summaryrefslogtreecommitdiff
path: root/sys/uvm/uvm_fault.c
blob: a5063723f7796ef5be657839bf38b0bd59e74ee6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
/*	$OpenBSD: uvm_fault.c,v 1.128 2022/02/11 09:25:04 kn Exp $	*/
/*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/

/*
 * Copyright (c) 1997 Charles D. Cranor and Washington University.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
 */

/*
 * uvm_fault.c: fault handler
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/percpu.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/tracepoint.h>

#include <uvm/uvm.h>

/*
 *
 * a word on page faults:
 *
 * types of page faults we handle:
 *
 * CASE 1: upper layer faults                   CASE 2: lower layer faults
 *
 *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
 *    read/write1     write>1                  read/write   +-cow_write/zero
 *         |             |                         |        |
 *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
 * amap |  V  |       |  ---------> new |          |        | |  ^  |
 *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
 *                                                 |        |    |
 *      +-----+       +-----+                   +--|--+     | +--|--+
 * uobj | d/c |       | d/c |                   |  V  |     +----+  |
 *      +-----+       +-----+                   +-----+       +-----+
 *
 * d/c = don't care
 *
 *   case [0]: layerless fault
 *	no amap or uobj is present.   this is an error.
 *
 *   case [1]: upper layer fault [anon active]
 *     1A: [read] or [write with anon->an_ref == 1]
 *		I/O takes place in upper level anon and uobj is not touched.
 *     1B: [write with anon->an_ref > 1]
 *		new anon is alloc'd and data is copied off ["COW"]
 *
 *   case [2]: lower layer fault [uobj]
 *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
 *		I/O takes place directly in object.
 *     2B: [write to copy_on_write] or [read on NULL uobj]
 *		data is "promoted" from uobj to a new anon.
 *		if uobj is null, then we zero fill.
 *
 * we follow the standard UVM locking protocol ordering:
 *
 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
 * we hold a PG_BUSY page if we unlock for I/O
 *
 *
 * the code is structured as follows:
 *
 *     - init the "IN" params in the ufi structure
 *   ReFault: (ERESTART returned to the loop in uvm_fault)
 *     - do lookups [locks maps], check protection, handle needs_copy
 *     - check for case 0 fault (error)
 *     - establish "range" of fault
 *     - if we have an amap lock it and extract the anons
 *     - if sequential advice deactivate pages behind us
 *     - at the same time check pmap for unmapped areas and anon for pages
 *	 that we could map in (and do map it if found)
 *     - check object for resident pages that we could map in
 *     - if (case 2) goto Case2
 *     - >>> handle case 1
 *           - ensure source anon is resident in RAM
 *           - if case 1B alloc new anon and copy from source
 *           - map the correct page in
 *   Case2:
 *     - >>> handle case 2
 *           - ensure source page is resident (if uobj)
 *           - if case 2B alloc new anon and copy from source (could be zero
 *		fill if uobj == NULL)
 *           - map the correct page in
 *     - done!
 *
 * note on paging:
 *   if we have to do I/O we place a PG_BUSY page in the correct object,
 * unlock everything, and do the I/O.   when I/O is done we must reverify
 * the state of the world before assuming that our data structures are
 * valid.   [because mappings could change while the map is unlocked]
 *
 *  alternative 1: unbusy the page in question and restart the page fault
 *    from the top (ReFault).   this is easy but does not take advantage
 *    of the information that we already have from our previous lookup,
 *    although it is possible that the "hints" in the vm_map will help here.
 *
 * alternative 2: the system already keeps track of a "version" number of
 *    a map.   [i.e. every time you write-lock a map (e.g. to change a
 *    mapping) you bump the version number up by one...]   so, we can save
 *    the version number of the map before we release the lock and start I/O.
 *    then when I/O is done we can relock and check the version numbers
 *    to see if anything changed.    this might save us some over 1 because
 *    we don't have to unbusy the page and may be less compares(?).
 *
 * alternative 3: put in backpointers or a way to "hold" part of a map
 *    in place while I/O is in progress.   this could be complex to
 *    implement (especially with structures like amap that can be referenced
 *    by multiple map entries, and figuring out what should wait could be
 *    complex as well...).
 *
 * we use alternative 2.  given that we are multi-threaded now we may want
 * to reconsider the choice.
 */

/*
 * local data structures
 */
struct uvm_advice {
	int nback;
	int nforw;
};

/*
 * page range array: set up in uvmfault_init().
 */
static struct uvm_advice uvmadvice[MADV_MASK + 1];

#define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */

/*
 * private prototypes
 */
static void uvmfault_amapcopy(struct uvm_faultinfo *);
static inline void uvmfault_anonflush(struct vm_anon **, int);
void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
void	uvmfault_update_stats(struct uvm_faultinfo *);

