summaryrefslogtreecommitdiff
path: root/sys/ufs/ffs/ffs_alloc.c
blob: f25e235bddac9c486a68d4b80c38ce26d47cdcde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
/*	$OpenBSD: ffs_alloc.c,v 1.114 2021/03/11 13:31:35 jsg Exp $	*/
/*	$NetBSD: ffs_alloc.c,v 1.11 1996/05/11 18:27:09 mycroft Exp $	*/

/*
 * Copyright (c) 2002 Networks Associates Technology, Inc.
 * All rights reserved.
 *
 * This software was developed for the FreeBSD Project by Marshall
 * Kirk McKusick and Network Associates Laboratories, the Security
 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
 * research program.
 *
 * Copyright (c) 1982, 1986, 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/syslog.h>
#include <sys/stdint.h>
#include <sys/time.h>

#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>

#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>

#define ffs_fserr(fs, uid, cp) do {				\
	log(LOG_ERR, "uid %u on %s: %s\n", (uid),		\
	    (fs)->fs_fsmnt, (cp));				\
} while (0)

daddr_t		ffs_alloccg(struct inode *, u_int, daddr_t, int);
struct buf *	ffs_cgread(struct fs *, struct inode *, u_int);
daddr_t		ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
ufsino_t	ffs_dirpref(struct inode *);
daddr_t		ffs_fragextend(struct inode *, u_int, daddr_t, int, int);
daddr_t		ffs_hashalloc(struct inode *, u_int, daddr_t, int,
		    daddr_t (*)(struct inode *, u_int, daddr_t, int));
daddr_t		ffs_nodealloccg(struct inode *, u_int, daddr_t, int);
daddr_t		ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);

static const struct timeval	fserr_interval = { 2, 0 };


/*
 * Allocate a block in the file system.
 *
 * The size of the requested block is given, which must be some
 * multiple of fs_fsize and <= fs_bsize.
 * A preference may be optionally specified. If a preference is given
 * the following hierarchy is used to allocate a block:
 *   1) allocate the requested block.
 *   2) allocate a rotationally optimal block in the same cylinder.
 *   3) allocate a block in the same cylinder group.
 *   4) quadratically rehash into other cylinder groups, until an
 *      available block is located.
 * If no block preference is given the following hierarchy is used
 * to allocate a block:
 *   1) allocate a block in the cylinder group that contains the
 *      inode for the file.
 *   2) quadratically rehash into other cylinder groups, until an
 *      available block is located.
 */
int
ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    struct ucred *cred, daddr_t *bnp)
{
	static struct timeval fsfull_last;
	struct fs *fs;
	daddr_t bno;
	u_int cg;
	int error;

	*bnp = 0;
	fs = ip->i_fs;
#ifdef DIAGNOSTIC
	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
		panic("ffs_alloc: bad size");
	}
	if (cred == NOCRED)
		panic("ffs_alloc: missing credential");
#endif /* DIAGNOSTIC */
	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
		goto nospace;
	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
		goto nospace;

	if ((error = ufs_quota_alloc_blocks(ip, btodb(size), cred)) != 0)
		return (error);

	/*
	 * Start allocation in the preferred block's cylinder group or
	 * the file's inode's cylinder group if no preferred block was
	 * specified.
	 */
	if (bpref >= fs->fs_size)
		bpref = 0;
	if (bpref == 0)
		cg = ino_to_cg(fs, ip->i_number);
	else
		cg = dtog(fs, bpref);

	/* Try allocating a block. */
	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
	if (bno > 0) {
		/* allocation successful, update inode data */
		DIP_ADD(ip, blocks, btodb(size));
		ip->i_flag |= IN_CHANGE | IN_UPDATE;
		*bnp = bno;
		return (0);
	}

	/* Restore user's disk quota because allocation failed. */
	(void) ufs_quota_free_blocks(ip, btodb(size), cred);

nospace:
	if (ratecheck(&fsfull_last, &fserr_interval)) {
		ffs_fserr(fs, cred->cr_uid, "file system full");
		uprintf("\n%s: write failed, file system is full\n",
		    fs->fs_fsmnt);
	}
	return (ENOSPC);
}

/*
 * Reallocate a fragment to a bigger size
 *
 * The number and size of the old block is given, and a preference
 * and new size is also specified. The allocator attempts to extend
 * the original block. Failing that, the regular block allocator is
 * invoked to get an appropriate block.
 */
int
ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop)
{
	static struct timeval fsfull_last;
	struct fs *fs;
	struct buf *bp = NULL;
	daddr_t quota_updated = 0;
	int request, error;
	u_int cg;
	daddr_t bprev, bno;

	if (bpp != NULL)
		*bpp = NULL;
	fs = ip->i_fs;
#ifdef DIAGNOSTIC
	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
		printf(
		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
		panic("ffs_realloccg: bad size");
	}
	if (cred == NOCRED)
		panic("ffs_realloccg: missing credential");
#endif /* DIAGNOSTIC */
	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
		goto nospace;

	bprev = DIP(ip, db[lbprev]);

	if (bprev == 0) {
		printf("dev = 0x%x, bsize = %d, bprev = %lld, fs = %s\n",
		    ip->i_dev, fs->fs_bsize, (long long)bprev, fs->fs_fsmnt);
		panic("ffs_realloccg: bad bprev");
	}

	/*
	 * Allocate the extra space in the buffer.
	 */
	if (bpp != NULL) {
		if ((error = bread(ITOV(ip), lbprev, fs->fs_bsize, &bp)) != 0)
			goto error;
		buf_adjcnt(bp, osize);
	}

	if ((error = ufs_quota_alloc_blocks(ip, btodb(nsize - osize), cred))
	    != 0)
		goto error;

	quota_updated = btodb(nsize - osize);

