1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
/* $OpenBSD: uvm_anon.c,v 1.2 1999/02/26 05:32:06 art Exp $ */
/* $NetBSD: uvm_anon.c,v 1.1 1999/01/24 23:53:15 chuck Exp $ */
/*
*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* uvm_anon.c: uvm anon ops
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#include <uvm/uvm.h>
#include <uvm/uvm_swap.h>
/*
* allocate anons
*/
void
uvm_anon_init()
{
struct vm_anon *anon;
int nanon = uvmexp.free - (uvmexp.free / 16); /* XXXCDC ??? */
int lcv;
/*
* Allocate the initial anons.
*/
anon = (struct vm_anon *)uvm_km_alloc(kernel_map,
sizeof(*anon) * nanon);
if (anon == NULL) {
printf("uvm_anon_init: can not allocate %d anons\n", nanon);
panic("uvm_anon_init");
}
bzero(anon, sizeof(*anon) * nanon);
uvm.afree = NULL;
uvmexp.nanon = uvmexp.nfreeanon = nanon;
for (lcv = 0 ; lcv < nanon ; lcv++) {
anon[lcv].u.an_nxt = uvm.afree;
uvm.afree = &anon[lcv];
}
simple_lock_init(&uvm.afreelock);
}
/*
* add some more anons to the free pool. called when we add
* more swap space.
*/
void
uvm_anon_add(pages)
int pages;
{
struct vm_anon *anon;
int lcv;
anon = (struct vm_anon *)uvm_km_alloc(kernel_map,
sizeof(*anon) * pages);
/* XXX Should wait for VM to free up. */
if (anon == NULL) {
printf("uvm_anon_add: can not allocate %d anons\n", pages);
panic("uvm_anon_add");
}
simple_lock(&uvm.afreelock);
bzero(anon, sizeof(*anon) * pages);
uvmexp.nanon += pages;
uvmexp.nfreeanon += pages;
for (lcv = 0; lcv < pages; lcv++) {
simple_lock_init(&anon->an_lock);
anon[lcv].u.an_nxt = uvm.afree;
uvm.afree = &anon[lcv];
}
simple_unlock(&uvm.afreelock);
}
/*
* allocate an anon
*/
struct vm_anon *
uvm_analloc()
{
struct vm_anon *a;
simple_lock(&uvm.afreelock);
a = uvm.afree;
if (a) {
uvm.afree = a->u.an_nxt;
uvmexp.nfreeanon--;
a->an_ref = 1;
a->an_swslot = 0;
a->u.an_page = NULL; /* so we can free quickly */
}
simple_unlock(&uvm.afreelock);
return(a);
}
/*
* uvm_anfree: free a single anon structure
*
* => caller must remove anon from its amap before calling (if it was in
* an amap).
* => anon must be unlocked and have a zero reference count.
* => we may lock the pageq's.
*/
void
uvm_anfree(anon)
struct vm_anon *anon;
{
struct vm_page *pg;
UVMHIST_FUNC("uvm_anfree"); UVMHIST_CALLED(maphist);
UVMHIST_LOG(maphist,"(anon=0x%x)", anon, 0,0,0);
/*
* get page
*/
pg = anon->u.an_page;
/*
* if there is a resident page and it is loaned, then anon may not
* own it. call out to uvm_anon_lockpage() to ensure the real owner
* of the page has been identified and locked.
*/
if (pg && pg->loan_count)
pg = uvm_anon_lockloanpg(anon);
/*
* if we have a resident page, we must dispose of it before freeing
* the anon.
*/
if (pg) {
/*
* if the page is owned by a uobject (now locked), then we must
* kill the loan on the page rather than free it.
*/
if (pg->uobject) {
/* kill loan */
uvm_lock_pageq();
#ifdef DIAGNOSTIC
if (pg->loan_count < 1)
panic("uvm_anfree: obj owned page "
"with no loan count");
#endif
pg->loan_count--;
pg->uanon = NULL;
uvm_unlock_pageq();
simple_unlock(&pg->uobject->vmobjlock);
} else {
/*
* page has no uobject, so we must be the owner of it.