/*
 * inline functions
 */
/*
 * uvmfault_anonflush: try and deactivate pages in specified anons
 *
 * => does not have to deactivate page if it is busy
 */
static inline void
uvmfault_anonflush(struct vm_anon **anons, int n)
{
	int lcv;
	struct vm_page *pg;

	for (lcv = 0; lcv < n; lcv++) {
		if (anons[lcv] == NULL)
			continue;
		KASSERT(rw_lock_held(anons[lcv]->an_lock));
		pg = anons[lcv]->an_page;
		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
			uvm_lock_pageq();
			if (pg->wire_count == 0) {
				pmap_page_protect(pg, PROT_NONE);
				uvm_pagedeactivate(pg);
			}
			uvm_unlock_pageq();
		}
	}
}

/*
 * normal functions
 */
/*
 * uvmfault_init: compute proper values for the uvmadvice[] array.
 */
void
uvmfault_init(void)
{
	int npages;

	npages = atop(16384);
	if (npages > 0) {
		KASSERT(npages <= UVM_MAXRANGE / 2);
		uvmadvice[MADV_NORMAL].nforw = npages;
		uvmadvice[MADV_NORMAL].nback = npages - 1;
	}

	npages = atop(32768);
	if (npages > 0) {
		KASSERT(npages <= UVM_MAXRANGE / 2);
		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
		uvmadvice[MADV_SEQUENTIAL].nback = npages;
	}
}

/*
 * uvmfault_amapcopy: clear "needs_copy" in a map.
 *
 * => called with VM data structures unlocked (usually, see below)
 * => we get a write lock on the maps and clear needs_copy for a VA
 * => if we are out of RAM we sleep (waiting for more)
 */
static void
uvmfault_amapcopy(struct uvm_faultinfo *ufi)
{
	for (;;) {
		/*
		 * no mapping?  give up.
		 */
		if (uvmfault_lookup(ufi, TRUE) == FALSE)
			return;

		/*
		 * copy if needed.
		 */
		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);

		/*
		 * didn't work?  must be out of RAM.   unlock and sleep.
		 */
		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
			uvmfault_unlockmaps(ufi, TRUE);
			uvm_wait("fltamapcopy");
			continue;
		}

		/*
		 * got it!   unlock and return.
		 */
		uvmfault_unlockmaps(ufi, TRUE);
		return;
	}
	/*NOTREACHED*/
}

/*
 * uvmfault_anonget: get data in an anon into a non-busy, non-released
 * page in that anon.
 *
 * => Map, amap and thus anon should be locked by caller.
 * => If we fail, we unlock everything and error is returned.
 * => If we are successful, return with everything still locked.
 * => We do not move the page on the queues [gets moved later].  If we
 *    allocate a new page [we_own], it gets put on the queues.  Either way,
 *    the result is that the page is on the queues at return time
 */
int
uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    struct vm_anon *anon)
{
	struct vm_page *pg;
	int error;

	KASSERT(rw_lock_held(anon->an_lock));
	KASSERT(anon->an_lock == amap->am_lock);

	/* Increment the counters.*/
	counters_inc(uvmexp_counters, flt_anget);
	if (anon->an_page) {
		curproc->p_ru.ru_minflt++;
	} else {
		curproc->p_ru.ru_majflt++;
	}
	error = 0;

	/*
	 * Loop until we get the anon data, or fail.
	 */
	for (;;) {
		boolean_t we_own, locked;
		/*
		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
		 */
		we_own = FALSE;
		pg = anon->an_page;

		/*
		 * Is page resident?  Make sure it is not busy/released.
		 */
		if (pg) {
			KASSERT(pg->pg_flags & PQ_ANON);
			KASSERT(pg->uanon == anon);

			/*
			 * if the page is busy, we drop all the locks and
			 * try again.
			 */
			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
				return (VM_PAGER_OK);
			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
			counters_inc(uvmexp_counters, flt_pgwait);

			/*
			 * The last unlock must be an atomic unlock and wait
			 * on the owner of page.
			 */
			if (pg->uobject) {
				/* Owner of page is UVM object. */
				uvmfault_unlockall(ufi, amap, NULL);
				rwsleep_nsec(pg, pg->uobject->vmobjlock,
				    PVM | PNORELOCK, "anonget1", INFSLP);
			} else {
				/* Owner of page is anon. */
				uvmfault_unlockall(ufi, NULL, NULL);
				rwsleep_nsec(pg, anon->an_lock, PVM | PNORELOCK,
				    "anonget2", INFSLP);
			}
		} else {
			/*
			 * No page, therefore allocate one.
			 */
			pg = uvm_pagealloc(NULL, 0, anon, 0);
			if (pg == NULL) {
				/* Out of memory.  Wait a little. */
				uvmfault_unlockall(ufi, amap, NULL);
				counters_inc(uvmexp_counters, flt_noram);
				uvm_wait("flt_noram1");
			} else {
				/* PG_BUSY bit is set. */
				we_own = TRUE;
				uvmfault_unlockall(ufi, amap, NULL);