	/*
	 * Check for extension in the existing location.
	 */
	cg = dtog(fs, bprev);
	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
		DIP_ADD(ip, blocks, btodb(nsize - osize));
		ip->i_flag |= IN_CHANGE | IN_UPDATE;
		if (bpp != NULL) {
			if (bp->b_blkno != fsbtodb(fs, bno))
				panic("ffs_realloccg: bad blockno");
#ifdef DIAGNOSTIC
			if (nsize > bp->b_bufsize)
				panic("ffs_realloccg: small buf");
#endif
			buf_adjcnt(bp, nsize);
			bp->b_flags |= B_DONE;
			memset(bp->b_data + osize, 0, nsize - osize);
			*bpp = bp;
		}
		if (blknop != NULL) {
			*blknop = bno;
		}
		return (0);
	}
	/*
	 * Allocate a new disk location.
	 */
	if (bpref >= fs->fs_size)
		bpref = 0;
	switch (fs->fs_optim) {
	case FS_OPTSPACE:
		/*
		 * Allocate an exact sized fragment. Although this makes
		 * best use of space, we will waste time relocating it if
		 * the file continues to grow. If the fragmentation is
		 * less than half of the minimum free reserve, we choose
		 * to begin optimizing for time.
		 */
		request = nsize;
		if (fs->fs_minfree < 5 ||
		    fs->fs_cstotal.cs_nffree >
		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
			break;
		fs->fs_optim = FS_OPTTIME;
		break;
	case FS_OPTTIME:
		/*
		 * At this point we have discovered a file that is trying to
		 * grow a small fragment to a larger fragment. To save time,
		 * we allocate a full sized block, then free the unused portion.
		 * If the file continues to grow, the `ffs_fragextend' call
		 * above will be able to grow it in place without further
		 * copying. If aberrant programs cause disk fragmentation to
		 * grow within 2% of the free reserve, we choose to begin
		 * optimizing for space.
		 */
		request = fs->fs_bsize;
		if (fs->fs_cstotal.cs_nffree <
		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
			break;
		fs->fs_optim = FS_OPTSPACE;
		break;
	default:
		printf("dev = 0x%x, optim = %d, fs = %s\n",
		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
		panic("ffs_realloccg: bad optim");
		/* NOTREACHED */
	}
	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
	if (bno <= 0)
		goto nospace;

	(void) uvm_vnp_uncache(ITOV(ip));
	if (!DOINGSOFTDEP(ITOV(ip)))
		ffs_blkfree(ip, bprev, (long)osize);
	if (nsize < request)
		ffs_blkfree(ip, bno + numfrags(fs, nsize),
		    (long)(request - nsize));
	DIP_ADD(ip, blocks, btodb(nsize - osize));
	ip->i_flag |= IN_CHANGE | IN_UPDATE;
	if (bpp != NULL) {
		bp->b_blkno = fsbtodb(fs, bno);
#ifdef DIAGNOSTIC
		if (nsize > bp->b_bufsize)
			panic("ffs_realloccg: small buf 2");
#endif
		buf_adjcnt(bp, nsize);
		bp->b_flags |= B_DONE;
		memset(bp->b_data + osize, 0, nsize - osize);
		*bpp = bp;
	}
	if (blknop != NULL) {
		*blknop = bno;
	}
	return (0);

nospace:
	if (ratecheck(&fsfull_last, &fserr_interval)) {
		ffs_fserr(fs, cred->cr_uid, "file system full");
		uprintf("\n%s: write failed, file system is full\n",
		    fs->fs_fsmnt);
	}
	error = ENOSPC;

error:
	if (bp != NULL) {
		brelse(bp);
		bp = NULL;
	}

 	/*
	 * Restore user's disk quota because allocation failed.
	 */
	if (quota_updated != 0)
		(void)ufs_quota_free_blocks(ip, quota_updated, cred);

	return error;
}

/*
 * Allocate an inode in the file system.
 *
 * If allocating a directory, use ffs_dirpref to select the inode.
 * If allocating in a directory, the following hierarchy is followed:
 *   1) allocate the preferred inode.
 *   2) allocate an inode in the same cylinder group.
 *   3) quadratically rehash into other cylinder groups, until an
 *      available inode is located.
 * If no inode preference is given the following hierarchy is used
 * to allocate an inode:
 *   1) allocate an inode in cylinder group 0.
 *   2) quadratically rehash into other cylinder groups, until an
 *      available inode is located.
 */
int
ffs_inode_alloc(struct inode *pip, mode_t mode, struct ucred *cred,
    struct vnode **vpp)
{
	static struct timeval fsnoinodes_last;
	struct vnode *pvp = ITOV(pip);
	struct fs *fs;
	struct inode *ip;
	ufsino_t ino, ipref;
	u_int cg;
	int error;

	*vpp = NULL;
	fs = pip->i_fs;
	if (fs->fs_cstotal.cs_nifree == 0)
		goto noinodes;

	if ((mode & IFMT) == IFDIR)
		ipref = ffs_dirpref(pip);
	else
		ipref = pip->i_number;
	if (ipref >= fs->fs_ncg * fs->fs_ipg)
		ipref = 0;
	cg = ino_to_cg(fs, ipref);

	/*
	 * Track number of dirs created one after another
	 * in a same cg without intervening by files.
	 */
	if ((mode & IFMT) == IFDIR) {
		if (fs->fs_contigdirs[cg] < 255)
			fs->fs_contigdirs[cg]++;
	} else {
		if (fs->fs_contigdirs[cg] > 0)
			fs->fs_contigdirs[cg]--;
	}
	ino = (ufsino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
	if (ino == 0)
		goto noinodes;
	error = VFS_VGET(pvp->v_mount, ino, vpp);
	if (error) {
		ffs_inode_free(pip, ino, mode);
		return (error);
	}

	ip = VTOI(*vpp);

	if (DIP(ip, mode)) {
		printf("mode = 0%o, inum = %u, fs = %s\n",
		    DIP(ip, mode), ip->i_number, fs->fs_fsmnt);
		panic("ffs_valloc: dup alloc");
	}

	if (DIP(ip, blocks)) {
		printf("free inode %s/%d had %lld blocks\n",
		    fs->fs_fsmnt, ino, (long long)DIP(ip, blocks));
		DIP_ASSIGN(ip, blocks, 0);
	}

