summaryrefslogtreecommitdiff
path: root/sys/uvm/uvm_addr.c
blob: af33700273bdfd1ac42a844af12691879b194f5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
/*	$OpenBSD: uvm_addr.c,v 1.23 2017/01/17 17:19:21 stefan Exp $	*/

/*
 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/* #define DEBUG */

#include <sys/param.h>
#include <uvm/uvm.h>
#include <uvm/uvm_addr.h>
#include <sys/pool.h>

/* Max gap between hint allocations. */
#define UADDR_HINT_MAXGAP	(4 * PAGE_SIZE)
/* Number of pivots in pivot allocator. */
#define NUM_PIVOTS		16
/*
 * Max number (inclusive) of pages the pivot allocator
 * will place between allocations.
 *
 * The uaddr_pivot_random() function attempts to bias towards
 * small space between allocations, so putting a large number here is fine.
 */
#define PIVOT_RND		8
/*
 * Number of allocations that a pivot can supply before expiring.
 * When a pivot expires, a new pivot has to be found.
 *
 * Must be at least 1.
 */
#define PIVOT_EXPIRE		1024


/* Pool with uvm_addr_state structures. */
struct pool uaddr_pool;
struct pool uaddr_bestfit_pool;
struct pool uaddr_pivot_pool;
struct pool uaddr_rnd_pool;

/* uvm_addr state for bestfit selector. */
struct uaddr_bestfit_state {
	struct uvm_addr_state		 ubf_uaddr;
	struct uaddr_free_rbtree	 ubf_free;
};

/* uvm_addr state for rnd selector. */
struct uaddr_rnd_state {
	struct uvm_addr_state		 ur_uaddr;
#if 0
	TAILQ_HEAD(, vm_map_entry)	 ur_free;
#endif
};

/* Definition of a pivot in pivot selector. */
struct uaddr_pivot {
	vaddr_t				 addr;	/* End of prev. allocation. */
	int				 expire;/* Best before date. */
	int				 dir;	/* Direction. */
	struct vm_map_entry		*entry; /* Will contain next alloc. */
};
/* uvm_addr state for pivot selector. */
struct uaddr_pivot_state {
	struct uvm_addr_state		 up_uaddr;

	/* Free space tree, for fast pivot selection. */
	struct uaddr_free_rbtree	 up_free;

	/* List of pivots. The pointers point to after the last allocation. */
	struct uaddr_pivot		 up_pivots[NUM_PIVOTS];
};

/*
 * Free space comparison.
 * Compares smaller free-space before larger free-space.
 */
static inline int
uvm_mapent_fspace_cmp(const struct vm_map_entry *e1,
    const struct vm_map_entry *e2)
{
	if (e1->fspace != e2->fspace)
		return (e1->fspace < e2->fspace ? -1 : 1);
	return (e1->start < e2->start ? -1 : e1->start > e2->start);
}

/* Forward declaration (see below). */
extern const struct uvm_addr_functions uaddr_kernel_functions;
struct uvm_addr_state uaddr_kbootstrap;

/* Support functions. */
#ifndef SMALL_KERNEL
struct vm_map_entry	*uvm_addr_entrybyspace(struct uaddr_free_rbtree*,
			    vsize_t);
#endif /* !SMALL_KERNEL */
void			 uaddr_kinsert(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry *);
void			 uaddr_kremove(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry *);
void			 uaddr_kbootstrapdestroy(struct uvm_addr_state *);

void			 uaddr_destroy(struct uvm_addr_state *);
void			 uaddr_kbootstrap_destroy(struct uvm_addr_state *);
void			 uaddr_rnd_destroy(struct uvm_addr_state *);
void			 uaddr_bestfit_destroy(struct uvm_addr_state *);
void			 uaddr_pivot_destroy(struct uvm_addr_state *);

#if 0
int			 uaddr_lin_select(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry **,
			    vaddr_t *, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
			    vaddr_t);
#endif
int			 uaddr_kbootstrap_select(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry **,
			    vaddr_t *, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
			    vaddr_t);
int			 uaddr_rnd_select(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry **,
			    vaddr_t *, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
			    vaddr_t);
int			 uaddr_bestfit_select(struct vm_map *,
			    struct uvm_addr_state*, struct vm_map_entry **,
			    vaddr_t *, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
			    vaddr_t);
#ifndef SMALL_KERNEL
int			 uaddr_pivot_select(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry **,
			    vaddr_t *, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
			    vaddr_t);
int			 uaddr_stack_brk_select(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry **,
			    vaddr_t *, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
			    vaddr_t);
#endif /* !SMALL_KERNEL */

void			 uaddr_rnd_insert(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry *);
void			 uaddr_rnd_remove(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry *);
void			 uaddr_bestfit_insert(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry *);
void			 uaddr_bestfit_remove(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry *);
void			 uaddr_pivot_insert(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry *);
void			 uaddr_pivot_remove(struct vm_map *,
			    struct uvm_addr_state *, struct vm_map_entry *);

#ifndef SMALL_KERNEL
vsize_t			 uaddr_pivot_random(void);
int			 uaddr_pivot_newpivot(struct vm_map *,
			    struct uaddr_pivot_state *, struct uaddr_pivot *,
			    struct vm_map_entry **, vaddr_t *,
			    vsize_t, vaddr_t, vaddr_t, vsize_t, vsize_t);
#endif /* !SMALL_KERNEL */

#if defined(DEBUG) || defined(DDB)
void			 uaddr_pivot_print(struct uvm_addr_state *, boolean_t,
			    int (*)(const char *, ...));
#if 0
void			 uaddr_rnd_print(struct uvm_addr_state *, boolean_t,
			    int (*)(const char *, ...));
#endif
#endif /* DEBUG || DDB */


#ifndef SMALL_KERNEL
/*
 * Find smallest entry in tree that will fit sz bytes.
 */
struct vm_map_entry *
uvm_addr_entrybyspace(struct uaddr_free_rbtree *free, vsize_t sz)
{
	struct vm_map_entry	*tmp, *res;

	tmp = RBT_ROOT(uaddr_free_rbtree, free);
	res = NULL;
	while (tmp) {
		if (tmp->fspace >= sz) {
			res = tmp;
			tmp = RBT_LEFT(uaddr_free_rbtree, tmp);
		} else if (tmp->fspace < sz)
			tmp = RBT_RIGHT(uaddr_free_rbtree, tmp);
	}
	return res;
}
#endif /* !SMALL_KERNEL */

static __inline vaddr_t
uvm_addr_align_forward(vaddr_t addr, vaddr_t align, vaddr_t offset)
{
	vaddr_t adjusted;