				/*
				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
				 * the uvm_swap_get() function with all data
				 * structures unlocked.  Note that it is OK
				 * to read an_swslot here, because we hold
				 * PG_BUSY on the page.
				 */
				counters_inc(uvmexp_counters, pageins);
				error = uvm_swap_get(pg, anon->an_swslot,
				    PGO_SYNCIO);

				/*
				 * We clean up after the I/O below in the
				 * 'we_own' case.
				 */
			}
		}

		/*
		 * Re-lock the map and anon.
		 */
		locked = uvmfault_relock(ufi);
		if (locked || we_own) {
			rw_enter(anon->an_lock, RW_WRITE);
		}

		/*
		 * If we own the page (i.e. we set PG_BUSY), then we need
		 * to clean up after the I/O.  There are three cases to
		 * consider:
		 *
		 * 1) Page was released during I/O: free anon and ReFault.
		 * 2) I/O not OK.  Free the page and cause the fault to fail.
		 * 3) I/O OK!  Activate the page and sync with the non-we_own
		 *    case (i.e. drop anon lock if not locked).
		 */
		if (we_own) {
			if (pg->pg_flags & PG_WANTED) {
				wakeup(pg);
			}
			/* un-busy! */
			atomic_clearbits_int(&pg->pg_flags,
			    PG_WANTED|PG_BUSY|PG_FAKE);
			UVM_PAGE_OWN(pg, NULL);

			/*
			 * if we were RELEASED during I/O, then our anon is
			 * no longer part of an amap.   we need to free the
			 * anon and try again.
			 */
			if (pg->pg_flags & PG_RELEASED) {
				pmap_page_protect(pg, PROT_NONE);
				KASSERT(anon->an_ref == 0);
				/*
				 * Released while we had unlocked amap.
				 */
				if (locked)
					uvmfault_unlockall(ufi, NULL, NULL);
				uvm_anon_release(anon);	/* frees page for us */
				counters_inc(uvmexp_counters, flt_pgrele);
				return (VM_PAGER_REFAULT);	/* refault! */
			}

			if (error != VM_PAGER_OK) {
				KASSERT(error != VM_PAGER_PEND);

				/* remove page from anon */
				anon->an_page = NULL;

				/*
				 * Remove the swap slot from the anon and
				 * mark the anon as having no real slot.
				 * Do not free the swap slot, thus preventing
				 * it from being used again.
				 */
				uvm_swap_markbad(anon->an_swslot, 1);
				anon->an_swslot = SWSLOT_BAD;

				/*
				 * Note: page was never !PG_BUSY, so it
				 * cannot be mapped and thus no need to
				 * pmap_page_protect() it.
				 */
				uvm_lock_pageq();
				uvm_pagefree(pg);
				uvm_unlock_pageq();

				if (locked) {
					uvmfault_unlockall(ufi, NULL, NULL);
				}
				rw_exit(anon->an_lock);
				return (VM_PAGER_ERROR);
			}

			/*
			 * We have successfully read the page, activate it.
			 */
			pmap_clear_modify(pg);
			uvm_lock_pageq();
			uvm_pageactivate(pg);
			uvm_unlock_pageq();
		}

		/*
		 * We were not able to re-lock the map - restart the fault.
		 */
		if (!locked) {
			if (we_own) {
				rw_exit(anon->an_lock);
			}
			return (VM_PAGER_REFAULT);
		}

		/*
		 * Verify that no one has touched the amap and moved
		 * the anon on us.
		 */
		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
				ufi->orig_rvaddr - ufi->entry->start) != anon) {

			uvmfault_unlockall(ufi, amap, NULL);
			return (VM_PAGER_REFAULT);
		}

		/*
		 * Retry..
		 */
		counters_inc(uvmexp_counters, flt_anretry);
		continue;

	}
	/*NOTREACHED*/
}

/*
 * Update statistics after fault resolution.
 * - maxrss
 */
void
uvmfault_update_stats(struct uvm_faultinfo *ufi)
{
	struct vm_map		*map;
	struct proc		*p;
	vsize_t			 res;

	map = ufi->orig_map;

	/*
	 * If this is a nested pmap (eg, a virtual machine pmap managed
	 * by vmm(4) on amd64/i386), don't do any updating, just return.
	 *
	 * pmap_nested() on other archs is #defined to 0, so this is a
	 * no-op.
	 */
	if (pmap_nested(map->pmap))
		return;