	DIP_ASSIGN(ip, flags, 0);

	/*
	 * Set up a new generation number for this inode.
	 * On wrap, we make sure to assign a number != 0 and != UINT_MAX
	 * (the original value).
	 */
	if (DIP(ip, gen) != 0)
		DIP_ADD(ip, gen, 1);
	while (DIP(ip, gen) == 0)
		DIP_ASSIGN(ip, gen, arc4random_uniform(UINT_MAX));

	return (0);

noinodes:
	if (ratecheck(&fsnoinodes_last, &fserr_interval)) {
		ffs_fserr(fs, cred->cr_uid, "out of inodes");
		uprintf("\n%s: create/symlink failed, no inodes free\n",
		    fs->fs_fsmnt);
	}
	return (ENOSPC);
}

/*
 * Find a cylinder group to place a directory.
 *
 * The policy implemented by this algorithm is to allocate a
 * directory inode in the same cylinder group as its parent
 * directory, but also to reserve space for its files inodes
 * and data. Restrict the number of directories which may be
 * allocated one after another in the same cylinder group
 * without intervening allocation of files.
 *
 * If we allocate a first level directory then force allocation
 * in another cylinder group.
 */
ufsino_t
ffs_dirpref(struct inode *pip)
{
	struct fs *fs;
	u_int	cg, prefcg;
	u_int	dirsize, cgsize;
	u_int	avgifree, avgbfree, avgndir, curdirsize;
	u_int	minifree, minbfree, maxndir;
	u_int	mincg, minndir;
	u_int	maxcontigdirs;

	fs = pip->i_fs;

	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;

	/*
	 * Force allocation in another cg if creating a first level dir.
	 */
	if (ITOV(pip)->v_flag & VROOT) {
		prefcg = arc4random_uniform(fs->fs_ncg);
		mincg = prefcg;
		minndir = fs->fs_ipg;
		for (cg = prefcg; cg < fs->fs_ncg; cg++)
			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
				mincg = cg;
				minndir = fs->fs_cs(fs, cg).cs_ndir;
			}
		for (cg = 0; cg < prefcg; cg++)
			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
				mincg = cg;
				minndir = fs->fs_cs(fs, cg).cs_ndir;
			}
		cg = mincg;
		goto end;
	} else
		prefcg = ino_to_cg(fs, pip->i_number);

	/*
	 * Count various limits which used for
	 * optimal allocation of a directory inode.
	 */
	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
	minifree = avgifree - (avgifree / 4);
	if (minifree < 1)
		minifree = 1;
	minbfree = avgbfree - (avgbfree / 4);
	if (minbfree < 1)
		minbfree = 1;

	cgsize = fs->fs_fsize * fs->fs_fpg;
	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
	if (dirsize < curdirsize)
		dirsize = curdirsize;
	if (dirsize <= 0)
		maxcontigdirs = 0;		/* dirsize overflowed */
	else
		maxcontigdirs = min(avgbfree * fs->fs_bsize  / dirsize, 255);
	if (fs->fs_avgfpdir > 0)
		maxcontigdirs = min(maxcontigdirs,
				    fs->fs_ipg / fs->fs_avgfpdir);
	if (maxcontigdirs == 0)
		maxcontigdirs = 1;

	/*
	 * Limit number of dirs in one cg and reserve space for
	 * regular files, but only if we have no deficit in
	 * inodes or space.
	 *
	 * We are trying to find a suitable cylinder group nearby
	 * our preferred cylinder group to place a new directory.
	 * We scan from our preferred cylinder group forward looking
	 * for a cylinder group that meets our criterion. If we get
	 * to the final cylinder group and do not find anything,
	 * we start scanning forwards from the beginning of the
	 * filesystem. While it might seem sensible to start scanning
	 * backwards or even to alternate looking forward and backward,
	 * this approach fails badly when the filesystem is nearly full.
	 * Specifically, we first search all the areas that have no space
	 * and finally try the one preceding that. We repeat this on
	 * every request and in the case of the final block end up
	 * searching the entire filesystem. By jumping to the front
	 * of the filesystem, our future forward searches always look
	 * in new cylinder groups so finds every possible block after
	 * one pass over the filesystem.
	 */
	for (cg = prefcg; cg < fs->fs_ncg; cg++)
		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
			if (fs->fs_contigdirs[cg] < maxcontigdirs)
				goto end;
		}
	for (cg = 0; cg < prefcg; cg++)
		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
			if (fs->fs_contigdirs[cg] < maxcontigdirs)
				goto end;
		}
	/*
	 * This is a backstop when we have deficit in space.
	 */
	for (cg = prefcg; cg < fs->fs_ncg; cg++)
		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
			goto end;
	for (cg = 0; cg < prefcg; cg++)
		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
			goto end;
end:
	return ((ufsino_t)(fs->fs_ipg * cg));
}

/*
 * Select the desired position for the next block in a file.  The file is
 * logically divided into sections. The first section is composed of the
 * direct blocks. Each additional section contains fs_maxbpg blocks.
 *
 * If no blocks have been allocated in the first section, the policy is to
 * request a block in the same cylinder group as the inode that describes
 * the file. The first indirect is allocated immediately following the last
 * direct block and the data blocks for the first indirect immediately
 * follow it.
 *
 * If no blocks have been allocated in any other section, the indirect
 * block(s) are allocated in the same cylinder group as its inode in an
 * area reserved immediately following the inode blocks. The policy for
 * the data blocks is to place them in a cylinder group with a greater than
 * average number of free blocks. An appropriate cylinder group is found
 * by using a rotor that sweeps the cylinder groups. When a new group of
 * blocks is needed, the sweep begins in the cylinder group following the
 * cylinder group from which the previous allocation was made. The sweep
 * continues until a cylinder group with greater than the average number
 * of free blocks is found. If the allocation is for the first block in an
 * indirect block, the information on the previous allocation is unavailable;
 * here a best guess is made based upon the logical block number being
 * allocated.
 */
int32_t
ffs1_blkpref(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
{
	struct fs *fs;
	u_int cg, inocg;
	u_int avgbfree, startcg;
	uint32_t pref;

