1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
|
/* $OpenBSD: ieee80211_crypto.c,v 1.62 2014/07/12 18:44:22 tedu Exp $ */
/*-
* Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_arp.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_priv.h>
#include <dev/rndvar.h>
#include <crypto/arc4.h>
#include <crypto/md5.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/hmac.h>
#include <crypto/rijndael.h>
#include <crypto/cmac.h>
#include <crypto/key_wrap.h>
void ieee80211_prf(const u_int8_t *, size_t, const u_int8_t *, size_t,
const u_int8_t *, size_t, u_int8_t *, size_t);
void ieee80211_kdf(const u_int8_t *, size_t, const u_int8_t *, size_t,
const u_int8_t *, size_t, u_int8_t *, size_t);
void ieee80211_derive_pmkid(enum ieee80211_akm, const u_int8_t *,
const u_int8_t *, const u_int8_t *, u_int8_t *);
void
ieee80211_crypto_attach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
TAILQ_INIT(&ic->ic_pmksa);
if (ic->ic_caps & IEEE80211_C_RSN) {
ic->ic_rsnprotos = IEEE80211_PROTO_WPA | IEEE80211_PROTO_RSN;
ic->ic_rsnakms = IEEE80211_AKM_PSK;
ic->ic_rsnciphers = IEEE80211_CIPHER_TKIP |
IEEE80211_CIPHER_CCMP;
ic->ic_rsngroupcipher = IEEE80211_CIPHER_TKIP;
ic->ic_rsngroupmgmtcipher = IEEE80211_CIPHER_BIP;
}
ic->ic_set_key = ieee80211_set_key;
ic->ic_delete_key = ieee80211_delete_key;
}
void
ieee80211_crypto_detach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
struct ieee80211_pmk *pmk;
int i;
/* purge the PMKSA cache */
while ((pmk = TAILQ_FIRST(&ic->ic_pmksa)) != NULL) {
TAILQ_REMOVE(&ic->ic_pmksa, pmk, pmk_next);
explicit_bzero(pmk, sizeof(*pmk));
free(pmk, M_DEVBUF, 0);
}
/* clear all group keys from memory */
for (i = 0; i < IEEE80211_GROUP_NKID; i++) {
struct ieee80211_key *k = &ic->ic_nw_keys[i];
if (k->k_cipher != IEEE80211_CIPHER_NONE)
(*ic->ic_delete_key)(ic, NULL, k);
explicit_bzero(k, sizeof(*k));
}
/* clear pre-shared key from memory */
explicit_bzero(ic->ic_psk, IEEE80211_PMK_LEN);
}
/*
* Return the length in bytes of a cipher suite key (see Table 60).
*/
int
ieee80211_cipher_keylen(enum ieee80211_cipher cipher)
{
switch (cipher) {
case IEEE80211_CIPHER_WEP40:
return 5;
case IEEE80211_CIPHER_TKIP:
return 32;
case IEEE80211_CIPHER_CCMP:
return 16;
case IEEE80211_CIPHER_WEP104:
return 13;
case IEEE80211_CIPHER_BIP:
return 16;
default: /* unknown cipher */
return 0;
}
}
int
ieee80211_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
int error;
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
case IEEE80211_CIPHER_WEP104:
error = ieee80211_wep_set_key(ic, k);
break;
case IEEE80211_CIPHER_TKIP:
error = ieee80211_tkip_set_key(ic, k);
break;
case IEEE80211_CIPHER_CCMP:
error = ieee80211_ccmp_set_key(ic, k);
break;
case IEEE80211_CIPHER_BIP:
error = ieee80211_bip_set_key(ic, k);
break;
default:
/* should not get there */
error = EINVAL;
}
return error;
}
void
ieee80211_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
case IEEE80211_CIPHER_WEP104:
ieee80211_wep_delete_key(ic, k);
break;
case IEEE80211_CIPHER_TKIP:
ieee80211_tkip_delete_key(ic, k);