*
* if page is busy then we just mark it as released
* (who ever has it busy must check for this when they
* wake up). if the page is not busy then we can
* free it now.
*/
if ((pg->flags & PG_BUSY) != 0) {
/* tell them to dump it when done */
pg->flags |= PG_RELEASED;
simple_unlock(&anon->an_lock);
UVMHIST_LOG(maphist,
" anon 0x%x, page 0x%x: BUSY (released!)",
anon, pg, 0, 0);
return;
}
pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
uvm_lock_pageq(); /* lock out pagedaemon */
uvm_pagefree(pg); /* bye bye */
uvm_unlock_pageq(); /* free the daemon */
UVMHIST_LOG(maphist," anon 0x%x, page 0x%x: freed now!",
anon, pg, 0, 0);
}
}
/*
* are we using any backing store resources? if so, free them.
*/
if (anon->an_swslot) {
/*
* on backing store: no I/O in progress. sole amap reference
* is ours and we've got it locked down. thus we can free,
* and be done.
*/
UVMHIST_LOG(maphist," freeing anon 0x%x, paged to swslot 0x%x",
anon, anon->an_swslot, 0, 0);
uvm_swap_free(anon->an_swslot, 1);
anon->an_swslot = 0;
}
/*
* now that we've stripped the data areas from the anon, free the anon
* itself!
*/
simple_lock(&uvm.afreelock);
anon->u.an_nxt = uvm.afree;
uvm.afree = anon;
uvmexp.nfreeanon++;
simple_unlock(&uvm.afreelock);
UVMHIST_LOG(maphist,"<- done!",0,0,0,0);
}
/*
* uvm_anon_lockloanpg: given a locked anon, lock its resident page
*
* => anon is locked by caller
* => on return: anon is locked
* if there is a resident page:
* if it has a uobject, it is locked by us
* if it is ownerless, we take over as owner
* we return the resident page (it can change during
* this function)
* => note that the only time an anon has an ownerless resident page
* is if the page was loaned from a uvm_object and the uvm_object
* disowned it
* => this only needs to be called when you want to do an operation
* on an anon's resident page and that page has a non-zero loan
* count.
*/
struct vm_page *
uvm_anon_lockloanpg(anon)
struct vm_anon *anon;
{
struct vm_page *pg;
boolean_t locked = FALSE;
/*
* loop while we have a resident page that has a non-zero loan count.
* if we successfully get our lock, we will "break" the loop.
* note that the test for pg->loan_count is not protected -- this
* may produce false positive results. note that a false positive
* result may cause us to do more work than we need to, but it will
* not produce an incorrect result.
*/
while (((pg = anon->u.an_page) != NULL) && pg->loan_count != 0) {
/*
* quickly check to see if the page has an object before
* bothering to lock the page queues. this may also produce
* a false positive result, but that's ok because we do a real
* check after that.
*
* XXX: quick check -- worth it? need volatile?
*/
if (pg->uobject) {
uvm_lock_pageq();
if (pg->uobject) { /* the "real" check */
locked =
simple_lock_try(&pg->uobject->vmobjlock);
} else {
/* object disowned before we got PQ lock */
locked = TRUE;
}
uvm_unlock_pageq();
/*
* if we didn't get a lock (try lock failed), then we
* toggle our anon lock and try again
*/
if (!locked) {
simple_unlock(&anon->an_lock);
/*
* someone locking the object has a chance to
* lock us right now
*/
simple_lock(&anon->an_lock);
continue; /* start over */
}
}
/*
* if page is un-owned [i.e. the object dropped its ownership],
* then we can take over as owner!
*/
if (pg->uobject == NULL && (pg->pqflags & PQ_ANON) == 0) {
uvm_lock_pageq();
pg->pqflags |= PQ_ANON; /* take ownership... */
pg->loan_count--; /* ... and drop our loan */
uvm_unlock_pageq();
}
/*
* we did it! break the loop
*/
break;
}
/*
* done!
*/
return(pg);
}
|