	KASSERT(indx <= 0 || bap != NULL);
	fs = ip->i_fs;
	/*
	 * Allocation of indirect blocks is indicated by passing negative
	 * values in indx: -1 for single indirect, -2 for double indirect,
	 * -3 for triple indirect. As noted below, we attempt to allocate
	 * the first indirect inline with the file data. For all later
	 * indirect blocks, the data is often allocated in other cylinder
	 * groups. However to speed random file access and to speed up
	 * fsck, the filesystem reserves the first fs_metaspace blocks
	 * (typically half of fs_minfree) of the data area of each cylinder
	 * group to hold these later indirect blocks.
	 */
	inocg = ino_to_cg(fs, ip->i_number);
	if (indx < 0) {
		/*
		 * Our preference for indirect blocks is the zone at the
		 * beginning of the inode's cylinder group data area that
		 * we try to reserve for indirect blocks.
		 */
		pref = cgmeta(fs, inocg);
		/*
		 * If we are allocating the first indirect block, try to
		 * place it immediately following the last direct block.
		 */
		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
		    ip->i_din1->di_db[NDADDR - 1] != 0)
			pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
		return (pref);
	}
	/*
	 * If we are allocating the first data block in the first indirect
	 * block and the indirect has been allocated in the data block area,
	 * try to place it immediately following the indirect block.
	 */
	if (lbn == NDADDR) {
		pref = ip->i_din1->di_ib[0];
		if (pref != 0 && pref >= cgdata(fs, inocg) &&
		    pref < cgbase(fs, inocg + 1))
			return (pref + fs->fs_frag);
	}
	/*
	 * If we are the beginning of a file, or we have already allocated
	 * the maximum number of blocks per cylinder group, or we do not
	 * have a block allocated immediately preceding us, then we need
	 * to decide where to start allocating new blocks.
	 */
	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
		/*
		 * If we are allocating a directory data block, we want
		 * to place it in the metadata area.
		 */
		if ((DIP(ip, mode) & IFMT) == IFDIR)
			return (cgmeta(fs, inocg));
		/*
		 * Until we fill all the direct and all the first indirect's
		 * blocks, we try to allocate in the data area of the inode's
		 * cylinder group.
		 */
		if (lbn < NDADDR + NINDIR(fs))
			return (cgdata(fs, inocg));
		/*
		 * Find a cylinder with greater than average number of
		 * unused data blocks.
		 */
		if (indx == 0 || bap[indx - 1] == 0)
			startcg = inocg + lbn / fs->fs_maxbpg;
		else
			startcg = dtog(fs, bap[indx - 1]) + 1;
		startcg %= fs->fs_ncg;
		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
		for (cg = startcg; cg < fs->fs_ncg; cg++)
			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
				fs->fs_cgrotor = cg;
				return (cgdata(fs, cg));
			}
		for (cg = 0; cg <= startcg; cg++)
			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
				fs->fs_cgrotor = cg;
				return (cgdata(fs, cg));
			}
		return (0);
	}
	/*
	 * Otherwise, we just always try to lay things out contiguously.
	 */
	return (bap[indx - 1] + fs->fs_frag);
}

/*
 * Same as above, for UFS2.
 */
#ifdef FFS2
int64_t
ffs2_blkpref(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
{
	struct fs *fs;
	u_int cg, inocg;
	u_int avgbfree, startcg;
	uint64_t pref;

	KASSERT(indx <= 0 || bap != NULL);
	fs = ip->i_fs;
	/*
	 * Allocation of indirect blocks is indicated by passing negative
	 * values in indx: -1 for single indirect, -2 for double indirect,
	 * -3 for triple indirect. As noted below, we attempt to allocate
	 * the first indirect inline with the file data. For all later
	 * indirect blocks, the data is often allocated in other cylinder
	 * groups. However to speed random file access and to speed up
	 * fsck, the filesystem reserves the first fs_metaspace blocks
	 * (typically half of fs_minfree) of the data area of each cylinder
	 * group to hold these later indirect blocks.
	 */
	inocg = ino_to_cg(fs, ip->i_number);
	if (indx < 0) {
		/*
		 * Our preference for indirect blocks is the zone at the
		 * beginning of the inode's cylinder group data area that
		 * we try to reserve for indirect blocks.
		 */
		pref = cgmeta(fs, inocg);
		/*
		 * If we are allocating the first indirect block, try to
		 * place it immediately following the last direct block.
		 */
		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
		    ip->i_din2->di_db[NDADDR - 1] != 0)
			pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
		return (pref);
	}
	/*
	 * If we are allocating the first data block in the first indirect
	 * block and the indirect has been allocated in the data block area,
	 * try to place it immediately following the indirect block.
	 */
	if (lbn == NDADDR) {
		pref = ip->i_din2->di_ib[0];
		if (pref != 0 && pref >= cgdata(fs, inocg) &&
		    pref < cgbase(fs, inocg + 1))
			return (pref + fs->fs_frag);
	}
	/*
	 * If we are the beginning of a file, or we have already allocated
	 * the maximum number of blocks per cylinder group, or we do not
	 * have a block allocated immediately preceding us, then we need
	 * to decide where to start allocating new blocks.
	 */

	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
		/*
		 * If we are allocating a directory data block, we want
		 * to place it in the metadata area.
		 */
		if ((DIP(ip, mode) & IFMT) == IFDIR)
			return (cgmeta(fs, inocg));
		/*
		 * Until we fill all the direct and all the first indirect's
		 * blocks, we try to allocate in the data area of the inode's
		 * cylinder group.
		 */
		if (lbn < NDADDR + NINDIR(fs))
			return (cgdata(fs, inocg));
		/*
		 * Find a cylinder with greater than average number of
		 * unused data blocks.
		 */
		if (indx == 0 || bap[indx - 1] == 0)
			startcg = inocg + lbn / fs->fs_maxbpg;
		else
			startcg = dtog(fs, bap[indx - 1] + 1);

		startcg %= fs->fs_ncg;
		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;

		for (cg = startcg; cg < fs->fs_ncg; cg++)
			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
				return (cgbase(fs, cg) + fs->fs_frag);

		for (cg = 0; cg < startcg; cg++)
			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
				return (cgbase(fs, cg) + fs->fs_frag);

		return (0);
	}

	/*
	 * Otherwise, we just always try to lay things out contiguously.
	 */
	return (bap[indx - 1] + fs->fs_frag);
}
#endif /* FFS2 */