break;
case IEEE80211_CIPHER_CCMP:
ieee80211_ccmp_delete_key(ic, k);
break;
case IEEE80211_CIPHER_BIP:
ieee80211_bip_delete_key(ic, k);
break;
default:
/* should not get there */
break;
}
explicit_bzero(k, sizeof(*k));
}
struct ieee80211_key *
ieee80211_get_txkey(struct ieee80211com *ic, const struct ieee80211_frame *wh,
struct ieee80211_node *ni)
{
int kid;
if ((ic->ic_flags & IEEE80211_F_RSNON) &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
ni->ni_rsncipher != IEEE80211_CIPHER_USEGROUP)
return &ni->ni_pairwise_key;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) ||
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_MGT)
kid = ic->ic_def_txkey;
else
kid = ic->ic_igtk_kid;
return &ic->ic_nw_keys[kid];
}
struct mbuf *
ieee80211_encrypt(struct ieee80211com *ic, struct mbuf *m0,
struct ieee80211_key *k)
{
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
case IEEE80211_CIPHER_WEP104:
m0 = ieee80211_wep_encrypt(ic, m0, k);
break;
case IEEE80211_CIPHER_TKIP:
m0 = ieee80211_tkip_encrypt(ic, m0, k);
break;
case IEEE80211_CIPHER_CCMP:
m0 = ieee80211_ccmp_encrypt(ic, m0, k);
break;
case IEEE80211_CIPHER_BIP:
m0 = ieee80211_bip_encap(ic, m0, k);
break;
default:
/* should not get there */
m_freem(m0);
m0 = NULL;
}
return m0;
}
struct mbuf *
ieee80211_decrypt(struct ieee80211com *ic, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211_frame *wh;
struct ieee80211_key *k;
u_int8_t *ivp, *mmie;
u_int16_t kid;
int hdrlen;
/* find key for decryption */
wh = mtod(m0, struct ieee80211_frame *);
if ((ic->ic_flags & IEEE80211_F_RSNON) &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
ni->ni_rsncipher != IEEE80211_CIPHER_USEGROUP) {
k = &ni->ni_pairwise_key;
} else if (!IEEE80211_IS_MULTICAST(wh->i_addr1) ||
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_MGT) {
/* retrieve group data key id from IV field */
hdrlen = ieee80211_get_hdrlen(wh);
/* check that IV field is present */
if (m0->m_len < hdrlen + 4) {
m_freem(m0);
return NULL;
}
ivp = (u_int8_t *)wh + hdrlen;
kid = ivp[3] >> 6;
k = &ic->ic_nw_keys[kid];
} else {
/* retrieve integrity group key id from MMIE */
if (m0->m_len < sizeof(*wh) + IEEE80211_MMIE_LEN) {
m_freem(m0);
return NULL;
}
/* it is assumed management frames are contiguous */
mmie = (u_int8_t *)wh + m0->m_len - IEEE80211_MMIE_LEN;
/* check that MMIE is valid */
if (mmie[0] != IEEE80211_ELEMID_MMIE || mmie[1] != 16) {
m_freem(m0);
return NULL;
}
kid = LE_READ_2(&mmie[2]);
if (kid != 4 && kid != 5) {
m_freem(m0);
return NULL;
}
k = &ic->ic_nw_keys[kid];
}
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
case IEEE80211_CIPHER_WEP104:
m0 = ieee80211_wep_decrypt(ic, m0, k);
break;
case IEEE80211_CIPHER_TKIP:
m0 = ieee80211_tkip_decrypt(ic, m0, k);
break;
case IEEE80211_CIPHER_CCMP:
m0 = ieee80211_ccmp_decrypt(ic, m0, k);
break;
case IEEE80211_CIPHER_BIP:
m0 = ieee80211_bip_decap(ic, m0, k);
break;
default:
/* key not defined */
m_freem(m0);
m0 = NULL;
}
return m0;
}
/*
* SHA1-based Pseudo-Random Function (see 8.5.1.1).