	/* Update the maxrss for the process. */
	if (map->flags & VM_MAP_ISVMSPACE) {
		p = curproc;
		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);

		res = pmap_resident_count(map->pmap);
		/* Convert res from pages to kilobytes. */
		res <<= (PAGE_SHIFT - 10);

		if (p->p_ru.ru_maxrss < res)
			p->p_ru.ru_maxrss = res;
	}
}

/*
 *   F A U L T   -   m a i n   e n t r y   p o i n t
 */

/*
 * uvm_fault: page fault handler
 *
 * => called from MD code to resolve a page fault
 * => VM data structures usually should be unlocked.   however, it is
 *	possible to call here with the main map locked if the caller
 *	gets a write lock, sets it recursive, and then calls us (c.f.
 *	uvm_map_pageable).   this should be avoided because it keeps
 *	the map locked off during I/O.
 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
 */
#define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
			 ~PROT_WRITE : PROT_MASK)
struct uvm_faultctx {
	/*
	 * the following members are set up by uvm_fault_check() and
	 * read-only after that.
	 */
	vm_prot_t enter_prot;
	vm_prot_t access_type;
	vaddr_t startva;
	int npages;
	int centeridx;
	boolean_t narrow;
	boolean_t wired;
	paddr_t pa_flags;
};

int		uvm_fault_check(
		    struct uvm_faultinfo *, struct uvm_faultctx *,
		    struct vm_anon ***);

int		uvm_fault_upper(
		    struct uvm_faultinfo *, struct uvm_faultctx *,
		    struct vm_anon **, vm_fault_t);
boolean_t	uvm_fault_upper_lookup(
		    struct uvm_faultinfo *, const struct uvm_faultctx *,
		    struct vm_anon **, struct vm_page **);

int		uvm_fault_lower(
		    struct uvm_faultinfo *, struct uvm_faultctx *,
		    struct vm_page **, vm_fault_t);

int
uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
    vm_prot_t access_type)
{
	struct uvm_faultinfo ufi;
	struct uvm_faultctx flt;
	boolean_t shadowed;
	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
	struct vm_page *pages[UVM_MAXRANGE];
	int error;

	counters_inc(uvmexp_counters, faults);
	TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL);

	/*
	 * init the IN parameters in the ufi
	 */
	ufi.orig_map = orig_map;
	ufi.orig_rvaddr = trunc_page(vaddr);
	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
	if (fault_type == VM_FAULT_WIRE)
		flt.narrow = TRUE;	/* don't look for neighborhood
					 * pages on wire */
	else
		flt.narrow = FALSE;	/* normal fault */
	flt.access_type = access_type;


	error = ERESTART;
	while (error == ERESTART) { /* ReFault: */
		anons = anons_store;

		error = uvm_fault_check(&ufi, &flt, &anons);
		if (error != 0)
			continue;

		/* True if there is an anon at the faulting address */
		shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
		if (shadowed == TRUE) {
			/* case 1: fault on an anon in our amap */
			error = uvm_fault_upper(&ufi, &flt, anons, fault_type);
		} else {
			struct uvm_object *uobj = ufi.entry->object.uvm_obj;

			/*
			 * if the desired page is not shadowed by the amap and
			 * we have a backing object, then we check to see if
			 * the backing object would prefer to handle the fault
			 * itself (rather than letting us do it with the usual
			 * pgo_get hook).  the backing object signals this by
			 * providing a pgo_fault routine.
			 */
			if (uobj != NULL && uobj->pgops->pgo_fault != NULL) {
				KERNEL_LOCK();
				rw_enter(uobj->vmobjlock, RW_WRITE);
				error = uobj->pgops->pgo_fault(&ufi,
				    flt.startva, pages, flt.npages,
				    flt.centeridx, fault_type, flt.access_type,
				    PGO_LOCKED);
				KERNEL_UNLOCK();

				if (error == VM_PAGER_OK)
					error = 0;
				else if (error == VM_PAGER_REFAULT)
					error = ERESTART;
				else
					error = EACCES;
			} else {
				/* case 2: fault on backing obj or zero fill */
				error = uvm_fault_lower(&ufi, &flt, pages,
				    fault_type);
			}
		}
	}

	return error;
}

/*
 * uvm_fault_check: check prot, handle needs-copy, etc.
 *
 *	1. lookup entry.
 *	2. check protection.
 *	3. adjust fault condition (mainly for simulated fault).
 *	4. handle needs-copy (lazy amap copy).
 *	5. establish range of interest for neighbor fault (aka pre-fault).
 *	6. look up anons (if amap exists).
 *	7. flush pages (if MADV_SEQUENTIAL)
 *
 * => called with nothing locked.
 * => if we fail (result != 0) we unlock everything.
 * => initialize/adjust many members of flt.
 */
int
uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    struct vm_anon ***ranons)
{
	struct vm_amap *amap;
	struct uvm_object *uobj;
	int nback, nforw;