/*
 * Implement the cylinder overflow algorithm.
 *
 * The policy implemented by this algorithm is:
 *   1) allocate the block in its requested cylinder group.
 *   2) quadratically rehash on the cylinder group number.
 *   3) brute force search for a free block.
 */
daddr_t
ffs_hashalloc(struct inode *ip, u_int cg, daddr_t pref, int size,
    daddr_t (*allocator)(struct inode *, u_int, daddr_t, int))
{
	struct fs *fs;
	daddr_t result;
	u_int i, icg = cg;

	fs = ip->i_fs;
	/*
	 * 1: preferred cylinder group
	 */
	result = (*allocator)(ip, cg, pref, size);
	if (result)
		return (result);
	/*
	 * 2: quadratic rehash
	 */
	for (i = 1; i < fs->fs_ncg; i *= 2) {
		cg += i;
		if (cg >= fs->fs_ncg)
			cg -= fs->fs_ncg;
		result = (*allocator)(ip, cg, 0, size);
		if (result)
			return (result);
	}
	/*
	 * 3: brute force search
	 * Note that we start at i == 2, since 0 was checked initially,
	 * and 1 is always checked in the quadratic rehash.
	 */
	cg = (icg + 2) % fs->fs_ncg;
	for (i = 2; i < fs->fs_ncg; i++) {
		result = (*allocator)(ip, cg, 0, size);
		if (result)
			return (result);
		cg++;
		if (cg == fs->fs_ncg)
			cg = 0;
	}
	return (0);
}

struct buf *
ffs_cgread(struct fs *fs, struct inode *ip, u_int cg)
{
	struct buf *bp;

	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
	    (int)fs->fs_cgsize, &bp)) {
		brelse(bp);
		return (NULL);
	}

	if (!cg_chkmagic((struct cg *)bp->b_data)) {
		brelse(bp);
		return (NULL);
	}

	return bp;
}

/*
 * Determine whether a fragment can be extended.
 *
 * Check to see if the necessary fragments are available, and
 * if they are, allocate them.
 */
daddr_t
ffs_fragextend(struct inode *ip, u_int cg, daddr_t bprev, int osize, int nsize)
{
	struct fs *fs;
	struct cg *cgp;
	struct buf *bp;
	struct timespec now;
	daddr_t bno;
	int i, frags, bbase;

	fs = ip->i_fs;
	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
		return (0);
	frags = numfrags(fs, nsize);
	bbase = fragnum(fs, bprev);
	if (bbase > fragnum(fs, (bprev + frags - 1))) {
		/* cannot extend across a block boundary */
		return (0);
	}

	if (!(bp = ffs_cgread(fs, ip, cg)))
		return (0);

	cgp = (struct cg *)bp->b_data;
	nanotime(&now);
	cgp->cg_ffs2_time = now.tv_sec;
	cgp->cg_time = now.tv_sec;

	bno = dtogd(fs, bprev);
	for (i = numfrags(fs, osize); i < frags; i++)
		if (isclr(cg_blksfree(cgp), bno + i)) {
			brelse(bp);
			return (0);
		}
	/*
	 * the current fragment can be extended
	 * deduct the count on fragment being extended into
	 * increase the count on the remaining fragment (if any)
	 * allocate the extended piece
	 */
	for (i = frags; i < fs->fs_frag - bbase; i++)
		if (isclr(cg_blksfree(cgp), bno + i))
			break;
	cgp->cg_frsum[i - numfrags(fs, osize)]--;
	if (i != frags)
		cgp->cg_frsum[i - frags]++;
	for (i = numfrags(fs, osize); i < frags; i++) {
		clrbit(cg_blksfree(cgp), bno + i);
		cgp->cg_cs.cs_nffree--;
		fs->fs_cstotal.cs_nffree--;
		fs->fs_cs(fs, cg).cs_nffree--;
	}
	fs->fs_fmod = 1;
	if (DOINGSOFTDEP(ITOV(ip)))
		softdep_setup_blkmapdep(bp, fs, bprev);

	bdwrite(bp);
	return (bprev);
}

/*
 * Determine whether a block can be allocated.
 *
 * Check to see if a block of the appropriate size is available,
 * and if it is, allocate it.
 */
daddr_t
ffs_alloccg(struct inode *ip, u_int cg, daddr_t bpref, int size)
{
	struct fs *fs;
	struct cg *cgp;
	struct buf *bp;
	struct timespec now;
	daddr_t bno, blkno;
	int i, frags, allocsiz;

	fs = ip->i_fs;
	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
		return (0);

	if (!(bp = ffs_cgread(fs, ip, cg)))
		return (0);

	cgp = (struct cg *)bp->b_data;
	if (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize) {
		brelse(bp);
		return (0);
	}

	nanotime(&now);
	cgp->cg_ffs2_time = now.tv_sec;
	cgp->cg_time = now.tv_sec;

	if (size == fs->fs_bsize) {
		/* allocate and return a complete data block */
		bno = ffs_alloccgblk(ip, bp, bpref);
		bdwrite(bp);
		return (bno);
	}
	/*
	 * check to see if any fragments are already available
	 * allocsiz is the size which will be allocated, hacking
	 * it down to a smaller size if necessary
	 */
	frags = numfrags(fs, size);
	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
		if (cgp->cg_frsum[allocsiz] != 0)
			break;
	if (allocsiz == fs->fs_frag) {
		/*
		 * no fragments were available, so a block will be
		 * allocated, and hacked up
		 */
		if (cgp->cg_cs.cs_nbfree == 0) {
			brelse(bp);
			return (0);
		}
		bno = ffs_alloccgblk(ip, bp, bpref);
		bpref = dtogd(fs, bno);
		for (i = frags; i < fs->fs_frag; i++)
			setbit(cg_blksfree(cgp), bpref + i);
		i = fs->fs_frag - frags;
		cgp->cg_cs.cs_nffree += i;
		fs->fs_cstotal.cs_nffree += i;
		fs->fs_cs(fs, cg).cs_nffree += i;
		fs->fs_fmod = 1;
		cgp->cg_frsum[i]++;
		bdwrite(bp);
		return (bno);
	}
	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
	if (bno < 0) {
		brelse(bp);
		return (0);
	}

