicrates(struct ieee80211com *);
int ieee80211_findrate(struct ieee80211com *, enum ieee80211_phymode, int);
void ieee80211_configure_ampdu_tx(struct ieee80211com *, int);
void
ieee80211_begin_bgscan(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
if ((ic->ic_flags & IEEE80211_F_BGSCAN) ||
ic->ic_state != IEEE80211_S_RUN || ic->ic_mgt_timer != 0)
return;
if ((ic->ic_flags & IEEE80211_F_RSNON) && !ic->ic_bss->ni_port_valid)
return;
if (ic->ic_bgscan_start != NULL && ic->ic_bgscan_start(ic) == 0) {
/*
* Free the nodes table to ensure we get an up-to-date view
* of APs around us. In particular, we need to kick out the
* AP we are associated to. Otherwise, our current AP might
* stay cached if it is turned off while we are scanning, and
* we could end up picking a now non-existent AP over and over.
*/
ieee80211_free_allnodes(ic, 0 /* keep ic->ic_bss */);
ic->ic_flags |= IEEE80211_F_BGSCAN;
if (ifp->if_flags & IFF_DEBUG)
printf("%s: begin background scan\n", ifp->if_xname);
/* Driver calls ieee80211_end_scan() when done. */
}
}
void
ieee80211_bgscan_timeout(void *arg)
{
struct ifnet *ifp = arg;
ieee80211_begin_bgscan(ifp);
}
void
ieee80211_channel_init(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
struct ieee80211_channel *c;
int i;
/*
* Fill in 802.11 available channel set, mark
* all available channels as active, and pick
* a default channel if not already specified.
*/
memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
ic->ic_modecaps |= 1<<IEEE80211_MODE_AUTO;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (c->ic_flags) {
/*
* Verify driver passed us valid data.
*/
if (i != ieee80211_chan2ieee(ic, c)) {
printf("%s: bad channel ignored; "
"freq %u flags %x number %u\n",
ifp->if_xname, c->ic_freq, c->ic_flags,
i);
c->ic_flags = 0; /* NB: remove */
continue;
}
setbit(ic->ic_chan_avail, i);
/*
* Identify mode capabilities.
*/
if (IEEE80211_IS_CHAN_A(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11A;
if (IEEE80211_IS_CHAN_B(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11B;
if (IEEE80211_IS_CHAN_PUREG(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11G;
if (IEEE80211_IS_CHAN_N(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11N;
if (IEEE80211_IS_CHAN_AC(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11AC;
}
}
/* validate ic->ic_curmode */
if ((ic->ic_modecaps & (1<<ic->ic_curmode)) == 0)
ic->ic_curmode = IEEE80211_MODE_AUTO;
ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */
}
void
ieee80211_ifattach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr,
ETHER_ADDR_LEN);
ether_ifattach(ifp);
ifp->if_output = ieee80211_output;
#if NBPFILTER > 0
bpfattach(&ic->ic_rawbpf, ifp, DLT_IEEE802_11,
sizeof(struct ieee80211_frame_addr4));
#endif
ieee80211_crypto_attach(ifp);
ieee80211_channel_init(ifp);
/* IEEE 802.11 defines a MTU >= 2290 */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ieee80211_setbasicrates(ic);
(void)ieee80211_setmode(ic, ic->ic_curmode);
if (ic->ic_lintval == 0)
ic->ic_lintval = 100; /* default sleep */
ic->ic_bmissthres = IEEE80211_BEACON_MISS_THRES;
ic->ic_dtim_period = 1; /* all TIMs are DTIMs */
ieee80211_node_attach(ifp);
ieee80211_proto_attach(ifp);
if_addgroup(ifp, "wlan");
ifp->if_priority = IF_WIRELESS_DEFAULT_PRIORITY;
ieee80211_set_link_state(ic, LINK_STATE_DOWN);
timeout_set(&ic->ic_bgscan_timeout, ieee80211_bgscan_timeout, ifp);
}
void
ieee80211_ifdetach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
timeout_del(&ic->ic_bgscan_timeout);
ieee80211_proto_detach(ifp);
ieee80211_crypto_detach(ifp);
ieee80211_node_detach(ifp);
ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY);
ether_ifdetach(ifp);
}
/*
* Convert MHz frequency to IEEE channel number.
*/
u_int
ieee80211_mhz2ieee(u_int freq, u_int flags)
{
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
if (freq == 2484)
return 14;
if (freq < 2484)
return (freq - 2407) / 5;
else
return 15 + ((freq - 2512) / 20);
} else if (flags & IEEE80211_CHAN_5GHZ) { /* 5GHz band */
return (freq - 5000) / 5;
} else { /* either, guess */
if (freq == 2484)
return 14;
if (freq < 2484)
return (freq - 2407) / 5;
if (freq < 5000)
return 15 + ((freq - 2512) / 20);
return (freq - 5000) / 5;
}
}
/*
* Convert channel to IEEE channel number.