	KASSERT(offset < align || (align == 0 && offset == 0));
	KASSERT((align & (align - 1)) == 0);
	KASSERT((offset & PAGE_MASK) == 0);

	align = MAX(align, PAGE_SIZE);
	adjusted = addr & ~(align - 1);
	adjusted += offset;
	return (adjusted < addr ? adjusted + align : adjusted);
}

static __inline vaddr_t
uvm_addr_align_backward(vaddr_t addr, vaddr_t align, vaddr_t offset)
{
	vaddr_t adjusted;

	KASSERT(offset < align || (align == 0 && offset == 0));
	KASSERT((align & (align - 1)) == 0);
	KASSERT((offset & PAGE_MASK) == 0);

	align = MAX(align, PAGE_SIZE);
	adjusted = addr & ~(align - 1);
	adjusted += offset;
	return (adjusted > addr ? adjusted - align : adjusted);
}

/*
 * Try to fit the requested space into the entry.
 */
int
uvm_addr_fitspace(vaddr_t *min_result, vaddr_t *max_result,
    vaddr_t low_addr, vaddr_t high_addr, vsize_t sz,
    vaddr_t align, vaddr_t offset,
    vsize_t before_gap, vsize_t after_gap)
{
	vaddr_t	tmp;
	vsize_t	fspace;

	if (low_addr > high_addr)
		return ENOMEM;
	fspace = high_addr - low_addr;
	if (fspace < before_gap + after_gap)
		return ENOMEM;
	if (fspace - before_gap - after_gap < sz)
		return ENOMEM;

	/* Calculate lowest address. */
	low_addr += before_gap;
	low_addr = uvm_addr_align_forward(tmp = low_addr, align, offset);
	if (low_addr < tmp)	/* Overflow during alignment. */
		return ENOMEM;
	if (high_addr - after_gap - sz < low_addr)
		return ENOMEM;

	/* Calculate highest address. */
	high_addr -= after_gap + sz;
	high_addr = uvm_addr_align_backward(tmp = high_addr, align, offset);
	if (high_addr > tmp)	/* Overflow during alignment. */
		return ENOMEM;
	if (low_addr > high_addr)
		return ENOMEM;

	*min_result = low_addr;
	*max_result = high_addr;
	return 0;
}


/*
 * Initialize uvm_addr.
 */
void
uvm_addr_init(void)
{
	pool_init(&uaddr_pool, sizeof(struct uvm_addr_state), 0,
	    IPL_VM, PR_WAITOK, "uaddr", NULL);
	pool_init(&uaddr_bestfit_pool, sizeof(struct uaddr_bestfit_state), 0,
	    IPL_VM, PR_WAITOK, "uaddrbest", NULL);
	pool_init(&uaddr_pivot_pool, sizeof(struct uaddr_pivot_state), 0,
	    IPL_VM, PR_WAITOK, "uaddrpivot", NULL);
	pool_init(&uaddr_rnd_pool, sizeof(struct uaddr_rnd_state), 0,
	    IPL_VM, PR_WAITOK, "uaddrrnd", NULL);

	uaddr_kbootstrap.uaddr_minaddr = PAGE_SIZE;
	uaddr_kbootstrap.uaddr_maxaddr = -(vaddr_t)PAGE_SIZE;
	uaddr_kbootstrap.uaddr_functions = &uaddr_kernel_functions;
}

/*
 * Invoke destructor function of uaddr.
 */
void
uvm_addr_destroy(struct uvm_addr_state *uaddr)
{
	if (uaddr)
		(*uaddr->uaddr_functions->uaddr_destroy)(uaddr);
}

/*
 * Move address forward to satisfy align, offset.
 */
vaddr_t
uvm_addr_align(vaddr_t addr, vaddr_t align, vaddr_t offset)
{
	vaddr_t result = (addr & ~(align - 1)) + offset;
	if (result < addr)
		result += align;
	return result;
}

/*
 * Move address backwards to satisfy align, offset.
 */
vaddr_t
uvm_addr_align_back(vaddr_t addr, vaddr_t align, vaddr_t offset)
{
	vaddr_t result = (addr & ~(align - 1)) + offset;
	if (result > addr)
		result -= align;
	return result;
}

/*
 * Directional first fit.
 *
 * Do a linear search for free space, starting at addr in entry.
 * direction ==  1: search forward
 * direction == -1: search backward
 *
 * Output: low <= addr <= high and entry will contain addr.
 * 0 will be returned if no space is available.
 *
 * gap describes the space that must appear between the preceding entry.
 */
int
uvm_addr_linsearch(struct vm_map *map, struct uvm_addr_state *uaddr,
    struct vm_map_entry **entry_out, vaddr_t *addr_out,
    vaddr_t hint, vsize_t sz, vaddr_t align, vaddr_t offset,
    int direction, vaddr_t low, vaddr_t high,
    vsize_t before_gap, vsize_t after_gap)
{
	struct vm_map_entry	*entry;
	vaddr_t			 low_addr, high_addr;

	KASSERT(entry_out != NULL && addr_out != NULL);
	KASSERT(direction == -1 || direction == 1);
	KASSERT((hint & PAGE_MASK) == 0 && (high & PAGE_MASK) == 0 &&
	    (low & PAGE_MASK) == 0 &&
	    (before_gap & PAGE_MASK) == 0 && (after_gap & PAGE_MASK) == 0);
	KASSERT(high + sz > high); /* Check for overflow. */