*/
void
ieee80211_prf(const u_int8_t *key, size_t key_len, const u_int8_t *label,
size_t label_len, const u_int8_t *context, size_t context_len,
u_int8_t *output, size_t len)
{
HMAC_SHA1_CTX ctx;
u_int8_t digest[SHA1_DIGEST_LENGTH];
u_int8_t count;
for (count = 0; len != 0; count++) {
HMAC_SHA1_Init(&ctx, key, key_len);
HMAC_SHA1_Update(&ctx, label, label_len);
HMAC_SHA1_Update(&ctx, context, context_len);
HMAC_SHA1_Update(&ctx, &count, 1);
if (len < SHA1_DIGEST_LENGTH) {
HMAC_SHA1_Final(digest, &ctx);
/* truncate HMAC-SHA1 to len bytes */
memcpy(output, digest, len);
break;
}
HMAC_SHA1_Final(output, &ctx);
output += SHA1_DIGEST_LENGTH;
len -= SHA1_DIGEST_LENGTH;
}
}
/*
* SHA256-based Key Derivation Function (see 8.5.1.5.2).
*/
void
ieee80211_kdf(const u_int8_t *key, size_t key_len, const u_int8_t *label,
size_t label_len, const u_int8_t *context, size_t context_len,
u_int8_t *output, size_t len)
{
HMAC_SHA256_CTX ctx;
u_int8_t digest[SHA256_DIGEST_LENGTH];
u_int16_t i, iter, length;
length = htole16(len * NBBY);
for (i = 1; len != 0; i++) {
HMAC_SHA256_Init(&ctx, key, key_len);
iter = htole16(i);
HMAC_SHA256_Update(&ctx, (u_int8_t *)&iter, sizeof iter);
HMAC_SHA256_Update(&ctx, label, label_len);
HMAC_SHA256_Update(&ctx, context, context_len);
HMAC_SHA256_Update(&ctx, (u_int8_t *)&length, sizeof length);
if (len < SHA256_DIGEST_LENGTH) {
HMAC_SHA256_Final(digest, &ctx);
/* truncate HMAC-SHA-256 to len bytes */
memcpy(output, digest, len);
break;
}
HMAC_SHA256_Final(output, &ctx);
output += SHA256_DIGEST_LENGTH;
len -= SHA256_DIGEST_LENGTH;
}
}
/*
* Derive Pairwise Transient Key (PTK) (see 8.5.1.2).
*/
void
ieee80211_derive_ptk(enum ieee80211_akm akm, const u_int8_t *pmk,
const u_int8_t *aa, const u_int8_t *spa, const u_int8_t *anonce,
const u_int8_t *snonce, struct ieee80211_ptk *ptk)
{
void (*kdf)(const u_int8_t *, size_t, const u_int8_t *, size_t,
const u_int8_t *, size_t, u_int8_t *, size_t);
u_int8_t buf[2 * IEEE80211_ADDR_LEN + 2 * EAPOL_KEY_NONCE_LEN];
int ret;
/* Min(AA,SPA) || Max(AA,SPA) */
ret = memcmp(aa, spa, IEEE80211_ADDR_LEN) < 0;
memcpy(&buf[ 0], ret ? aa : spa, IEEE80211_ADDR_LEN);
memcpy(&buf[ 6], ret ? spa : aa, IEEE80211_ADDR_LEN);
/* Min(ANonce,SNonce) || Max(ANonce,SNonce) */
ret = memcmp(anonce, snonce, EAPOL_KEY_NONCE_LEN) < 0;
memcpy(&buf[12], ret ? anonce : snonce, EAPOL_KEY_NONCE_LEN);
memcpy(&buf[44], ret ? snonce : anonce, EAPOL_KEY_NONCE_LEN);
kdf = ieee80211_is_sha256_akm(akm) ? ieee80211_kdf : ieee80211_prf;
(*kdf)(pmk, IEEE80211_PMK_LEN, "Pairwise key expansion", 23,