*/
u_int
ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
{
struct ifnet *ifp = &ic->ic_if;
if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX])
return c - ic->ic_channels;
else if (c == IEEE80211_CHAN_ANYC)
return IEEE80211_CHAN_ANY;
panic("%s: bogus channel pointer", ifp->if_xname);
}
/*
* Convert IEEE channel number to MHz frequency.
*/
u_int
ieee80211_ieee2mhz(u_int chan, u_int flags)
{
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
if (chan == 14)
return 2484;
if (chan < 14)
return 2407 + chan*5;
else
return 2512 + ((chan-15)*20);
} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5GHz band */
return 5000 + (chan*5);
} else { /* either, guess */
if (chan == 14)
return 2484;
if (chan < 14) /* 0-13 */
return 2407 + chan*5;
if (chan < 27) /* 15-26 */
return 2512 + ((chan-15)*20);
return 5000 + (chan*5);
}
}
void
ieee80211_configure_ampdu_tx(struct ieee80211com *ic, int enable)
{
if ((ic->ic_caps & IEEE80211_C_TX_AMPDU) == 0)
return;
/* Sending AMPDUs requires QoS support. */
if ((ic->ic_caps & IEEE80211_C_QOS) == 0)
return;
if (enable)
ic->ic_flags |= IEEE80211_F_QOS;
else
ic->ic_flags &= ~IEEE80211_F_QOS;
}
/*
* Setup the media data structures according to the channel and
* rate tables. This must be called by the driver after
* ieee80211_attach and before most anything else.
*/
void
ieee80211_media_init(struct ifnet *ifp,
ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
{
#define ADD(_ic, _s, _o) \
ifmedia_add(&(_ic)->ic_media, \
IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
struct ieee80211com *ic = (void *)ifp;
struct ifmediareq imr;
int i, j, mode, rate, maxrate, r;
uint64_t mword, mopt;
const struct ieee80211_rateset *rs;
struct ieee80211_rateset allrates;
/*
* Do late attach work that must wait for any subclass
* (i.e. driver) work such as overriding methods.
*/
ieee80211_node_lateattach(ifp);
/*
* Fill in media characteristics.
*/
ifmedia_init(&ic->ic_media, 0, media_change, media_stat);
maxrate = 0;
memset(&allrates, 0, sizeof(allrates));
for (mode = IEEE80211_MODE_AUTO; mode <= IEEE80211_MODE_11G; mode++) {
static const uint64_t mopts[] = {
IFM_AUTO,
IFM_IEEE80211_11A,
IFM_IEEE80211_11B,
IFM_IEEE80211_11G,
};
if ((ic->ic_modecaps & (1<<mode)) == 0)
continue;
mopt = mopts[mode];
ADD(ic, IFM_AUTO, mopt); /* e.g. 11a auto */
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
if (mode == IEEE80211_MODE_AUTO)
continue;
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
mword = ieee80211_rate2media(ic, rate, mode);
if (mword == 0)
continue;
ADD(ic, mword, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, mword, mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR);
/*
* Add rate to the collection of all rates.
*/
r = rate & IEEE80211_RATE_VAL;
for (j = 0; j < allrates.rs_nrates; j++)
if (allrates.rs_rates[j] == r)
break;
if (j == allrates.rs_nrates) {
/* unique, add to the set */
allrates.rs_rates[j] = r;
allrates.rs_nrates++;
}
rate = (rate & IEEE80211_RATE_VAL) / 2;
if (rate > maxrate)
maxrate = rate;
}
}
for (i = 0; i < allrates.rs_nrates; i++) {
mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
IEEE80211_MODE_AUTO);
if (mword == 0)
continue;
mword = IFM_SUBTYPE(mword); /* remove media options */
ADD(ic, mword, 0);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, mword, IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, mword, IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, mword, IFM_IEEE80211_ADHOC);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, mword, IFM_IEEE80211_MONITOR);
}
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) {
mopt = IFM_IEEE80211_11N;
ADD(ic, IFM_AUTO, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
for (i = 0; i < IEEE80211_HT_NUM_MCS; i++) {
if (!isset(ic->ic_sup_mcs, i))
continue;
ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_IEEE80211_HT_MCS0 + i,
mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_IEEE80211_HT_MCS0 + i,