	/* Hint magic. */
	if (hint == 0)
		hint = (direction == 1 ? low : high);
	else if (hint > high) {
		if (direction != -1)
			return ENOMEM;
		hint = high;
	} else if (hint < low) {
		if (direction != 1)
			return ENOMEM;
		hint = low;
	}

	for (entry = uvm_map_entrybyaddr(&map->addr,
	    hint - (direction == -1 ? 1 : 0)); entry != NULL;
	    entry = (direction == 1 ?
	    RBT_NEXT(uvm_map_addr, entry) :
	    RBT_PREV(uvm_map_addr, entry))) {
		if (VMMAP_FREE_START(entry) > high ||
		    VMMAP_FREE_END(entry) < low) {
			break;
		}

		if (uvm_addr_fitspace(&low_addr, &high_addr,
		    MAX(low, VMMAP_FREE_START(entry)),
		    MIN(high, VMMAP_FREE_END(entry)),
		    sz, align, offset, before_gap, after_gap) == 0) {
			*entry_out = entry;
			if (hint >= low_addr && hint <= high_addr) {
				*addr_out = hint;
			} else {
				*addr_out = (direction == 1 ?
				    low_addr : high_addr);
			}
			return 0;
		}
	}

	return ENOMEM;
}

/*
 * Invoke address selector of uaddr.
 * uaddr may be NULL, in which case the algorithm will fail with ENOMEM.
 *
 * Will invoke uvm_addr_isavail to fill in last_out.
 */
int
uvm_addr_invoke(struct vm_map *map, struct uvm_addr_state *uaddr,
    struct vm_map_entry **entry_out, struct vm_map_entry **last_out,
    vaddr_t *addr_out,
    vsize_t sz, vaddr_t align, vaddr_t offset, vm_prot_t prot, vaddr_t hint)
{
	int error;

	if (uaddr == NULL)
		return ENOMEM;

	hint &= ~((vaddr_t)PAGE_MASK);
	if (hint != 0 &&
	    !(hint >= uaddr->uaddr_minaddr && hint < uaddr->uaddr_maxaddr))
		return ENOMEM;

	error = (*uaddr->uaddr_functions->uaddr_select)(map, uaddr,
	    entry_out, addr_out, sz, align, offset, prot, hint);

	if (error == 0) {
		KASSERT(*entry_out != NULL);
		*last_out = NULL;
		if (!uvm_map_isavail(map, uaddr, entry_out, last_out,
		    *addr_out, sz)) {
			panic("uvm_addr_invoke: address selector %p "
			    "(%s 0x%lx-0x%lx) "
			    "returned unavailable address 0x%lx sz 0x%lx",
			    uaddr, uaddr->uaddr_functions->uaddr_name,
			    uaddr->uaddr_minaddr, uaddr->uaddr_maxaddr,
			    *addr_out, sz);
		}
	}

	return error;
}

#if defined(DEBUG) || defined(DDB)
void
uvm_addr_print(struct uvm_addr_state *uaddr, const char *slot, boolean_t full,
    int (*pr)(const char *, ...))
{
	if (uaddr == NULL) {
		(*pr)("- uvm_addr %s: NULL\n", slot);
		return;
	}

	(*pr)("- uvm_addr %s: %p (%s 0x%lx-0x%lx)\n", slot, uaddr,
	    uaddr->uaddr_functions->uaddr_name,
	    uaddr->uaddr_minaddr, uaddr->uaddr_maxaddr);
	if (uaddr->uaddr_functions->uaddr_print == NULL)
		return;

	(*uaddr->uaddr_functions->uaddr_print)(uaddr, full, pr);
}
#endif /* DEBUG || DDB */

/*
 * Destroy a uvm_addr_state structure.
 * The uaddr must have been previously allocated from uaddr_state_pool.
 */
void
uaddr_destroy(struct uvm_addr_state *uaddr)
{
	pool_put(&uaddr_pool, uaddr);
}


#if 0
/*
 * Linear allocator.
 * This allocator uses a first-fit algorithm.
 *
 * If hint is set, search will start at the hint position.
 * Only searches forward.
 */
const struct uvm_addr_functions uaddr_lin_functions = {
	.uaddr_select = &uaddr_lin_select,
	.uaddr_destroy = &uaddr_destroy,
	.uaddr_name = "uaddr_lin"
};

struct uvm_addr_state *
uaddr_lin_create(vaddr_t minaddr, vaddr_t maxaddr)
{
	struct uvm_addr_state *uaddr;

	uaddr = pool_get(&uaddr_pool, PR_WAITOK);
	uaddr->uaddr_minaddr = minaddr;
	uaddr->uaddr_maxaddr = maxaddr;
	uaddr->uaddr_functions = &uaddr_lin_functions;
	return uaddr;
}

int
uaddr_lin_select(struct vm_map *map, struct uvm_addr_state *uaddr,
    struct vm_map_entry **entry_out, vaddr_t *addr_out,
    vsize_t sz, vaddr_t align, vaddr_t offset,
    vm_prot_t prot, vaddr_t hint)
{
	vaddr_t guard_sz;

	/* Deal with guardpages: search for space with one extra page. */
	guard_sz = ((map->flags & VM_MAP_GUARDPAGES) == 0 ? 0 : PAGE_SIZE);

	if (uaddr->uaddr_maxaddr - uaddr->uaddr_minaddr - guard_sz < sz)
		return ENOMEM;
	return uvm_addr_linsearch(map, uaddr, entry_out, addr_out, 0, sz,
	    align, offset, 1, uaddr->uaddr_minaddr, uaddr->uaddr_maxaddr - sz,
	    0, guard_sz);
}
#endif

/*
 * Randomized allocator.
 * This allocator use uvm_map_hint to acquire a random address and searches
 * from there.
 */

const struct uvm_addr_functions uaddr_rnd_functions = {
	.uaddr_select = &uaddr_rnd_select,
	.uaddr_free_insert = &uaddr_rnd_insert,
	.uaddr_free_remove = &uaddr_rnd_remove,
	.uaddr_destroy = &uaddr_rnd_destroy,
#if defined(DEBUG) || defined(DDB)
#if 0
	.uaddr_print = &uaddr_rnd_print,
#endif
#endif /* DEBUG || DDB */
	.uaddr_name = "uaddr_rnd"
};

struct uvm_addr_state *
uaddr_rnd_create(vaddr_t minaddr, vaddr_t maxaddr)
{
	struct uaddr_rnd_state *uaddr;

	uaddr = pool_get(&uaddr_rnd_pool, PR_WAITOK);
	uaddr->ur_uaddr.uaddr_minaddr = minaddr;
	uaddr->ur_uaddr.uaddr_maxaddr = maxaddr;
	uaddr->ur_uaddr.uaddr_functions = &uaddr_rnd_functions;
#if 0
	TAILQ_INIT(&uaddr->ur_free);
#endif
	return &uaddr->ur_uaddr;
}

int
uaddr_rnd_select(struct vm_map *map, struct uvm_addr_state *uaddr,
    struct vm_map_entry **entry_out, vaddr_t *addr_out,
    vsize_t sz, vaddr_t align, vaddr_t offset,
    vm_prot_t prot, vaddr_t hint)
{
	struct vmspace		*vm;
	vaddr_t			 minaddr, maxaddr;
	vaddr_t			 guard_sz;
	vaddr_t			 low_addr, high_addr;
	struct vm_map_entry	*entry, *next;
	vsize_t			 before_gap, after_gap;
	vaddr_t			 tmp;