	/*
	 * lookup and lock the maps
	 */
	if (uvmfault_lookup(ufi, FALSE) == FALSE) {
		return EFAULT;
	}
	/* locked: maps(read) */

#ifdef DIAGNOSTIC
	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0)
		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
		    ufi->map, ufi->orig_rvaddr);
#endif

	/*
	 * check protection
	 */
	if ((ufi->entry->protection & flt->access_type) != flt->access_type) {
		uvmfault_unlockmaps(ufi, FALSE);
		return EACCES;
	}

	/*
	 * "enter_prot" is the protection we want to enter the page in at.
	 * for certain pages (e.g. copy-on-write pages) this protection can
	 * be more strict than ufi->entry->protection.  "wired" means either
	 * the entry is wired or we are fault-wiring the pg.
	 */

	flt->enter_prot = ufi->entry->protection;
	flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0;
	flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || (flt->narrow == TRUE);
	if (flt->wired)
		flt->access_type = flt->enter_prot; /* full access for wired */

	/* handle "needs_copy" case. */
	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
		if ((flt->access_type & PROT_WRITE) ||
		    (ufi->entry->object.uvm_obj == NULL)) {
			/* need to clear */
			uvmfault_unlockmaps(ufi, FALSE);
			uvmfault_amapcopy(ufi);
			counters_inc(uvmexp_counters, flt_amcopy);
			return ERESTART;
		} else {
			/*
			 * ensure that we pmap_enter page R/O since
			 * needs_copy is still true
			 */
			flt->enter_prot &= ~PROT_WRITE;
		}
	}

	/*
	 * identify the players
	 */
	amap = ufi->entry->aref.ar_amap;	/* upper layer */
	uobj = ufi->entry->object.uvm_obj;	/* lower layer */

	/*
	 * check for a case 0 fault.  if nothing backing the entry then
	 * error now.
	 */
	if (amap == NULL && uobj == NULL) {
		uvmfault_unlockmaps(ufi, FALSE);
		return EFAULT;
	}

	/*
	 * establish range of interest based on advice from mapper
	 * and then clip to fit map entry.   note that we only want
	 * to do this the first time through the fault.   if we
	 * ReFault we will disable this by setting "narrow" to true.
	 */
	if (flt->narrow == FALSE) {

		/* wide fault (!narrow) */
		nback = min(uvmadvice[ufi->entry->advice].nback,
		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
		flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
		nforw = min(uvmadvice[ufi->entry->advice].nforw,
		    ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1);
		/*
		 * note: "-1" because we don't want to count the
		 * faulting page as forw
		 */
		flt->npages = nback + nforw + 1;
		flt->centeridx = nback;

		flt->narrow = TRUE;	/* ensure only once per-fault */
	} else {
		/* narrow fault! */
		nback = nforw = 0;
		flt->startva = ufi->orig_rvaddr;
		flt->npages = 1;
		flt->centeridx = 0;
	}

	/*
	 * if we've got an amap then lock it and extract current anons.
	 */
	if (amap) {
		amap_lock(amap);
		amap_lookups(&ufi->entry->aref,
		    flt->startva - ufi->entry->start, *ranons, flt->npages);
	} else {
		*ranons = NULL;	/* to be safe */
	}

	/*
	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
	 * now and then forget about them (for the rest of the fault).
	 */
	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
		/* flush back-page anons? */
		if (amap)
			uvmfault_anonflush(*ranons, nback);

		/*
		 * flush object?
		 */
		if (uobj) {
			voff_t uoff;

			uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset;
			rw_enter(uobj->vmobjlock, RW_WRITE);
			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
			rw_exit(uobj->vmobjlock);
		}

		/* now forget about the backpages */
		if (amap)
			*ranons += nback;
		flt->startva += ((vsize_t)nback << PAGE_SHIFT);
		flt->npages -= nback;
		flt->centeridx = 0;
	}

	return 0;
}

/*
 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
 *
 * iterate range of interest:
 *	1. check if h/w mapping exists.  if yes, we don't care
 *	2. check if anon exists.  if not, page is lower.
 *	3. if anon exists, enter h/w mapping for neighbors.
 *
 * => called with amap locked (if exists).
 */
boolean_t
uvm_fault_upper_lookup(struct uvm_faultinfo *ufi,
    const struct uvm_faultctx *flt, struct vm_anon **anons,
    struct vm_page **pages)
{
	struct vm_amap *amap = ufi->entry->aref.ar_amap;
	struct vm_anon *anon;
	boolean_t shadowed;
	vaddr_t currva;
	paddr_t pa;
	int lcv;