mopt | IFM_IEEE80211_HOSTAP);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_IEEE80211_HT_MCS0 + i,
mopt | IFM_IEEE80211_MONITOR);
}
ic->ic_flags |= IEEE80211_F_HTON; /* enable 11n by default */
ieee80211_configure_ampdu_tx(ic, 1);
}
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) {
mopt = IFM_IEEE80211_11AC;
ADD(ic, IFM_AUTO, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
for (i = 0; i < IEEE80211_VHT_NUM_MCS; i++) {
#if 0
/* TODO: Obtain VHT MCS information from VHT CAP IE. */
if (!vht_mcs_supported)
continue;
#endif
ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_IEEE80211_VHT_MCS0 + i,
mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_IEEE80211_VHT_MCS0 + i,
mopt | IFM_IEEE80211_HOSTAP);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_IEEE80211_VHT_MCS0 + i,
mopt | IFM_IEEE80211_MONITOR);
}
#if 0
ic->ic_flags |= IEEE80211_F_VHTON; /* enable 11ac by default */
if (ic->ic_caps & IEEE80211_C_QOS)
ic->ic_flags |= IEEE80211_F_QOS;
#endif
}
ieee80211_media_status(ifp, &imr);
ifmedia_set(&ic->ic_media, imr.ifm_active);
if (maxrate)
ifp->if_baudrate = IF_Mbps(maxrate);
#undef ADD
}
int
ieee80211_findrate(struct ieee80211com *ic, enum ieee80211_phymode mode,
int rate)
{
#define IEEERATE(_ic,_m,_i) \
((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL)
int i, nrates = ic->ic_sup_rates[mode].rs_nrates;
for (i = 0; i < nrates; i++)
if (IEEERATE(ic, mode, i) == rate)
return i;
return -1;
#undef IEEERATE
}
/*
* Handle a media change request.
*/
int
ieee80211_media_change(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
struct ifmedia_entry *ime;
enum ieee80211_opmode newopmode;
enum ieee80211_phymode newphymode;
int i, j, newrate, error = 0;
ime = ic->ic_media.ifm_cur;
/*
* First, identify the phy mode.
*/
switch (IFM_MODE(ime->ifm_media)) {
case IFM_IEEE80211_11A:
newphymode = IEEE80211_MODE_11A;
break;
case IFM_IEEE80211_11B:
newphymode = IEEE80211_MODE_11B;
break;
case IFM_IEEE80211_11G:
newphymode = IEEE80211_MODE_11G;
break;
case IFM_IEEE80211_11N:
newphymode = IEEE80211_MODE_11N;
break;
case IFM_IEEE80211_11AC:
newphymode = IEEE80211_MODE_11AC;
break;
case IFM_AUTO:
newphymode = IEEE80211_MODE_AUTO;
break;
default:
return EINVAL;
}
/*
* Validate requested mode is available.
*/
if ((ic->ic_modecaps & (1<<newphymode)) == 0)
return EINVAL;
/*
* Next, the fixed/variable rate.
*/
i = -1;
if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_VHT_MCS0 &&
IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_VHT_MCS9) {
if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) == 0)
return EINVAL;
if (newphymode != IEEE80211_MODE_AUTO &&
newphymode != IEEE80211_MODE_11AC)
return EINVAL;
i = ieee80211_media2mcs(ime->ifm_media);
/* TODO: Obtain VHT MCS information from VHT CAP IE. */
if (i == -1 /* || !vht_mcs_supported */)
return EINVAL;
} else if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_HT_MCS0 &&
IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_HT_MCS76) {
if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) == 0)
return EINVAL;
if (newphymode != IEEE80211_MODE_AUTO &&
newphymode != IEEE80211_MODE_11N)
return EINVAL;
i = ieee80211_media2mcs(ime->ifm_media);
if (i == -1 || isclr(ic->ic_sup_mcs, i))
return EINVAL;
} else if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) {
/*
* Convert media subtype to rate.
*/
newrate = ieee80211_media2rate(ime->ifm_media);
if (newrate == 0)
return EINVAL;
/*
* Check the rate table for the specified/current phy.
*/
if (newphymode == IEEE80211_MODE_AUTO) {
/*
* In autoselect mode search for the rate.
*/
for (j = IEEE80211_MODE_11A;
j < IEEE80211_MODE_MAX; j++) {
if ((ic->ic_modecaps & (1<<j)) == 0)
continue;
i = ieee80211_findrate(ic, j, newrate);
if (i != -1) {
/* lock mode too */
newphymode = j;
break;
}
}
} else {
i = ieee80211_findrate(ic, newphymode, newrate);
}
if (i == -1) /* mode/rate mismatch */
return EINVAL;
}
/* NB: defer rate setting to later */
/*
* Deduce new operating mode but don't install it just yet.