	KASSERT((map->flags & VM_MAP_ISVMSPACE) != 0);
	vm = (struct vmspace *)map;

	/* Deal with guardpages: search for space with one extra page. */
	guard_sz = ((map->flags & VM_MAP_GUARDPAGES) == 0 ? 0 : PAGE_SIZE);

	if (uaddr->uaddr_maxaddr - guard_sz < sz)
		return ENOMEM;
	minaddr = uvm_addr_align_forward(uaddr->uaddr_minaddr, align, offset);
	maxaddr = uvm_addr_align_backward(uaddr->uaddr_maxaddr - sz - guard_sz,
	    align, offset);

	/* Quick fail if the allocation won't fit. */
	if (minaddr >= maxaddr)
		return ENOMEM;

	/* Select a hint. */
	if (hint == 0)
		hint = uvm_map_hint(vm, prot, minaddr, maxaddr);
	/* Clamp hint to uaddr range. */
	hint = MIN(MAX(hint, minaddr), maxaddr);

	/* Align hint to align,offset parameters. */
	tmp = hint;
	hint = uvm_addr_align_forward(tmp, align, offset);
	/* Check for overflow during alignment. */
	if (hint < tmp || hint > maxaddr)
		return ENOMEM; /* Compatibility mode: never look backwards. */

	before_gap = 0;
	after_gap = guard_sz;
	hint -= MIN(hint, before_gap);

	/*
	 * Use the augmented address tree to look up the first entry
	 * at or after hint with sufficient space.
	 *
	 * This code is the original optimized code, but will fail if the
	 * subtree it looks at does have sufficient space, but fails to meet
	 * the align constraint.
	 *
	 * Guard: subtree is not exhausted and max(fspace) >= required.
	 */
	entry = uvm_map_entrybyaddr(&map->addr, hint);

	/* Walk up the tree, until there is at least sufficient space. */
	while (entry != NULL &&
	    entry->fspace_augment < before_gap + after_gap + sz)
		entry = RBT_PARENT(uvm_map_addr, entry);

	while (entry != NULL) {
		/* Test if this fits. */
		if (VMMAP_FREE_END(entry) > hint &&
		    uvm_map_uaddr_e(map, entry) == uaddr &&
		    uvm_addr_fitspace(&low_addr, &high_addr,
		    MAX(uaddr->uaddr_minaddr, VMMAP_FREE_START(entry)),
		    MIN(uaddr->uaddr_maxaddr, VMMAP_FREE_END(entry)),
		    sz, align, offset, before_gap, after_gap) == 0) {
			*entry_out = entry;
			if (hint >= low_addr && hint <= high_addr)
				*addr_out = hint;
			else
				*addr_out = low_addr;
			return 0;
		}

		/* RBT_NEXT, but skip subtrees that cannot possible fit. */
		next = RBT_RIGHT(uvm_map_addr, entry);
		if (next != NULL &&
		    next->fspace_augment >= before_gap + after_gap + sz) {
			entry = next;
			while ((next = RBT_LEFT(uvm_map_addr, entry)) !=
			    NULL)
				entry = next;
		} else {
do_parent:
			next = RBT_PARENT(uvm_map_addr, entry);
			if (next == NULL)
				entry = NULL;
			else if (RBT_LEFT(uvm_map_addr, next) == entry)
				entry = next;
			else {
				entry = next;
				goto do_parent;
			}
		}
	}

	/* Lookup failed. */
	return ENOMEM;
}

/*
 * Destroy a uaddr_rnd_state structure.
 */
void
uaddr_rnd_destroy(struct uvm_addr_state *uaddr)
{
	pool_put(&uaddr_rnd_pool, uaddr);
}

/*
 * Add entry to tailq.
 */
void
uaddr_rnd_insert(struct vm_map *map, struct uvm_addr_state *uaddr_p,
    struct vm_map_entry *entry)
{
	return;
}

/*
 * Remove entry from tailq.
 */
void
uaddr_rnd_remove(struct vm_map *map, struct uvm_addr_state *uaddr_p,
    struct vm_map_entry *entry)
{
	return;
}

#if 0
#if defined(DEBUG) || defined(DDB)
void
uaddr_rnd_print(struct uvm_addr_state *uaddr_p, boolean_t full,
    int (*pr)(const char*, ...))
{
	struct vm_map_entry	*entry;
	struct uaddr_rnd_state	*uaddr;
	vaddr_t			 addr;
	size_t			 count;
	vsize_t			 space;

	uaddr = (struct uaddr_rnd_state *)uaddr_p;
	addr = 0;
	count = 0;
	space = 0;
	TAILQ_FOREACH(entry, &uaddr->ur_free, dfree.tailq) {
		count++;
		space += entry->fspace;

		if (full) {
			(*pr)("\tentry %p: 0x%lx-0x%lx G=0x%lx F=0x%lx\n",
			    entry, entry->start, entry->end,
			    entry->guard, entry->fspace);
			(*pr)("\t\tfree: 0x%lx-0x%lx\n",
			    VMMAP_FREE_START(entry), VMMAP_FREE_END(entry));
		}
		if (entry->start < addr) {
			if (!full)
				(*pr)("\tentry %p: 0x%lx-0x%lx "
				    "G=0x%lx F=0x%lx\n",
				    entry, entry->start, entry->end,
				    entry->guard, entry->fspace);
			(*pr)("\t\tstart=0x%lx, expected at least 0x%lx\n",
			    entry->start, addr);
		}

		addr = VMMAP_FREE_END(entry);
	}
	(*pr)("\t0x%lu entries, 0x%lx free bytes\n", count, space);
}
#endif /* DEBUG || DDB */
#endif

/*
 * Kernel allocation bootstrap logic.
 */
const struct uvm_addr_functions uaddr_kernel_functions = {
	.uaddr_select = &uaddr_kbootstrap_select,
	.uaddr_destroy = &uaddr_kbootstrap_destroy,
	.uaddr_name = "uaddr_kbootstrap"
};