buf, sizeof buf, (u_int8_t *)ptk, sizeof(*ptk));
}
static void
ieee80211_pmkid_sha1(const u_int8_t *pmk, const u_int8_t *aa,
const u_int8_t *spa, u_int8_t *pmkid)
{
HMAC_SHA1_CTX ctx;
u_int8_t digest[SHA1_DIGEST_LENGTH];
HMAC_SHA1_Init(&ctx, pmk, IEEE80211_PMK_LEN);
HMAC_SHA1_Update(&ctx, "PMK Name", 8);
HMAC_SHA1_Update(&ctx, aa, IEEE80211_ADDR_LEN);
HMAC_SHA1_Update(&ctx, spa, IEEE80211_ADDR_LEN);
HMAC_SHA1_Final(digest, &ctx);
/* use the first 128 bits of HMAC-SHA1 */
memcpy(pmkid, digest, IEEE80211_PMKID_LEN);
}
static void
ieee80211_pmkid_sha256(const u_int8_t *pmk, const u_int8_t *aa,
const u_int8_t *spa, u_int8_t *pmkid)
{
HMAC_SHA256_CTX ctx;
u_int8_t digest[SHA256_DIGEST_LENGTH];
HMAC_SHA256_Init(&ctx, pmk, IEEE80211_PMK_LEN);
HMAC_SHA256_Update(&ctx, "PMK Name", 8);
HMAC_SHA256_Update(&ctx, aa, IEEE80211_ADDR_LEN);
HMAC_SHA256_Update(&ctx, spa, IEEE80211_ADDR_LEN);
HMAC_SHA256_Final(digest, &ctx);
/* use the first 128 bits of HMAC-SHA-256 */
memcpy(pmkid, digest, IEEE80211_PMKID_LEN);
}
/*
* Derive Pairwise Master Key Identifier (PMKID) (see 8.5.1.2).
*/
void
ieee80211_derive_pmkid(enum ieee80211_akm akm, const u_int8_t *pmk,
const u_int8_t *aa, const u_int8_t *spa, u_int8_t *pmkid)
{
if (ieee80211_is_sha256_akm(akm))
ieee80211_pmkid_sha256(pmk, aa, spa, pmkid);
else
ieee80211_pmkid_sha1(pmk, aa, spa, pmkid);
}
typedef union _ANY_CTX {
HMAC_MD5_CTX md5;
HMAC_SHA1_CTX sha1;
AES_CMAC_CTX cmac;
} ANY_CTX;
/*
* Compute the Key MIC field of an EAPOL-Key frame using the specified Key
* Confirmation Key (KCK). The hash function can be HMAC-MD5, HMAC-SHA1
* or AES-128-CMAC depending on the EAPOL-Key Key Descriptor Version.
*/
void
ieee80211_eapol_key_mic(struct ieee80211_eapol_key *key, const u_int8_t *kck)
{
u_int8_t digest[SHA1_DIGEST_LENGTH];
ANY_CTX ctx; /* XXX off stack? */
u_int len;
len = BE_READ_2(key->len) + 4;
switch (BE_READ_2(key->info) & EAPOL_KEY_VERSION_MASK) {
case EAPOL_KEY_DESC_V1:
HMAC_MD5_Init(&ctx.md5, kck, 16);
HMAC_MD5_Update(&ctx.md5, (u_int8_t *)key, len);
HMAC_MD5_Final(key->mic, &ctx.md5);
break;
case EAPOL_KEY_DESC_V2:
HMAC_SHA1_Init(&ctx.sha1, kck, 16);
HMAC_SHA1_Update(&ctx.sha1, (u_int8_t *)key, len);
HMAC_SHA1_Final(digest, &ctx.sha1);
/* truncate HMAC-SHA1 to its 128 MSBs */
memcpy(key->mic, digest, EAPOL_KEY_MIC_LEN);
break;
case EAPOL_KEY_DESC_V3:
AES_CMAC_Init(&ctx.cmac);
AES_CMAC_SetKey(&ctx.cmac, kck);
AES_CMAC_Update(&ctx.cmac, (u_int8_t *)key, len);
AES_CMAC_Final(key->mic, &ctx.cmac);
break;
}
}
/*
* Check the MIC of a received EAPOL-Key frame using the specified Key
* Confirmation Key (KCK).