*/
#ifndef IEEE80211_STA_ONLY
if (ime->ifm_media & IFM_IEEE80211_ADHOC)
newopmode = IEEE80211_M_AHDEMO;
else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
newopmode = IEEE80211_M_HOSTAP;
else if (ime->ifm_media & IFM_IEEE80211_IBSS)
newopmode = IEEE80211_M_IBSS;
else
#endif
if (ime->ifm_media & IFM_IEEE80211_MONITOR)
newopmode = IEEE80211_M_MONITOR;
else
newopmode = IEEE80211_M_STA;
#ifndef IEEE80211_STA_ONLY
/*
* Autoselect doesn't make sense when operating as an AP.
* If no phy mode has been selected, pick one and lock it
* down so rate tables can be used in forming beacon frames
* and the like.
*/
if (newopmode == IEEE80211_M_HOSTAP &&
newphymode == IEEE80211_MODE_AUTO) {
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC))
newphymode = IEEE80211_MODE_11AC;
else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N))
newphymode = IEEE80211_MODE_11N;
else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A))
newphymode = IEEE80211_MODE_11A;
else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G))
newphymode = IEEE80211_MODE_11G;
else
newphymode = IEEE80211_MODE_11B;
}
#endif
/*
* Handle phy mode change.
*/
if (ic->ic_curmode != newphymode) { /* change phy mode */
error = ieee80211_setmode(ic, newphymode);
if (error != 0)
return error;
error = ENETRESET;
}
/*
* Committed to changes, install the MCS/rate setting.
*/
ic->ic_flags &= ~(IEEE80211_F_HTON | IEEE80211_F_VHTON);
ieee80211_configure_ampdu_tx(ic, 0);
if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) &&
(newphymode == IEEE80211_MODE_AUTO ||
newphymode == IEEE80211_MODE_11AC)) {
ic->ic_flags |= IEEE80211_F_VHTON;
ieee80211_configure_ampdu_tx(ic, 1);
} else if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) &&
(newphymode == IEEE80211_MODE_AUTO ||
newphymode == IEEE80211_MODE_11N)) {
ic->ic_flags |= IEEE80211_F_HTON;
ieee80211_configure_ampdu_tx(ic, 1);
}
if ((ic->ic_flags & (IEEE80211_F_HTON | IEEE80211_F_VHTON)) == 0) {
ic->ic_fixed_mcs = -1;
if (ic->ic_fixed_rate != i) {
ic->ic_fixed_rate = i; /* set fixed tx rate */
error = ENETRESET;
}
} else {
ic->ic_fixed_rate = -1;
if (ic->ic_fixed_mcs != i) {
ic->ic_fixed_mcs = i; /* set fixed mcs */
error = ENETRESET;
}
}
/*
* Handle operating mode change.
*/
if (ic->ic_opmode != newopmode) {
ic->ic_opmode = newopmode;
#ifndef IEEE80211_STA_ONLY
switch (newopmode) {
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_STA:
case IEEE80211_M_MONITOR:
ic->ic_flags &= ~IEEE80211_F_IBSSON;
break;
case IEEE80211_M_IBSS:
ic->ic_flags |= IEEE80211_F_IBSSON;
break;
}
#endif
/*
* Yech, slot time may change depending on the
* operating mode so reset it to be sure everything
* is setup appropriately.
*/
ieee80211_reset_erp(ic);
error = ENETRESET;
}
#ifdef notdef
if (error == 0)
ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media);
#endif
return error;
}
void
ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct ieee80211com *ic = (void *)ifp;
const struct ieee80211_node *ni = NULL;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN &&
(ic->ic_opmode != IEEE80211_M_STA ||
!(ic->ic_flags & IEEE80211_F_RSNON) ||
ic->ic_bss->ni_port_valid))
imr->ifm_status |= IFM_ACTIVE;
imr->ifm_active |= IFM_AUTO;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
ni = ic->ic_bss;
if (ic->ic_curmode == IEEE80211_MODE_11N ||
ic->ic_curmode == IEEE80211_MODE_11AC)
imr->ifm_active |= ieee80211_mcs2media(ic,
ni->ni_txmcs, ic->ic_curmode);
else
/* calculate rate subtype */
imr->ifm_active |= ieee80211_rate2media(ic,
ni->ni_rates.rs_rates[ni->ni_txrate],
ic->ic_curmode);
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_IBSS;
break;
case IEEE80211_M_AHDEMO:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_HOSTAP:
imr->ifm_active |= IFM_IEEE80211_HOSTAP;
break;
#endif
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
default:
break;
}
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
imr->ifm_active |= IFM_IEEE80211_11A;
break;
case IEEE80211_MODE_11B:
imr->ifm_active |= IFM_IEEE80211_11B;
break;
case IEEE80211_MODE_11G:
imr->ifm_active |= IFM_IEEE80211_11G;
break;
case IEEE80211_MODE_11N:
imr->ifm_active |= IFM_IEEE80211_11N;
break;
case IEEE80211_MODE_11AC:
imr->ifm_active |= IFM_IEEE80211_11AC;
break;
}
}
void
ieee80211_watchdog(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) {
if (ic->ic_opmode == IEEE80211_M_STA &&
(ic->ic_state == IEEE80211_S_AUTH ||
ic->ic_state == IEEE80211_S_ASSOC)) {
struct ieee80211_node *ni;
if (ifp->if_flags & IFF_DEBUG)
printf("%s: %s timed out for %s\n",
ifp->if_xname,
ic->ic_state == IEEE80211_S_ASSOC ?