/*
 * Select an address from the map.
 *
 * This function ignores the uaddr spec and instead uses the map directly.
 * Because of that property, the uaddr algorithm can be shared across all
 * kernel maps.
 */
int
uaddr_kbootstrap_select(struct vm_map *map, struct uvm_addr_state *uaddr,
    struct vm_map_entry **entry_out, vaddr_t *addr_out,
    vsize_t sz, vaddr_t align, vaddr_t offset, vm_prot_t prot, vaddr_t hint)
{
	vaddr_t tmp;

	RBT_FOREACH(*entry_out, uvm_map_addr, &map->addr) {
		if (VMMAP_FREE_END(*entry_out) <= uvm_maxkaddr &&
		    uvm_addr_fitspace(addr_out, &tmp,
		    VMMAP_FREE_START(*entry_out), VMMAP_FREE_END(*entry_out),
		    sz, align, offset, 0, 0) == 0)
			return 0;
	}

	return ENOMEM;
}

/*
 * Don't destroy the kernel bootstrap allocator.
 */
void
uaddr_kbootstrap_destroy(struct uvm_addr_state *uaddr)
{
	KASSERT(uaddr == (struct uvm_addr_state *)&uaddr_kbootstrap);
}

#ifndef SMALL_KERNEL
/*
 * Best fit algorithm.
 */

const struct uvm_addr_functions uaddr_bestfit_functions = {
	.uaddr_select = &uaddr_bestfit_select,
	.uaddr_free_insert = &uaddr_bestfit_insert,
	.uaddr_free_remove = &uaddr_bestfit_remove,
	.uaddr_destroy = &uaddr_bestfit_destroy,
	.uaddr_name = "uaddr_bestfit"
};

struct uvm_addr_state *
uaddr_bestfit_create(vaddr_t minaddr, vaddr_t maxaddr)
{
	struct uaddr_bestfit_state *uaddr;

	uaddr = pool_get(&uaddr_bestfit_pool, PR_WAITOK);
	uaddr->ubf_uaddr.uaddr_minaddr = minaddr;
	uaddr->ubf_uaddr.uaddr_maxaddr = maxaddr;
	uaddr->ubf_uaddr.uaddr_functions = &uaddr_bestfit_functions;
	RBT_INIT(uaddr_free_rbtree, &uaddr->ubf_free);
	return &uaddr->ubf_uaddr;
}

void
uaddr_bestfit_destroy(struct uvm_addr_state *uaddr)
{
	pool_put(&uaddr_bestfit_pool, uaddr);
}

void
uaddr_bestfit_insert(struct vm_map *map, struct uvm_addr_state *uaddr_p,
    struct vm_map_entry *entry)
{
	struct uaddr_bestfit_state	*uaddr;
	struct vm_map_entry		*rb_rv;

	uaddr = (struct uaddr_bestfit_state *)uaddr_p;
	if ((rb_rv = RBT_INSERT(uaddr_free_rbtree, &uaddr->ubf_free, entry)) !=
	    NULL) {
		panic("%s: duplicate insertion: state %p "
		    "interting %p, colliding with %p", __func__,
		    uaddr, entry, rb_rv);
	}
}

void
uaddr_bestfit_remove(struct vm_map *map, struct uvm_addr_state *uaddr_p,
    struct vm_map_entry *entry)
{
	struct uaddr_bestfit_state	*uaddr;

	uaddr = (struct uaddr_bestfit_state *)uaddr_p;
	if (RBT_REMOVE(uaddr_free_rbtree, &uaddr->ubf_free, entry) != entry)
		panic("%s: entry was not in tree", __func__);
}

int
uaddr_bestfit_select(struct vm_map *map, struct uvm_addr_state *uaddr_p,
    struct vm_map_entry **entry_out, vaddr_t *addr_out,
    vsize_t sz, vaddr_t align, vaddr_t offset,
    vm_prot_t prot, vaddr_t hint)
{
	vaddr_t				 min, max;
	struct uaddr_bestfit_state	*uaddr;
	struct vm_map_entry		*entry;
	vsize_t				 guardsz;

	uaddr = (struct uaddr_bestfit_state *)uaddr_p;
	guardsz = ((map->flags & VM_MAP_GUARDPAGES) ? PAGE_SIZE : 0);
	if (sz + guardsz < sz)
		return ENOMEM;

	/*
	 * Find smallest item on freelist capable of holding item.
	 * Deal with guardpages: search for space with one extra page.
	 */
	entry = uvm_addr_entrybyspace(&uaddr->ubf_free, sz + guardsz);
	if (entry == NULL)
		return ENOMEM;

	/* Walk the tree until we find an entry that fits.  */
	while (uvm_addr_fitspace(&min, &max,
	    VMMAP_FREE_START(entry), VMMAP_FREE_END(entry),
	    sz, align, offset, 0, guardsz) != 0) {
		entry = RBT_NEXT(uaddr_free_rbtree, entry);
		if (entry == NULL)
			return ENOMEM;
	}

	/* Return the address that generates the least fragmentation. */
	*entry_out = entry;
	*addr_out = (min - VMMAP_FREE_START(entry) <=
	    VMMAP_FREE_END(entry) - guardsz - sz - max ?
	    min : max);
	return 0;
}
#endif /* !SMALL_KERNEL */


#ifndef SMALL_KERNEL
/*
 * A userspace allocator based on pivots.
 */

const struct uvm_addr_functions uaddr_pivot_functions = {
	.uaddr_select = &uaddr_pivot_select,
	.uaddr_free_insert = &uaddr_pivot_insert,
	.uaddr_free_remove = &uaddr_pivot_remove,
	.uaddr_destroy = &uaddr_pivot_destroy,
#if defined(DEBUG) || defined(DDB)
	.uaddr_print = &uaddr_pivot_print,
#endif /* DEBUG || DDB */
	.uaddr_name = "uaddr_pivot"
};

/*
 * A special random function for pivots.
 *
 * This function will return:
 * - a random number
 * - a multiple of PAGE_SIZE
 * - at least PAGE_SIZE
 *
 * The random function has a slightly higher change to return a small number.
 */
vsize_t
uaddr_pivot_random(void)
{
	int			r;

	/*
	 * The sum of two six-sided dice will have a normal distribution.
	 * We map the highest probable number to 1, by folding the curve
	 * (think of a graph on a piece of paper, that you fold).
	 *
	 * Because the fold happens at PIVOT_RND - 1, the numbers 0 and 1
	 * have the same and highest probability of happening.
	 */
	r = arc4random_uniform(PIVOT_RND) + arc4random_uniform(PIVOT_RND) -
	    (PIVOT_RND - 1);
	if (r < 0)
		r = -r;