*/
int
ieee80211_eapol_key_check_mic(struct ieee80211_eapol_key *key,
const u_int8_t *kck)
{
u_int8_t mic[EAPOL_KEY_MIC_LEN];
memcpy(mic, key->mic, EAPOL_KEY_MIC_LEN);
memset(key->mic, 0, EAPOL_KEY_MIC_LEN);
ieee80211_eapol_key_mic(key, kck);
return timingsafe_bcmp(key->mic, mic, EAPOL_KEY_MIC_LEN) != 0;
}
#ifndef IEEE80211_STA_ONLY
/*
* Encrypt the Key Data field of an EAPOL-Key frame using the specified Key
* Encryption Key (KEK). The encryption algorithm can be either ARC4 or
* AES Key Wrap depending on the EAPOL-Key Key Descriptor Version.
*/
void
ieee80211_eapol_key_encrypt(struct ieee80211com *ic,
struct ieee80211_eapol_key *key, const u_int8_t *kek)
{
union {
struct rc4_ctx rc4;
aes_key_wrap_ctx aes;
} ctx; /* XXX off stack? */
u_int8_t keybuf[EAPOL_KEY_IV_LEN + 16];
u_int16_t len, info;
u_int8_t *data;
int n;
len = BE_READ_2(key->paylen);
info = BE_READ_2(key->info);
data = (u_int8_t *)(key + 1);
switch (info & EAPOL_KEY_VERSION_MASK) {
case EAPOL_KEY_DESC_V1:
/* set IV to the lower 16 octets of our global key counter */
memcpy(key->iv, ic->ic_globalcnt + 16, 16);
/* increment our global key counter (256-bit, big-endian) */
for (n = 31; n >= 0 && ++ic->ic_globalcnt[n] == 0; n--);
/* concatenate the EAPOL-Key IV field and the KEK */
memcpy(keybuf, key->iv, EAPOL_KEY_IV_LEN);
memcpy(keybuf + EAPOL_KEY_IV_LEN, kek, 16);
rc4_keysetup(&ctx.rc4, keybuf, sizeof keybuf);
/* discard the first 256 octets of the ARC4 key stream */
rc4_skip(&ctx.rc4, RC4STATE);
rc4_crypt(&ctx.rc4, data, data, len);
break;
case EAPOL_KEY_DESC_V2:
case EAPOL_KEY_DESC_V3:
if (len < 16 || (len & 7) != 0) {
/* insert padding */
n = (len < 16) ? 16 - len : 8 - (len & 7);
data[len++] = IEEE80211_ELEMID_VENDOR;
memset(&data[len], 0, n - 1);
len += n - 1;
}
aes_key_wrap_set_key_wrap_only(&ctx.aes, kek, 16);
aes_key_wrap(&ctx.aes, data, len / 8, data);
len += 8; /* AES Key Wrap adds 8 bytes */
/* update key data length */
BE_WRITE_2(key->paylen, len);
/* update packet body length */
BE_WRITE_2(key->len, sizeof(*key) + len - 4);
break;
}
}
#endif /* IEEE80211_STA_ONLY */
/*
* Decrypt the Key Data field of an EAPOL-Key frame using the specified Key
* Encryption Key (KEK). The encryption algorithm can be either ARC4 or
* AES Key Wrap depending on the EAPOL-Key Key Descriptor Version.