"association" : "authentication",
ether_sprintf(ic->ic_bss->ni_macaddr));
ni = ieee80211_find_node(ic, ic->ic_bss->ni_macaddr);
if (ni)
ni->ni_fails++;
if (ISSET(ic->ic_flags, IEEE80211_F_AUTO_JOIN))
ieee80211_deselect_ess(ic);
}
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
if (ic->ic_mgt_timer != 0)
ifp->if_timer = 1;
}
const struct ieee80211_rateset ieee80211_std_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
const struct ieee80211_rateset ieee80211_std_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
const struct ieee80211_rateset ieee80211_std_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
const struct ieee80211_ht_rateset ieee80211_std_ratesets_11n[] = {
/* MCS 0-7, 20MHz channel, no SGI */
{ 8, { 13, 26, 39, 52, 78, 104, 117, 130 }, 0x000000ff, 0, 7, 0},
/* MCS 0-7, 20MHz channel, SGI */
{ 8, { 14, 29, 43, 58, 87, 116, 130, 144 }, 0x000000ff, 0, 7, 1 },
/* MCS 8-15, 20MHz channel, no SGI */
{ 8, { 26, 52, 78, 104, 156, 208, 234, 260 }, 0x0000ff00, 8, 15, 0 },
/* MCS 8-15, 20MHz channel, SGI */
{ 8, { 29, 58, 87, 116, 173, 231, 261, 289 }, 0x0000ff00, 8, 15, 1 },
/* MCS 16-23, 20MHz channel, no SGI */
{ 8, { 39, 78, 117, 156, 234, 312, 351, 390 }, 0x00ff0000, 16, 23, 0 },
/* MCS 16-23, 20MHz channel, SGI */
{ 8, { 43, 87, 130, 173, 260, 347, 390, 433 }, 0x00ff0000, 16, 23, 1 },
/* MCS 24-31, 20MHz channel, no SGI */
{ 8, { 52, 104, 156, 208, 312, 416, 468, 520 }, 0xff000000, 24, 31, 0 },
/* MCS 24-31, 20MHz channel, SGI */
{ 8, { 58, 116, 173, 231, 347, 462, 520, 578 }, 0xff000000, 24, 31, 1 },
};
const struct ieee80211_vht_rateset ieee80211_std_ratesets_11ac[] = {
/* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, no SGI */
{ 9, { 13, 26, 39, 52, 78, 104, 117, 130, 156 }, 1, 0 },
/* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, SGI */
{ 9, { 14, 29, 43, 58, 87, 116, 130, 144, 174 }, 1, 1 },
/* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, no SGI */
{ 9, { 26, 52, 78, 104, 156, 208, 234, 260, 312 }, 2, 0 },
/* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, SGI */
{ 9, { 29, 58, 87, 116, 173, 231, 261, 289, 347 }, 2, 1 },
/* MCS 0-9, 1 SS, 40MHz channel, no SGI */
{ 10, { 27, 54, 81, 108, 162, 216, 243, 270, 324, 360 }, 1, 0 },
/* MCS 0-9, 1 SS, 40MHz channel, SGI */
{ 10, { 30, 60, 90, 120, 180, 240, 270, 300, 360, 400 }, 1, 1 },
/* MCS 0-9, 2 SS, 40MHz channel, no SGI */
{ 10, { 54, 108, 162, 216, 324, 432, 486, 540, 648, 720 }, 2, 0 },
/* MCS 0-9, 2 SS, 40MHz channel, SGI */
{ 10, { 60, 120, 180, 240, 360, 480, 540, 600, 720, 800 }, 2, 1 },
/* MCS 0-9, 1 SS, 80MHz channel, no SGI */
{ 10, { 59, 117, 176, 234, 351, 468, 527, 585, 702, 780 }, 1, 0 },
/* MCS 0-9, 1 SS, 80MHz channel, SGI */
{ 10, { 65, 130, 195, 260, 390, 520, 585, 650, 780, 867 }, 1, 1 },
/* MCS 0-9, 2 SS, 80MHz channel, no SGI */
{ 10, { 117, 234, 351, 468, 702, 936, 1053, 1404, 1560 }, 2, 0 },
/* MCS 0-9, 2 SS, 80MHz channel, SGI */
{ 10, { 130, 260, 390, 520, 780, 1040, 1170, 1300, 1560, 1734 }, 2, 1 },
};
/*
* Mark the basic rates for the 11g rate table based on the
* operating mode. For real 11g we mark all the 11b rates
* and 6, 12, and 24 OFDM. For 11b compatibility we mark only
* 11b rates. There's also a pseudo 11a-mode used to mark only
* the basic OFDM rates.