	for (i = 0; i < frags; i++)
		clrbit(cg_blksfree(cgp), bno + i);
	cgp->cg_cs.cs_nffree -= frags;
	fs->fs_cstotal.cs_nffree -= frags;
	fs->fs_cs(fs, cg).cs_nffree -= frags;
	fs->fs_fmod = 1;
	cgp->cg_frsum[allocsiz]--;
	if (frags != allocsiz)
		cgp->cg_frsum[allocsiz - frags]++;

	blkno = cgbase(fs, cg) + bno;
	if (DOINGSOFTDEP(ITOV(ip)))
		softdep_setup_blkmapdep(bp, fs, blkno);
	bdwrite(bp);
	return (blkno);
}

/*
 * Allocate a block in a cylinder group.
 * Note that this routine only allocates fs_bsize blocks; these
 * blocks may be fragmented by the routine that allocates them.
 */
daddr_t
ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
{
	struct fs *fs;
	struct cg *cgp;
	daddr_t bno, blkno;
	u_int8_t *blksfree;
	int cylno, cgbpref;

	fs = ip->i_fs;
	cgp = (struct cg *) bp->b_data;
	blksfree = cg_blksfree(cgp);

	if (bpref == 0) {
		bpref = cgp->cg_rotor;
	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
		/* map bpref to correct zone in this cg */
		if (bpref < cgdata(fs, cgbpref))
			bpref = cgmeta(fs, cgp->cg_cgx);
		else
			bpref = cgdata(fs, cgp->cg_cgx);
	}
	/*
	 * If the requested block is available, use it.
	 */
	bno = dtogd(fs, blknum(fs, bpref));
	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
		goto gotit;
	/*
	 * Take the next available block in this cylinder group.
	 */
	bno = ffs_mapsearch(fs, cgp, bpref, (int) fs->fs_frag);
	if (bno < 0)
		return (0);

	/* Update cg_rotor only if allocated from the data zone */
	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
		cgp->cg_rotor = bno;

gotit:
	blkno = fragstoblks(fs, bno);
	ffs_clrblock(fs, blksfree, blkno);
	ffs_clusteracct(fs, cgp, blkno, -1);
	cgp->cg_cs.cs_nbfree--;
	fs->fs_cstotal.cs_nbfree--;
	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;

	if (fs->fs_magic != FS_UFS2_MAGIC) {
		cylno = cbtocylno(fs, bno);
		cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
		cg_blktot(cgp)[cylno]--;
	}

	fs->fs_fmod = 1;
	blkno = cgbase(fs, cgp->cg_cgx) + bno;

	if (DOINGSOFTDEP(ITOV(ip)))
		softdep_setup_blkmapdep(bp, fs, blkno);

	return (blkno);
}

/* inode allocation routine */
daddr_t
ffs_nodealloccg(struct inode *ip, u_int cg, daddr_t ipref, int mode)
{
	struct fs *fs;
	struct cg *cgp;
	struct buf *bp;
	struct timespec now;
	int start, len, loc, map, i;
#ifdef FFS2
	struct buf *ibp = NULL;
	struct ufs2_dinode *dp2;
#endif

	/*
	 * For efficiency, before looking at the bitmaps for free inodes,
	 * check the counters kept in the superblock cylinder group summaries,
	 * and in the cylinder group itself.
	 */
	fs = ip->i_fs;
	if (fs->fs_cs(fs, cg).cs_nifree == 0)
		return (0);

	if (!(bp = ffs_cgread(fs, ip, cg)))
		return (0);

	cgp = (struct cg *)bp->b_data;
	if (cgp->cg_cs.cs_nifree == 0) {
		brelse(bp);
		return (0);
	}

	/*
	 * We are committed to the allocation from now on, so update the time
	 * on the cylinder group.
	 */
	nanotime(&now);
	cgp->cg_ffs2_time = now.tv_sec;
	cgp->cg_time = now.tv_sec;

	/*
	 * If there was a preferred location for the new inode, try to find it.
	 */
	if (ipref) {
		ipref %= fs->fs_ipg;
		if (isclr(cg_inosused(cgp), ipref))
			goto gotit; /* inode is free, grab it. */
	}

	/*
	 * Otherwise, look for the next available inode, starting at cg_irotor
	 * (the position in the bitmap of the last used inode).
	 */
	start = cgp->cg_irotor / NBBY;
	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
	if (loc == 0) {
		/*
		 * If we didn't find a free inode in the upper part of the
		 * bitmap (from cg_irotor to the end), then look at the bottom
		 * part (from 0 to cg_irotor).
		 */
		len = start + 1;
		start = 0;
		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
		if (loc == 0) {
			/*
			 * If we failed again, then either the bitmap or the
			 * counters kept for the cylinder group are wrong.
			 */
			printf("cg = %d, irotor = %d, fs = %s\n",
			    cg, cgp->cg_irotor, fs->fs_fsmnt);
			panic("ffs_nodealloccg: map corrupted");
			/* NOTREACHED */
		}
	}

	/* skpc() returns the position relative to the end */
	i = start + len - loc;

	/*
	 * Okay, so now in 'i' we have the location in the bitmap of a byte
	 * holding a free inode. Find the corresponding bit and set it,
	 * updating cg_irotor as well, accordingly.
	 */
	map = cg_inosused(cgp)[i];
	ipref = i * NBBY;
	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
		if ((map & i) == 0) {
			cgp->cg_irotor = ipref;
			goto gotit;
		}
	}

	printf("fs = %s\n", fs->fs_fsmnt);
	panic("ffs_nodealloccg: block not in map");
	/* NOTREACHED */

gotit:

#ifdef FFS2
	/*
	 * For FFS2, check if all inodes in this cylinder group have been used
	 * at least once. If they haven't, and we are allocating an inode past
	 * the last allocated block of inodes, read in a block and initialize
	 * all inodes in it.
	 */
	if (fs->fs_magic == FS_UFS2_MAGIC &&
	    /* Inode is beyond last initialized block of inodes? */
	    ipref + INOPB(fs) > cgp->cg_initediblk &&
	    /* Has any inode not been used at least once? */
	    cgp->cg_initediblk < cgp->cg_ffs2_niblk) {

                ibp = getblk(ip->i_devvp, fsbtodb(fs,
                    ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
                    (int)fs->fs_bsize, 0, INFSLP);

                memset(ibp->b_data, 0, fs->fs_bsize);
                dp2 = (struct ufs2_dinode *)(ibp->b_data);

		/* Give each inode a generation number */
                for (i = 0; i < INOPB(fs); i++) {
                        while (dp2->di_gen == 0)
				dp2->di_gen = arc4random();
                        dp2++;
                }

		/* Update the counter of initialized inodes */
                cgp->cg_initediblk += INOPB(fs);
        }
#endif /* FFS2 */

	if (DOINGSOFTDEP(ITOV(ip)))
		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);

	setbit(cg_inosused(cgp), ipref);

	/* Update the counters we keep on free inodes */
	cgp->cg_cs.cs_nifree--;
	fs->fs_cstotal.cs_nifree--;
	fs->fs_cs(fs, cg).cs_nifree--;
	fs->fs_fmod = 1; /* file system was modified */

	/* Update the counters we keep on allocated directories */
	if ((mode & IFMT) == IFDIR) {
		cgp->cg_cs.cs_ndir++;
		fs->fs_cstotal.cs_ndir++;
		fs->fs_cs(fs, cg).cs_ndir++;
	}

	bdwrite(bp);

#ifdef FFS2
	if (ibp != NULL)
		bawrite(ibp);
#endif

	/* Return the allocated inode number */
	return (cg * fs->fs_ipg + ipref);
}

/*
 * Free a block or fragment.
 *
 * The specified block or fragment is placed back in the
 * free map. If a fragment is deallocated, a possible
 * block reassembly is checked.
 */
void
ffs_blkfree(struct inode *ip, daddr_t bno, long size)
{
	struct fs *fs;
	struct cg *cgp;
	struct buf *bp;
	struct timespec now;
	daddr_t blkno;
	int i, cg, blk, frags, bbase;

	fs = ip->i_fs;
	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
		panic("ffs_blkfree: bad size");
	}
	cg = dtog(fs, bno);
	if ((u_int)bno >= fs->fs_size) {
		printf("bad block %lld, ino %u\n", (long long)bno,
		    ip->i_number);
		ffs_fserr(fs, DIP(ip, uid), "bad block");
		return;
	}
	if (!(bp = ffs_cgread(fs, ip, cg)))
		return;

	cgp = (struct cg *)bp->b_data;
	nanotime(&now);
	cgp->cg_ffs2_time = now.tv_sec;
	cgp->cg_time = now.tv_sec;

	bno = dtogd(fs, bno);
	if (size == fs->fs_bsize) {
		blkno = fragstoblks(fs, bno);
		if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) {
			printf("dev = 0x%x, block = %lld, fs = %s\n",
			    ip->i_dev, (long long)bno, fs->fs_fsmnt);
			panic("ffs_blkfree: freeing free block");
		}
		ffs_setblock(fs, cg_blksfree(cgp), blkno);
		ffs_clusteracct(fs, cgp, blkno, 1);
		cgp->cg_cs.cs_nbfree++;
		fs->fs_cstotal.cs_nbfree++;
		fs->fs_cs(fs, cg).cs_nbfree++;

		if (fs->fs_magic != FS_UFS2_MAGIC) {
			i = cbtocylno(fs, bno);
			cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
			cg_blktot(cgp)[i]++;
		}

	} else {
		bbase = bno - fragnum(fs, bno);
		/*
		 * decrement the counts associated with the old frags
		 */
		blk = blkmap(fs, cg_blksfree(cgp), bbase);
		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
		/*
		 * deallocate the fragment
		 */
		frags = numfrags(fs, size);
		for (i = 0; i < frags; i++) {
			if (isset(cg_blksfree(cgp), bno + i)) {
				printf("dev = 0x%x, block = %lld, fs = %s\n",
				    ip->i_dev, (long long)(bno + i),
				    fs->fs_fsmnt);
				panic("ffs_blkfree: freeing free frag");
			}
			setbit(cg_blksfree(cgp), bno + i);
		}
		cgp->cg_cs.cs_nffree += i;
		fs->fs_cstotal.cs_nffree += i;
		fs->fs_cs(fs, cg).cs_nffree += i;
		/*
		 * add back in counts associated with the new frags
		 */
		blk = blkmap(fs, cg_blksfree(cgp), bbase);
		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
		/*
		 * if a complete block has been reassembled, account for it
		 */
		blkno = fragstoblks(fs, bbase);
		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
			cgp->cg_cs.cs_nffree -= fs->fs_frag;
			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
			ffs_clusteracct(fs, cgp, blkno, 1);
			cgp->cg_cs.cs_nbfree++;
			fs->fs_cstotal.cs_nbfree++;
			fs->fs_cs(fs, cg).cs_nbfree++;

			if (fs->fs_magic != FS_UFS2_MAGIC) {
				i = cbtocylno(fs, bbase);
				cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
				cg_blktot(cgp)[i]++;
			}
		}
	}
	fs->fs_fmod = 1;
	bdwrite(bp);
}

int
ffs_inode_free(struct inode *pip, ufsino_t ino, mode_t mode)
{
	struct vnode *pvp = ITOV(pip);