	/*
	 * Make the returned value at least PAGE_SIZE and a multiple of
	 * PAGE_SIZE.
	 */
	return (vaddr_t)(1 + r) << PAGE_SHIFT;
}

/*
 * Select a new pivot.
 *
 * A pivot must:
 * - be chosen random
 * - have a randomly chosen gap before it, where the uaddr_state starts
 * - have a randomly chosen gap after it, before the uaddr_state ends
 *
 * Furthermore, the pivot must provide sufficient space for the allocation.
 * The addr will be set to the selected address.
 *
 * Returns ENOMEM on failure.
 */
int
uaddr_pivot_newpivot(struct vm_map *map, struct uaddr_pivot_state *uaddr,
    struct uaddr_pivot *pivot,
    struct vm_map_entry **entry_out, vaddr_t *addr_out,
    vsize_t sz, vaddr_t align, vaddr_t offset,
    vsize_t before_gap, vsize_t after_gap)
{
	struct vm_map_entry		*entry, *found;
	vaddr_t				 minaddr, maxaddr;
	vsize_t				 dist;
	vaddr_t				 found_minaddr, found_maxaddr;
	vaddr_t				 min, max;
	vsize_t				 arc4_arg;
	int				 fit_error;
	u_int32_t			 path;

	minaddr = uaddr->up_uaddr.uaddr_minaddr;
	maxaddr = uaddr->up_uaddr.uaddr_maxaddr;
	KASSERT(minaddr < maxaddr);
#ifdef DIAGNOSTIC
	if (minaddr + 2 * PAGE_SIZE > maxaddr) {
		panic("uaddr_pivot_newpivot: cannot grant random pivot "
		    "in area less than 2 pages (size = 0x%lx)",
		    maxaddr - minaddr);
	}
#endif /* DIAGNOSTIC */

	/*
	 * Gap calculation: 1/32 of the size of the managed area.
	 *
	 * At most: sufficient to not get truncated at arc4random.
	 * At least: 2 PAGE_SIZE
	 *
	 * minaddr and maxaddr will be changed according to arc4random.
	 */
	dist = MAX((maxaddr - minaddr) / 32, 2 * (vaddr_t)PAGE_SIZE);
	if (dist >> PAGE_SHIFT > 0xffffffff) {
		minaddr += (vsize_t)arc4random() << PAGE_SHIFT;
		maxaddr -= (vsize_t)arc4random() << PAGE_SHIFT;
	} else {
		minaddr += (vsize_t)arc4random_uniform(dist >> PAGE_SHIFT) <<
		    PAGE_SHIFT;
		maxaddr -= (vsize_t)arc4random_uniform(dist >> PAGE_SHIFT) <<
		    PAGE_SHIFT;
	}

	/*
	 * A very fast way to find an entry that will be large enough
	 * to hold the allocation, but still is found more or less
	 * randomly: the tree path selector has a 50% chance to go for
	 * a bigger or smaller entry.
	 *
	 * Note that the memory may actually be available,
	 * but the fragmentation may be so bad and the gaps chosen
	 * so unfortunately, that the allocation will not succeed.
	 * Or the alignment can only be satisfied by an entry that
	 * is not visited in the randomly selected path.
	 *
	 * This code finds an entry with sufficient space in O(log n) time.
	 */
	path = arc4random();
	found = NULL;
	entry = RBT_ROOT(uaddr_free_rbtree, &uaddr->up_free);
	while (entry != NULL) {
		fit_error = uvm_addr_fitspace(&min, &max,
		    MAX(VMMAP_FREE_START(entry), minaddr),
		    MIN(VMMAP_FREE_END(entry), maxaddr),
		    sz, align, offset, before_gap, after_gap);

		/* It fits, save this entry. */
		if (fit_error == 0) {
			found = entry;
			found_minaddr = min;
			found_maxaddr = max;
		}

		/* Next. */
		if (fit_error != 0)
			entry = RBT_RIGHT(uaddr_free_rbtree, entry);
		else if	((path & 0x1) == 0) {
			path >>= 1;
			entry = RBT_RIGHT(uaddr_free_rbtree, entry);
		} else {
			path >>= 1;
			entry = RBT_LEFT(uaddr_free_rbtree, entry);
		}
	}
	if (found == NULL)
		return ENOMEM;	/* Not found a large enough region. */

	/*
	 * Calculate a random address within found.
	 *
	 * found_minaddr and found_maxaddr are already aligned, so be sure
	 * to select a multiple of align as the offset in the entry.
	 * Preferably, arc4random_uniform is used to provide no bias within
	 * the entry.
	 * However if the size of the entry exceeds arc4random_uniforms
	 * argument limit, we simply use arc4random (thus limiting ourselves
	 * to 4G * PAGE_SIZE bytes offset).
	 */
	if (found_maxaddr == found_minaddr)
		*addr_out = found_minaddr;
	else {
		KASSERT(align >= PAGE_SIZE && (align & (align - 1)) == 0);
		arc4_arg = found_maxaddr - found_minaddr;
		if (arc4_arg > 0xffffffff) {
			*addr_out = found_minaddr +
			    (arc4random() & ~(align - 1));
		} else {
			*addr_out = found_minaddr +
			    (arc4random_uniform(arc4_arg) & ~(align - 1));
		}
	}
	/* Address was found in this entry. */
	*entry_out = found;

	/*
	 * Set up new pivot and return selected address.
	 *
	 * Depending on the direction of the pivot, the pivot must be placed
	 * at the bottom or the top of the allocation:
	 * - if the pivot moves upwards, place the pivot at the top of the
	 *   allocation,
	 * - if the pivot moves downwards, place the pivot at the bottom
	 *   of the allocation.
	 */
	pivot->entry = found;
	pivot->dir = (arc4random() & 0x1 ? 1 : -1);
	if (pivot->dir > 0)
		pivot->addr = *addr_out + sz;
	else
		pivot->addr = *addr_out;
	pivot->expire = PIVOT_EXPIRE - 1; /* First use is right now. */
	return 0;
}