*/
void
ieee80211_setbasicrates(struct ieee80211com *ic)
{
static const struct ieee80211_rateset basic[] = {
{ 0 }, /* IEEE80211_MODE_AUTO */
{ 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */
{ 2, { 2, 4 } }, /* IEEE80211_MODE_11B */
{ 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */
{ 0 }, /* IEEE80211_MODE_11N */
{ 0 }, /* IEEE80211_MODE_11AC */
};
enum ieee80211_phymode mode;
struct ieee80211_rateset *rs;
int i, j;
for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) {
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < rs->rs_nrates; i++) {
rs->rs_rates[i] &= IEEE80211_RATE_VAL;
for (j = 0; j < basic[mode].rs_nrates; j++) {
if (basic[mode].rs_rates[j] ==
rs->rs_rates[i]) {
rs->rs_rates[i] |=
IEEE80211_RATE_BASIC;
break;
}
}
}
}
}
int
ieee80211_min_basic_rate(struct ieee80211com *ic)
{
struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates;
int i, min, rval;
min = -1;
for (i = 0; i < rs->rs_nrates; i++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0)
continue;
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
if (min == -1)
min = rval;
else if (rval < min)
min = rval;
}
/* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */
if (min == -1)
min = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12;
return min;
}
int
ieee80211_max_basic_rate(struct ieee80211com *ic)
{
struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates;
int i, max, rval;
/* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */
max = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12;
for (i = 0; i < rs->rs_nrates; i++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0)
continue;
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
if (rval > max)
max = rval;
}
return max;
}
/*
* Set the current phy mode and recalculate the active channel
* set based on the available channels for this mode. Also
* select a new default/current channel if the current one is
* inappropriate for this mode.
*/
int
ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
{
struct ifnet *ifp = &ic->ic_if;
static const u_int chanflags[] = {
0, /* IEEE80211_MODE_AUTO */
IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */
IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */
IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */
IEEE80211_CHAN_HT, /* IEEE80211_MODE_11N */
IEEE80211_CHAN_VHT, /* IEEE80211_MODE_11AC */
};
const struct ieee80211_channel *c;
u_int modeflags;
int i;
/* validate new mode */
if ((ic->ic_modecaps & (1<<mode)) == 0) {
DPRINTF(("mode %u not supported (caps 0x%x)\n",
mode, ic->ic_modecaps));
return EINVAL;
}
/*
* Verify at least one channel is present in the available
* channel list before committing to the new mode.
*/
if (mode >= nitems(chanflags))
panic("%s: unexpected mode %u", __func__, mode);
modeflags = chanflags[mode];
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (mode == IEEE80211_MODE_AUTO) {
if (c->ic_flags != 0)
break;
} else if ((c->ic_flags & modeflags) == modeflags)
break;
}
if (i > IEEE80211_CHAN_MAX) {
DPRINTF(("no channels found for mode %u\n", mode));
return EINVAL;
}
/*
* Calculate the active channel set.
*/
memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active));
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (mode == IEEE80211_MODE_AUTO) {
if (c->ic_flags != 0)
setbit(ic->ic_chan_active, i);
} else if ((c->ic_flags & modeflags) == modeflags)
setbit(ic->ic_chan_active, i);
}
/*
* If no current/default channel is setup or the current
* channel is wrong for the mode then pick the first
* available channel from the active list. This is likely
* not the right one.
*/
if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active,
ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) {
for (i = 0; i <= IEEE80211_CHAN_MAX; i++)
if (isset(ic->ic_chan_active, i)) {
ic->ic_ibss_chan = &ic->ic_channels[i];
break;
}
if ((ic->ic_ibss_chan == NULL) || isclr(ic->ic_chan_active,
ieee80211_chan2ieee(ic, ic->ic_ibss_chan)))
panic("Bad IBSS channel %u",
ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
}
/*
* Reset the scan state for the new mode. This avoids scanning
* of invalid channels, ie. 5GHz channels in 11b mode.
*/
ieee80211_reset_scan(ifp);
ic->ic_curmode = mode;
ieee80211_reset_erp(ic); /* reset ERP state */
return 0;
}
enum ieee80211_phymode
ieee80211_next_mode(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
uint16_t mode;
/*
* Indicate a wrap-around if we're running in a fixed, user-specified
* phy mode.