	/* locked: maps(read), amap(if there) */
	KASSERT(amap == NULL ||
	    rw_write_held(amap->am_lock));

	/*
	 * map in the backpages and frontpages we found in the amap in hopes
	 * of preventing future faults.    we also init the pages[] array as
	 * we go.
	 */
	currva = flt->startva;
	shadowed = FALSE;
	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
		/*
		 * dont play with VAs that are already mapped
		 * except for center)
		 */
		if (lcv != flt->centeridx &&
		    pmap_extract(ufi->orig_map->pmap, currva, &pa)) {
			pages[lcv] = PGO_DONTCARE;
			continue;
		}

		/*
		 * unmapped or center page.   check if any anon at this level.
		 */
		if (amap == NULL || anons[lcv] == NULL) {
			pages[lcv] = NULL;
			continue;
		}

		/*
		 * check for present page and map if possible.
		 */
		pages[lcv] = PGO_DONTCARE;
		if (lcv == flt->centeridx) {	/* save center for later! */
			shadowed = TRUE;
			continue;
		}
		anon = anons[lcv];
		KASSERT(anon->an_lock == amap->am_lock);
		if (anon->an_page &&
		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
			uvm_lock_pageq();
			uvm_pageactivate(anon->an_page);	/* reactivate */
			uvm_unlock_pageq();
			counters_inc(uvmexp_counters, flt_namap);

			/*
			 * Since this isn't the page that's actually faulting,
			 * ignore pmap_enter() failures; it's not critical
			 * that we enter these right now.
			 */
			(void) pmap_enter(ufi->orig_map->pmap, currva,
			    VM_PAGE_TO_PHYS(anon->an_page) | flt->pa_flags,
			    (anon->an_ref > 1) ?
			    (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot,
			    PMAP_CANFAIL |
			     (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
		}
	}
	if (flt->npages > 1)
		pmap_update(ufi->orig_map->pmap);

	return shadowed;
}

/*
 * uvm_fault_upper: handle upper fault.
 *
 *	1. acquire anon lock.
 *	2. get anon.  let uvmfault_anonget do the dirty work.
 *	3. if COW, promote data to new anon
 *	4. enter h/w mapping
 */
int
uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   struct vm_anon **anons, vm_fault_t fault_type)
{
	struct vm_amap *amap = ufi->entry->aref.ar_amap;
	struct vm_anon *oanon, *anon = anons[flt->centeridx];
	struct vm_page *pg = NULL;
	int error, ret;

	/* locked: maps(read), amap, anon */
	KASSERT(rw_write_held(amap->am_lock));
	KASSERT(anon->an_lock == amap->am_lock);

	/*
	 * no matter if we have case 1A or case 1B we are going to need to
	 * have the anon's memory resident.   ensure that now.
	 */
	/*
	 * let uvmfault_anonget do the dirty work.
	 * if it fails (!OK) it will unlock everything for us.
	 * if it succeeds, locks are still valid and locked.
	 * also, if it is OK, then the anon's page is on the queues.
	 * if the page is on loan from a uvm_object, then anonget will
	 * lock that object for us if it does not fail.
	 */
	error = uvmfault_anonget(ufi, amap, anon);
	switch (error) {
	case VM_PAGER_OK:
		break;

	case VM_PAGER_REFAULT:
		return ERESTART;

	case VM_PAGER_ERROR:
		/*
		 * An error occurred while trying to bring in the
		 * page -- this is the only error we return right
		 * now.
		 */
		return EACCES;	/* XXX */
	default:
#ifdef DIAGNOSTIC
		panic("uvm_fault: uvmfault_anonget -> %d", error);
#else
		return EACCES;
#endif
	}

	KASSERT(rw_write_held(amap->am_lock));
	KASSERT(anon->an_lock == amap->am_lock);

	/*
	 * if we are case 1B then we will need to allocate a new blank
	 * anon to transfer the data into.   note that we have a lock
	 * on anon, so no one can busy or release the page until we are done.
	 * also note that the ref count can't drop to zero here because
	 * it is > 1 and we are only dropping one ref.
	 *
	 * in the (hopefully very rare) case that we are out of RAM we
	 * will unlock, wait for more RAM, and refault.
	 *
	 * if we are out of anon VM we wait for RAM to become available.
	 */

	if ((flt->access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
		counters_inc(uvmexp_counters, flt_acow);
		oanon = anon;		/* oanon = old */
		anon = uvm_analloc();
		if (anon) {
			anon->an_lock = amap->am_lock;
			pg = uvm_pagealloc(NULL, 0, anon, 0);
		}