/*
 * Pivot selector.
 *
 * Each time the selector is invoked, it will select a random pivot, which
 * it will use to select memory with. The memory will be placed at the pivot,
 * with a randomly sized gap between the allocation and the pivot.
 * The pivot will then move so it will never revisit this address.
 *
 * Each allocation, the pivot expiry timer ticks. Once the pivot becomes
 * expired, it will be replaced with a newly created pivot. Pivots also
 * automatically expire if they fail to provide memory for an allocation.
 *
 * Expired pivots are replaced using the uaddr_pivot_newpivot() function,
 * which will ensure the pivot points at memory in such a way that the
 * allocation will succeed.
 * As an added bonus, the uaddr_pivot_newpivot() function will perform the
 * allocation immediately and move the pivot as appropriate.
 *
 * If uaddr_pivot_newpivot() fails to find a new pivot that will allow the
 * allocation to succeed, it will not create a new pivot and the allocation
 * will fail.
 *
 * A pivot running into used memory will automatically expire (because it will
 * fail to allocate).
 *
 * Characteristics of the allocator:
 * - best case, an allocation is O(log N)
 *   (it would be O(1), if it werent for the need to check if the memory is
 *   free; although that can be avoided...)
 * - worst case, an allocation is O(log N)
 *   (the uaddr_pivot_newpivot() function has that complexity)
 * - failed allocations always take O(log N)
 *   (the uaddr_pivot_newpivot() function will walk that deep into the tree).
 */
int
uaddr_pivot_select(struct vm_map *map, struct uvm_addr_state *uaddr_p,
    struct vm_map_entry **entry_out, vaddr_t *addr_out,
    vsize_t sz, vaddr_t align, vaddr_t offset,
    vm_prot_t prot, vaddr_t hint)
{
	struct uaddr_pivot_state	*uaddr;
	struct vm_map_entry		*entry;
	struct uaddr_pivot		*pivot;
	vaddr_t				 min, max;
	vsize_t				 before_gap, after_gap;
	int				 err;

	/*
	 * When we have a hint, use the rnd allocator that finds the
	 * area that is closest to the hint, if there is such an area.
	 */
	if (hint != 0) {
		if (uaddr_rnd_select(map, uaddr_p, entry_out, addr_out,
		    sz, align, offset, prot, hint) == 0)
			return 0;
		return ENOMEM;
	}

	/*
	 * Select a random pivot and a random gap sizes around the allocation.
	 */
	uaddr = (struct uaddr_pivot_state *)uaddr_p;
	pivot = &uaddr->up_pivots[
	    arc4random_uniform(nitems(uaddr->up_pivots))];
	before_gap = uaddr_pivot_random();
	after_gap = uaddr_pivot_random();
	if (pivot->addr == 0 || pivot->entry == NULL || pivot->expire == 0)
		goto expired;	/* Pivot is invalid (null or expired). */

	/* Attempt to use the pivot to map the entry. */
	entry = pivot->entry;
	if (pivot->dir > 0) {
		if (uvm_addr_fitspace(&min, &max,
		    MAX(VMMAP_FREE_START(entry), pivot->addr),
		    VMMAP_FREE_END(entry), sz, align, offset,
		    before_gap, after_gap) == 0) {
			*addr_out = min;
			*entry_out = entry;
			pivot->addr = min + sz;
			pivot->expire--;
			return 0;
		}
	} else {
		if (uvm_addr_fitspace(&min, &max,
		    VMMAP_FREE_START(entry),
		    MIN(VMMAP_FREE_END(entry), pivot->addr),
		    sz, align, offset, before_gap, after_gap) == 0) {
			*addr_out = max;
			*entry_out = entry;
			pivot->addr = max;
			pivot->expire--;
			return 0;
		}
	}

expired:
	/*
	 * Pivot expired or allocation failed.
	 * Use pivot selector to do the allocation and find a new pivot.
	 */
	err = uaddr_pivot_newpivot(map, uaddr, pivot, entry_out, addr_out,
	    sz, align, offset, before_gap, after_gap);
	return err;
}

/*
 * Free the pivot.
 */
void
uaddr_pivot_destroy(struct uvm_addr_state *uaddr)
{
	pool_put(&uaddr_pivot_pool, uaddr);
}

/*
 * Insert an entry with free space in the space tree.
 */
void
uaddr_pivot_insert(struct vm_map *map, struct uvm_addr_state *uaddr_p,
    struct vm_map_entry *entry)
{
	struct uaddr_pivot_state	*uaddr;
	struct vm_map_entry		*rb_rv;
	struct uaddr_pivot		*p;
	vaddr_t				 check_addr;
	vaddr_t				 start, end;

	uaddr = (struct uaddr_pivot_state *)uaddr_p;
	if ((rb_rv = RBT_INSERT(uaddr_free_rbtree, &uaddr->up_free, entry)) !=
	    NULL) {
		panic("%s: duplicate insertion: state %p "
		    "inserting entry %p which collides with %p", __func__,
		    uaddr, entry, rb_rv);
	}

	start = VMMAP_FREE_START(entry);
	end = VMMAP_FREE_END(entry);

	/*
	 * Update all pivots that are contained in this entry.
	 */
	for (p = &uaddr->up_pivots[0];
	    p != &uaddr->up_pivots[nitems(uaddr->up_pivots)]; p++) {
		check_addr = p->addr;
		if (check_addr == 0)
			continue;
		if (p->dir < 0)
			check_addr--;

		if (start <= check_addr &&
		    check_addr < end) {
			KASSERT(p->entry == NULL);
			p->entry = entry;
		}
	}
}

/*
 * Remove an entry with free space from the space tree.
 */
void
uaddr_pivot_remove(struct vm_map *map, struct uvm_addr_state *uaddr_p,
    struct vm_map_entry *entry)
{
	struct uaddr_pivot_state	*uaddr;
	struct uaddr_pivot		*p;

	uaddr = (struct uaddr_pivot_state *)uaddr_p;
	if (RBT_REMOVE(uaddr_free_rbtree, &uaddr->up_free, entry) != entry)
		panic("%s: entry was not in tree", __func__);

	/*
	 * Inform any pivot with this entry that the entry is gone.
	 * Note that this does not automatically invalidate the pivot.
	 */
	for (p = &uaddr->up_pivots[0];
	    p != &uaddr->up_pivots[nitems(uaddr->up_pivots)]; p++) {
		if (p->entry == entry)
			p->entry = NULL;
	}
}