*/
if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) != IFM_AUTO)
return (IEEE80211_MODE_AUTO);
/*
* Always scan in AUTO mode if the driver scans all bands.
* The current mode might have changed during association
* so we must reset it here.
*/
if (ic->ic_caps & IEEE80211_C_SCANALLBAND) {
ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
return (ic->ic_curmode);
}
/*
* Get the next supported mode; effectively, this alternates between
* the 11a (5GHz) and 11b/g (2GHz) modes. What matters is that each
* supported channel gets scanned.
*/
for (mode = ic->ic_curmode + 1; mode <= IEEE80211_MODE_MAX; mode++) {
/*
* Skip over 11n mode. Its set of channels is the superset
* of all channels supported by the other modes.
*/
if (mode == IEEE80211_MODE_11N)
continue;
/*
* Skip over 11ac mode. Its set of channels is the set
* of all channels supported by 11a.
*/
if (mode == IEEE80211_MODE_11AC)
continue;
/* Start over if we have already tried all modes. */
if (mode == IEEE80211_MODE_MAX) {
mode = IEEE80211_MODE_AUTO;
break;
}
if (ic->ic_modecaps & (1 << mode))
break;
}
if (mode != ic->ic_curmode)
ieee80211_setmode(ic, mode);
return (ic->ic_curmode);
}
/*
* Return the phy mode for with the specified channel so the
* caller can select a rate set. This is problematic and the
* work here assumes how things work elsewhere in this code.
*
* Because the result of this function is ultimately used to select a
* rate from the rate set of the returned mode, it must return one of the
* legacy 11a/b/g modes; 11n and 11ac modes use MCS instead of rate sets.
*/
enum ieee80211_phymode
ieee80211_chan2mode(struct ieee80211com *ic,
const struct ieee80211_channel *chan)
{
/*
* Are we fixed in 11a/b/g mode?
* NB: this assumes the channel would not be supplied to us
* unless it was already compatible with the current mode.
*/
if (ic->ic_curmode == IEEE80211_MODE_11A ||
ic->ic_curmode == IEEE80211_MODE_11B ||
ic->ic_curmode == IEEE80211_MODE_11G)
return ic->ic_curmode;
/* If no channel was provided, return the most suitable legacy mode. */
if (chan == IEEE80211_CHAN_ANYC) {
switch (ic->ic_curmode) {
case IEEE80211_MODE_AUTO:
case IEEE80211_MODE_11N:
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A))
return IEEE80211_MODE_11A;
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G))
return IEEE80211_MODE_11G;
return IEEE80211_MODE_11B;
case IEEE80211_MODE_11AC:
return IEEE80211_MODE_11A;
default:
return ic->ic_curmode;
}
}
/* Deduce a legacy mode based on the channel characteristics. */
if (IEEE80211_IS_CHAN_5GHZ(chan))
return IEEE80211_MODE_11A;
else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN))
return IEEE80211_MODE_11G;
else
return IEEE80211_MODE_11B;
}
/*
* Convert IEEE80211 MCS index to ifmedia subtype.
*/
uint64_t
ieee80211_mcs2media(struct ieee80211com *ic, int mcs,
enum ieee80211_phymode mode)
{
switch (mode) {
case IEEE80211_MODE_11A:
case IEEE80211_MODE_11B:
case IEEE80211_MODE_11G:
/* these modes use rates, not MCS */
panic("%s: unexpected mode %d", __func__, mode);
break;
case IEEE80211_MODE_11N:
if (mcs >= 0 && mcs < IEEE80211_HT_NUM_MCS)
return (IFM_IEEE80211_11N |
(IFM_IEEE80211_HT_MCS0 + mcs));
break;
case IEEE80211_MODE_11AC:
if (mcs >= 0 && mcs < IEEE80211_VHT_NUM_MCS)
return (IFM_IEEE80211_11AC |
(IFM_IEEE80211_VHT_MCS0 + mcs));
break;
case IEEE80211_MODE_AUTO:
break;
}
return IFM_AUTO;
}
/*
* Convert ifmedia subtype to IEEE80211 MCS index.
*/
int
ieee80211_media2mcs(uint64_t mword)
{
uint64_t subtype;
subtype = IFM_SUBTYPE(mword);
if (subtype == IFM_AUTO)
return -1;
else if (subtype == IFM_MANUAL || subtype == IFM_NONE)
return 0;
if (subtype >= IFM_IEEE80211_HT_MCS0 &&
subtype <= IFM_IEEE80211_HT_MCS76)
return (int)(subtype - IFM_IEEE80211_HT_MCS0);
if (subtype >= IFM_IEEE80211_VHT_MCS0 &&
subtype <= IFM_IEEE80211_VHT_MCS9)
return (int)(subtype - IFM_IEEE80211_VHT_MCS0);
return -1;
}
/*
* convert IEEE80211 rate value to ifmedia subtype.