*/
int
ieee80211_eapol_key_decrypt(struct ieee80211_eapol_key *key,
const u_int8_t *kek)
{
union {
struct rc4_ctx rc4;
aes_key_wrap_ctx aes;
} ctx; /* XXX off stack? */
u_int8_t keybuf[EAPOL_KEY_IV_LEN + 16];
u_int16_t len, info;
u_int8_t *data;
len = BE_READ_2(key->paylen);
info = BE_READ_2(key->info);
data = (u_int8_t *)(key + 1);
switch (info & EAPOL_KEY_VERSION_MASK) {
case EAPOL_KEY_DESC_V1:
/* concatenate the EAPOL-Key IV field and the KEK */
memcpy(keybuf, key->iv, EAPOL_KEY_IV_LEN);
memcpy(keybuf + EAPOL_KEY_IV_LEN, kek, 16);
rc4_keysetup(&ctx.rc4, keybuf, sizeof keybuf);
/* discard the first 256 octets of the ARC4 key stream */
rc4_skip(&ctx.rc4, RC4STATE);
rc4_crypt(&ctx.rc4, data, data, len);
return 0;
case EAPOL_KEY_DESC_V2:
case EAPOL_KEY_DESC_V3:
/* Key Data Length must be a multiple of 8 */
if (len < 16 + 8 || (len & 7) != 0)
return 1;
len -= 8; /* AES Key Wrap adds 8 bytes */
aes_key_wrap_set_key(&ctx.aes, kek, 16);
return aes_key_unwrap(&ctx.aes, data, data, len / 8);
}
return 1; /* unknown Key Descriptor Version */
}
/*
* Add a PMK entry to the PMKSA cache.
*/
struct ieee80211_pmk *
ieee80211_pmksa_add(struct ieee80211com *ic, enum ieee80211_akm akm,
const u_int8_t *macaddr, const u_int8_t *key, u_int32_t lifetime)
{
struct ieee80211_pmk *pmk;
/* check if an entry already exists for this (STA,AKMP) */
TAILQ_FOREACH(pmk, &ic->ic_pmksa, pmk_next) {
if (pmk->pmk_akm == akm &&
IEEE80211_ADDR_EQ(pmk->pmk_macaddr, macaddr))
break;
}
if (pmk == NULL) {
/* allocate a new PMKSA entry */
if ((pmk = malloc(sizeof(*pmk), M_DEVBUF, M_NOWAIT)) == NULL)
return NULL;
pmk->pmk_akm = akm;
IEEE80211_ADDR_COPY(pmk->pmk_macaddr, macaddr);
TAILQ_INSERT_TAIL(&ic->ic_pmksa, pmk, pmk_next);
}
memcpy(pmk->pmk_key, key, IEEE80211_PMK_LEN);
pmk->pmk_lifetime = lifetime; /* XXX not used yet */
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
ieee80211_derive_pmkid(pmk->pmk_akm, pmk->pmk_key,
ic->ic_myaddr, macaddr, pmk->pmk_pmkid);
} else
#endif
{
ieee80211_derive_pmkid(pmk->pmk_akm, pmk->pmk_key,
macaddr, ic->ic_myaddr, pmk->pmk_pmkid);
}
return pmk;
}
/*
* Check if we have a cached PMK entry for the specified node and PMKID.
*/
struct ieee80211_pmk *
ieee80211_pmksa_find(struct ieee80211com *ic, struct ieee80211_node *ni,
const u_int8_t *pmkid)
{
struct ieee80211_pmk *pmk;
TAILQ_FOREACH(pmk, &ic->ic_pmksa, pmk_next) {
if (pmk->pmk_akm == ni->ni_rsnakms &&
IEEE80211_ADDR_EQ(pmk->pmk_macaddr, ni->ni_macaddr) &&
(pmkid == NULL ||
memcmp(pmk->pmk_pmkid, pmkid, IEEE80211_PMKID_LEN) == 0))
break;
}
return pmk;
}
|