		/* check for out of RAM */
		if (anon == NULL || pg == NULL) {
			uvmfault_unlockall(ufi, amap, NULL);
			if (anon == NULL)
				counters_inc(uvmexp_counters, flt_noanon);
			else {
				anon->an_lock = NULL;
				anon->an_ref--;
				uvm_anfree(anon);
				counters_inc(uvmexp_counters, flt_noram);
			}

			if (uvm_swapisfull())
				return ENOMEM;

			/* out of RAM, wait for more */
			if (anon == NULL)
				uvm_anwait();
			else
				uvm_wait("flt_noram3");
			return ERESTART;
		}

		/* got all resources, replace anon with nanon */
		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
		/* un-busy! new page */
		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
		UVM_PAGE_OWN(pg, NULL);
		ret = amap_add(&ufi->entry->aref,
		    ufi->orig_rvaddr - ufi->entry->start, anon, 1);
		KASSERT(ret == 0);

		/* deref: can not drop to zero here by defn! */
		oanon->an_ref--;

#ifndef __HAVE_PMAP_MPSAFE_ENTER_COW
		/*
		 * If there are multiple threads, either uvm or the
		 * pmap has to make sure no threads see the old RO
		 * mapping once any have seen the new RW mapping.
		 * uvm does it by inserting the new mapping RO and
		 * letting it fault again.
		 */
		if (P_HASSIBLING(curproc)) {
			flt->enter_prot &= ~PROT_WRITE;
			flt->access_type &= ~PROT_WRITE;
		}
#endif

		/*
		 * note: anon is _not_ locked, but we have the sole references
		 * to in from amap.
		 * thus, no one can get at it until we are done with it.
		 */
	} else {
		counters_inc(uvmexp_counters, flt_anon);
		oanon = anon;
		pg = anon->an_page;
		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
			flt->enter_prot = flt->enter_prot & ~PROT_WRITE;
	}

	/*
	 * now map the page in .
	 */
	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
		/*
		 * No need to undo what we did; we can simply think of
		 * this as the pmap throwing away the mapping information.
		 *
		 * We do, however, have to go through the ReFault path,
		 * as the map may change while we're asleep.
		 */
		uvmfault_unlockall(ufi, amap, NULL);
		if (uvm_swapisfull()) {
			/* XXX instrumentation */
			return ENOMEM;
		}
		/* XXX instrumentation */
		uvm_wait("flt_pmfail1");
		return ERESTART;
	}

	/*
	 * ... update the page queues.
	 */
	uvm_lock_pageq();

	if (fault_type == VM_FAULT_WIRE) {
		uvm_pagewire(pg);
		/*
		 * since the now-wired page cannot be paged out,
		 * release its swap resources for others to use.
		 * since an anon with no swap cannot be PG_CLEAN,
		 * clear its clean flag now.
		 */
		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
		uvm_anon_dropswap(anon);
	} else {
		/* activate it */
		uvm_pageactivate(pg);
	}

	uvm_unlock_pageq();

	/*
	 * done case 1!  finish up by unlocking everything and returning success
	 */
	uvmfault_unlockall(ufi, amap, NULL);
	pmap_update(ufi->orig_map->pmap);
	return 0;
}

/*
 * uvm_fault_lower_lookup: look up on-memory uobj pages.
 *
 *	1. get on-memory pages.
 *	2. if failed, give up (get only center page later).
 *	3. if succeeded, enter h/w mapping of neighbor pages.
 */

struct vm_page *
uvm_fault_lower_lookup(
	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
	struct vm_page **pages)
{
	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
	struct vm_page *uobjpage = NULL;
	int lcv, gotpages;
	vaddr_t currva;

	rw_enter(uobj->vmobjlock, RW_WRITE);

	counters_inc(uvmexp_counters, flt_lget);
	gotpages = flt->npages;
	(void) uobj->pgops->pgo_get(uobj,
	    ufi->entry->offset + (flt->startva - ufi->entry->start),
	    pages, &gotpages, flt->centeridx,
	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
	    PGO_LOCKED);

	/*
	 * check for pages to map, if we got any
	 */
	if (gotpages == 0) {
		return NULL;
	}

	currva = flt->startva;
	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
		if (pages[lcv] == NULL ||
		    pages[lcv] == PGO_DONTCARE)
			continue;

		KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);

		/*
		 * if center page is resident and not
		 * PG_BUSY, then pgo_get made it PG_BUSY
		 * for us and gave us a handle to it.
		 * remember this page as "uobjpage."
		 * (for later use).
		 */
		if (lcv == flt->centeridx) {
			uobjpage = pages[lcv];
			continue;
		}

		/*
		 * note: calling pgo_get with locked data
		 * structures returns us pages which are
		 * neither busy nor released, so we don't
		 * need to check for this.   we can just
		 * directly enter the page (after moving it
		 * to the head of the active queue [useful?]).
		 */

		uvm_lock_pageq();
		uvm_pageactivate(pages[lcv]);	/* reactivate */
		uvm_unlock_pageq();
		counters_inc(uvmexp_counters, flt_nomap);