* ieee80211 rate is in unit of 0.5Mbps.
*/
uint64_t
ieee80211_rate2media(struct ieee80211com *ic, int rate,
enum ieee80211_phymode mode)
{
static const struct {
uint64_t m; /* rate + mode */
uint64_t r; /* if_media rate */
} rates[] = {
{ 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
{ 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
{ 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
{ 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
{ 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
{ 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
{ 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
{ 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
{ 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
{ 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
{ 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
{ 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
{ 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
{ 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
{ 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
{ 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
{ 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
{ 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
{ 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
{ 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
{ 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
{ 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
{ 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
/* NB: OFDM72 doesn't really exist so we don't handle it */
};
uint64_t mask;
int i;
mask = rate & IEEE80211_RATE_VAL;
switch (mode) {
case IEEE80211_MODE_11A:
mask |= IFM_IEEE80211_11A;
break;
case IEEE80211_MODE_11B:
mask |= IFM_IEEE80211_11B;
break;
case IEEE80211_MODE_AUTO:
/* NB: hack, 11g matches both 11b+11a rates */
/* FALLTHROUGH */
case IEEE80211_MODE_11G:
mask |= IFM_IEEE80211_11G;
break;
case IEEE80211_MODE_11N:
case IEEE80211_MODE_11AC:
/* 11n/11ac uses MCS, not rates. */
panic("%s: unexpected mode %d", __func__, mode);
break;
}
for (i = 0; i < nitems(rates); i++)
if (rates[i].m == mask)
return rates[i].r;
return IFM_AUTO;
}
int
ieee80211_media2rate(uint64_t mword)
{
int i;
static const struct {
uint64_t subtype;
int rate;
} ieeerates[] = {
{ IFM_AUTO, -1 },
{ IFM_MANUAL, 0 },
{ IFM_NONE, 0 },
{ IFM_IEEE80211_DS1, 2 },
{ IFM_IEEE80211_DS2, 4 },
{ IFM_IEEE80211_DS5, 11 },
{ IFM_IEEE80211_DS11, 22 },
{ IFM_IEEE80211_DS22, 44 },
{ IFM_IEEE80211_OFDM6, 12 },
{ IFM_IEEE80211_OFDM9, 18 },
{ IFM_IEEE80211_OFDM12, 24 },
{ IFM_IEEE80211_OFDM18, 36 },
{ IFM_IEEE80211_OFDM24, 48 },
{ IFM_IEEE80211_OFDM36, 72 },
{ IFM_IEEE80211_OFDM48, 96 },
{ IFM_IEEE80211_OFDM54, 108 },
{ IFM_IEEE80211_OFDM72, 144 },
};
for (i = 0; i < nitems(ieeerates); i++) {
if (ieeerates[i].subtype == IFM_SUBTYPE(mword))
return ieeerates[i].rate;
}
return 0;
}
/*
* Convert bit rate (in 0.5Mbps units) to PLCP signal (R4-R1) and vice versa.
*/
u_int8_t
ieee80211_rate2plcp(u_int8_t rate, enum ieee80211_phymode mode)
{
rate &= IEEE80211_RATE_VAL;
if (mode == IEEE80211_MODE_11B) {
/* IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3 */
switch (rate) {
case 2: return 10;
case 4: return 20;
case 11: return 55;
case 22: return 110;
/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
case 44: return 220;
}
} else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) {
/* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */
switch (rate) {
case 12: return 0x0b;
case 18: return 0x0f;
case 24: return 0x0a;
case 36: return 0x0e;
case 48: return 0x09;
case 72: return 0x0d;
case 96: return 0x08;
case 108: return 0x0c;
}
} else
panic("%s: unexpected mode %u", __func__, mode);
DPRINTF(("unsupported rate %u\n", rate));
return 0;
}
u_int8_t
ieee80211_plcp2rate(u_int8_t plcp, enum ieee80211_phymode mode)
{
if (mode == IEEE80211_MODE_11B) {
/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
switch (plcp) {
case 10: return 2;
case 20: return 4;
case 55: return 11;
case 110: return 22;
/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
case 220: return 44;
}
} else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) {
/* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */
switch (plcp) {
case 0x0b: return 12;
case 0x0f: return 18;
case 0x0a: return 24;
case 0x0e: return 36;
case 0x09: return 48;
case 0x0d: return 72;
case 0x08: return 96;
case 0x0c: return 108;
}
} else
panic("%s: unexpected mode %u", __func__, mode);
DPRINTF(("unsupported plcp %u\n", plcp));
return 0;
}
|