/*
 * Create a new pivot selector.
 *
 * Initially, all pivots are in the expired state.
 * Two reasons for this:
 * - it means this allocator will not take a huge amount of time
 * - pivots select better on demand, because the pivot selection will be
 *   affected by preceding allocations:
 *   the next pivots will likely end up in different segments of free memory,
 *   that was segmented by an earlier allocation; better spread.
 */
struct uvm_addr_state *
uaddr_pivot_create(vaddr_t minaddr, vaddr_t maxaddr)
{
	struct uaddr_pivot_state *uaddr;

	uaddr = pool_get(&uaddr_pivot_pool, PR_WAITOK);
	uaddr->up_uaddr.uaddr_minaddr = minaddr;
	uaddr->up_uaddr.uaddr_maxaddr = maxaddr;
	uaddr->up_uaddr.uaddr_functions = &uaddr_pivot_functions;
	RBT_INIT(uaddr_free_rbtree, &uaddr->up_free);
	memset(uaddr->up_pivots, 0, sizeof(uaddr->up_pivots));

	return &uaddr->up_uaddr;
}

#if defined(DEBUG) || defined(DDB)
/*
 * Print the uaddr_pivot_state.
 *
 * If full, a listing of all entries in the state will be provided.
 */
void
uaddr_pivot_print(struct uvm_addr_state *uaddr_p, boolean_t full,
    int (*pr)(const char *, ...))
{
	struct uaddr_pivot_state	*uaddr;
	struct uaddr_pivot		*pivot;
	struct vm_map_entry		*entry;
	int				 i;
	vaddr_t				 check_addr;

	uaddr = (struct uaddr_pivot_state *)uaddr_p;

	for (i = 0; i < NUM_PIVOTS; i++) {
		pivot = &uaddr->up_pivots[i];

		(*pr)("\tpivot 0x%lx, epires in %d, direction %d\n",
		    pivot->addr, pivot->expire, pivot->dir);
	}
	if (!full)
		return;

	if (RBT_EMPTY(uaddr_free_rbtree, &uaddr->up_free))
		(*pr)("\tempty\n");
	/* Print list of free space. */
	RBT_FOREACH(entry, uaddr_free_rbtree, &uaddr->up_free) {
		(*pr)("\t0x%lx - 0x%lx free (0x%lx bytes)\n",
		    VMMAP_FREE_START(entry), VMMAP_FREE_END(entry),
		    VMMAP_FREE_END(entry) - VMMAP_FREE_START(entry));

		for (i = 0; i < NUM_PIVOTS; i++) {
			pivot = &uaddr->up_pivots[i];
			check_addr = pivot->addr;
			if (check_addr == 0)
				continue;
			if (pivot->dir < 0)
				check_addr--;

			if (VMMAP_FREE_START(entry) <= check_addr &&
			    check_addr < VMMAP_FREE_END(entry)) {
				(*pr)("\t\tcontains pivot %d (0x%lx)\n",
				    i, pivot->addr);
			}
		}
	}
}
#endif /* DEBUG || DDB */
#endif /* !SMALL_KERNEL */

#ifndef SMALL_KERNEL
/*
 * Strategy for uaddr_stack_brk_select.
 */
struct uaddr_bs_strat {
	vaddr_t			start;		/* Start of area. */
	vaddr_t			end;		/* End of area. */
	int			dir;		/* Search direction. */
};

/*
 * Stack/break allocator.
 *
 * Stack area is grown into in the opposite direction of the stack growth,
 * brk area is grown downward (because sbrk() grows upward).
 *
 * Both areas are grown into proportially: a weighted chance is used to
 * select which one (stack or brk area) to try. If the allocation fails,
 * the other one is tested.
 */
const struct uvm_addr_functions uaddr_stack_brk_functions = {
	.uaddr_select = &uaddr_stack_brk_select,
	.uaddr_destroy = &uaddr_destroy,
	.uaddr_name = "uaddr_stckbrk"
};

/*
 * Stack/brk address selector.
 */
int
uaddr_stack_brk_select(struct vm_map *map, struct uvm_addr_state *uaddr,
    struct vm_map_entry **entry_out, vaddr_t *addr_out,
    vsize_t sz, vaddr_t align, vaddr_t offset,
    vm_prot_t prot, vaddr_t hint)
{
	vsize_t			before_gap, after_gap;
	int			stack_idx, brk_idx;
	struct uaddr_bs_strat	strat[2], *s;
	vsize_t			sb_size;

	/*
	 * Choose gap size and if the stack is searched before or after the
	 * brk area.
	 */
	before_gap = ((arc4random() & 0x3) + 1) << PAGE_SHIFT;
	after_gap = ((arc4random() & 0x3) + 1) << PAGE_SHIFT;

	sb_size = (map->s_end - map->s_start) + (map->b_end - map->b_start);
	sb_size >>= PAGE_SHIFT;
	if (arc4random_uniform(MAX(sb_size, 0xffffffff)) >
	    map->b_end - map->b_start) {
		brk_idx = 1;
		stack_idx = 0;
	} else {
		brk_idx = 0;
		stack_idx = 1;
	}

	/* Set up stack search strategy. */
	s = &strat[stack_idx];
	s->start = MAX(map->s_start, uaddr->uaddr_minaddr);
	s->end = MIN(map->s_end, uaddr->uaddr_maxaddr);
#ifdef MACHINE_STACK_GROWS_UP
	s->dir = -1;
#else
	s->dir =  1;
#endif

	/* Set up brk search strategy. */
	s = &strat[brk_idx];
	s->start = MAX(map->b_start, uaddr->uaddr_minaddr);
	s->end = MIN(map->b_end, uaddr->uaddr_maxaddr);
	s->dir = -1;	/* Opposite of brk() growth. */

	/* Linear search for space.  */
	for (s = &strat[0]; s < &strat[nitems(strat)]; s++) {
		if (s->end - s->start < sz)
			continue;
		if (uvm_addr_linsearch(map, uaddr, entry_out, addr_out,
		    0, sz, align, offset, s->dir, s->start, s->end - sz,
		    before_gap, after_gap) == 0)
			return 0;
	}

	return ENOMEM;
}

struct uvm_addr_state *
uaddr_stack_brk_create(vaddr_t minaddr, vaddr_t maxaddr)
{
	struct uvm_addr_state* uaddr;

	uaddr = pool_get(&uaddr_pool, PR_WAITOK);
	uaddr->uaddr_minaddr = minaddr;
	uaddr->uaddr_maxaddr = maxaddr;
	uaddr->uaddr_functions = &uaddr_stack_brk_functions;
	return uaddr;
}
#endif /* !SMALL_KERNEL */


#ifndef SMALL_KERNEL
RBT_GENERATE(uaddr_free_rbtree, vm_map_entry, dfree.rbtree,
    uvm_mapent_fspace_cmp);
#endif /* !SMALL_KERNEL */