	if (DOINGSOFTDEP(pvp)) {
		softdep_freefile(pvp, ino, mode);
		return (0);
	}

	return (ffs_freefile(pip, ino, mode));
}

/*
 * Do the actual free operation.
 * The specified inode is placed back in the free map.
 */
int
ffs_freefile(struct inode *pip, ufsino_t ino, mode_t mode)
{
	struct fs *fs;
	struct cg *cgp;
	struct buf *bp;
	struct timespec now;
	u_int cg;

	fs = pip->i_fs;
	if (ino >= fs->fs_ipg * fs->fs_ncg)
		panic("ffs_freefile: range: dev = 0x%x, ino = %d, fs = %s",
		    pip->i_dev, ino, fs->fs_fsmnt);

	cg = ino_to_cg(fs, ino);
	if (!(bp = ffs_cgread(fs, pip, cg)))
		return (0);

	cgp = (struct cg *)bp->b_data;
	nanotime(&now);
	cgp->cg_ffs2_time = now.tv_sec;
	cgp->cg_time = now.tv_sec;

	ino %= fs->fs_ipg;
	if (isclr(cg_inosused(cgp), ino)) {
		printf("dev = 0x%x, ino = %u, fs = %s\n",
		    pip->i_dev, ino, fs->fs_fsmnt);
		if (fs->fs_ronly == 0)
			panic("ffs_freefile: freeing free inode");
	}
	clrbit(cg_inosused(cgp), ino);
	if (ino < cgp->cg_irotor)
		cgp->cg_irotor = ino;
	cgp->cg_cs.cs_nifree++;
	fs->fs_cstotal.cs_nifree++;
	fs->fs_cs(fs, cg).cs_nifree++;
	if ((mode & IFMT) == IFDIR) {
		cgp->cg_cs.cs_ndir--;
		fs->fs_cstotal.cs_ndir--;
		fs->fs_cs(fs, cg).cs_ndir--;
	}
	fs->fs_fmod = 1;
	bdwrite(bp);
	return (0);
}


/*
 * Find a block of the specified size in the specified cylinder group.
 *
 * It is a panic if a request is made to find a block if none are
 * available.
 */
daddr_t
ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
{
	daddr_t bno;
	int start, len, loc, i;
	int blk, field, subfield, pos;

	/*
	 * find the fragment by searching through the free block
	 * map for an appropriate bit pattern
	 */
	if (bpref)
		start = dtogd(fs, bpref) / NBBY;
	else
		start = cgp->cg_frotor / NBBY;
	len = howmany(fs->fs_fpg, NBBY) - start;
	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
		(u_char *)fragtbl[fs->fs_frag],
		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
	if (loc == 0) {
		len = start + 1;
		start = 0;
		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
			(u_char *)fragtbl[fs->fs_frag],
			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
		if (loc == 0) {
			printf("start = %d, len = %d, fs = %s\n",
			    start, len, fs->fs_fsmnt);
			panic("ffs_alloccg: map corrupted");
			/* NOTREACHED */
		}
	}
	bno = (start + len - loc) * NBBY;
	cgp->cg_frotor = bno;
	/*
	 * found the byte in the map
	 * sift through the bits to find the selected frag
	 */
	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
		blk = blkmap(fs, cg_blksfree(cgp), bno);
		blk <<= 1;
		field = around[allocsiz];
		subfield = inside[allocsiz];
		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
			if ((blk & field) == subfield)
				return (bno + pos);
			field <<= 1;
			subfield <<= 1;
		}
	}
	printf("bno = %lld, fs = %s\n", (long long)bno, fs->fs_fsmnt);
	panic("ffs_alloccg: block not in map");
	return (-1);
}

/*
 * Update the cluster map because of an allocation or free.
 *
 * Cnt == 1 means free; cnt == -1 means allocating.
 */
void
ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt)
{
	int32_t *sump;
	int32_t *lp;
	u_char *freemapp, *mapp;
	int i, start, end, forw, back, map, bit;

	if (fs->fs_contigsumsize <= 0)
		return;
	freemapp = cg_clustersfree(cgp);
	sump = cg_clustersum(cgp);
	/*
	 * Allocate or clear the actual block.
	 */
	if (cnt > 0)
		setbit(freemapp, blkno);
	else
		clrbit(freemapp, blkno);
	/*
	 * Find the size of the cluster going forward.
	 */
	start = blkno + 1;
	end = start + fs->fs_contigsumsize;
	if (end >= cgp->cg_nclusterblks)
		end = cgp->cg_nclusterblks;
	mapp = &freemapp[start / NBBY];
	map = *mapp++;
	bit = 1 << (start % NBBY);
	for (i = start; i < end; i++) {
		if ((map & bit) == 0)
			break;
		if ((i & (NBBY - 1)) != (NBBY - 1)) {
			bit <<= 1;
		} else {
			map = *mapp++;
			bit = 1;
		}
	}
	forw = i - start;
	/*
	 * Find the size of the cluster going backward.
	 */
	start = blkno - 1;
	end = start - fs->fs_contigsumsize;
	if (end < 0)
		end = -1;
	mapp = &freemapp[start / NBBY];
	map = *mapp--;
	bit = 1 << (start % NBBY);
	for (i = start; i > end; i--) {
		if ((map & bit) == 0)
			break;
		if ((i & (NBBY - 1)) != 0) {
			bit >>= 1;
		} else {
			map = *mapp--;
			bit = 1 << (NBBY - 1);
		}
	}
	back = start - i;
	/*
	 * Account for old cluster and the possibly new forward and
	 * back clusters.
	 */
	i = back + forw + 1;
	if (i > fs->fs_contigsumsize)
		i = fs->fs_contigsumsize;
	sump[i] += cnt;
	if (back > 0)
		sump[back] -= cnt;
	if (forw > 0)
		sump[forw] -= cnt;
	/*
	 * Update cluster summary information.
	 */
	lp = &sump[fs->fs_contigsumsize];
	for (i = fs->fs_contigsumsize; i > 0; i--)
		if (*lp-- > 0)
			break;
	fs->fs_maxcluster[cgp->cg_cgx] = i;
}