		/*
		 * Since this page isn't the page that's
		 * actually faulting, ignore pmap_enter()
		 * failures; it's not critical that we
		 * enter these right now.
		 */
		(void) pmap_enter(ufi->orig_map->pmap, currva,
		    VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags,
		    flt->enter_prot & MASK(ufi->entry),
		    PMAP_CANFAIL |
		     (flt->wired ? PMAP_WIRED : 0));

		/*
		 * NOTE: page can't be PG_WANTED because
		 * we've held the lock the whole time
		 * we've had the handle.
		 */
		atomic_clearbits_int(&pages[lcv]->pg_flags, PG_BUSY);
		UVM_PAGE_OWN(pages[lcv], NULL);
	}
	pmap_update(ufi->orig_map->pmap);

	return uobjpage;
}

/*
 * uvm_fault_lower: handle lower fault.
 *
 */
int
uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   struct vm_page **pages, vm_fault_t fault_type)
{
	struct vm_amap *amap = ufi->entry->aref.ar_amap;
	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
	boolean_t promote, locked;
	int result;
	struct vm_page *uobjpage, *pg = NULL;
	struct vm_anon *anon = NULL;
	voff_t uoff;

	/*
	 * now, if the desired page is not shadowed by the amap and we have
	 * a backing object that does not have a special fault routine, then
	 * we ask (with pgo_get) the object for resident pages that we care
	 * about and attempt to map them in.  we do not let pgo_get block
	 * (PGO_LOCKED).
	 */
	if (uobj == NULL) {
		/* zero fill; don't care neighbor pages */
		uobjpage = NULL;
	} else {
		uobjpage = uvm_fault_lower_lookup(ufi, flt, pages);
	}

	/*
	 * note that at this point we are done with any front or back pages.
	 * we are now going to focus on the center page (i.e. the one we've
	 * faulted on).  if we have faulted on the bottom (uobj)
	 * layer [i.e. case 2] and the page was both present and available,
	 * then we've got a pointer to it as "uobjpage" and we've already
	 * made it BUSY.
	 */

	/*
	 * locked:
	 */
	KASSERT(amap == NULL ||
	    rw_write_held(amap->am_lock));
	KASSERT(uobj == NULL ||
	    rw_write_held(uobj->vmobjlock));

	/*
	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
	 * have a backing object, check and see if we are going to promote
	 * the data up to an anon during the fault.
	 */
	if (uobj == NULL) {
		uobjpage = PGO_DONTCARE;
		promote = TRUE;		/* always need anon here */
	} else {
		KASSERT(uobjpage != PGO_DONTCARE);
		promote = (flt->access_type & PROT_WRITE) &&
		     UVM_ET_ISCOPYONWRITE(ufi->entry);
	}

	/*
	 * if uobjpage is not null then we do not need to do I/O to get the
	 * uobjpage.
	 *
	 * if uobjpage is null, then we need to ask the pager to
	 * get the data for us.   once we have the data, we need to reverify
	 * the state the world.   we are currently not holding any resources.
	 */
	if (uobjpage) {
		/* update rusage counters */
		curproc->p_ru.ru_minflt++;
	} else {
		int gotpages;

		/* update rusage counters */
		curproc->p_ru.ru_majflt++;

		uvmfault_unlockall(ufi, amap, NULL);

		counters_inc(uvmexp_counters, flt_get);
		gotpages = 1;
		uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
		    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
		    PGO_SYNCIO);

		/*
		 * recover from I/O
		 */
		if (result != VM_PAGER_OK) {
			KASSERT(result != VM_PAGER_PEND);

			if (result == VM_PAGER_AGAIN) {
				tsleep_nsec(&nowake, PVM, "fltagain2",
				    MSEC_TO_NSEC(5));
				return ERESTART;
			}

			if (!UVM_ET_ISNOFAULT(ufi->entry))
				return (EIO);

			uobjpage = PGO_DONTCARE;
			uobj = NULL;
			promote = TRUE;
		}

		/* re-verify the state of the world.  */
		locked = uvmfault_relock(ufi);
		if (locked && amap != NULL)
			amap_lock(amap);

		/* might be changed */
		if (uobjpage != PGO_DONTCARE) {
			uobj = uobjpage->uobject;
			rw_enter(uobj->vmobjlock, RW_WRITE);
		}

		/*
		 * Re-verify that amap slot is still free. if there is
		 * a problem, we clean up.
		 */
		if (locked && amap && amap_lookup(&ufi->entry->aref,
		      ufi->orig_rvaddr - ufi->entry->start)) {
			if (locked)
				uvmfault_unlockall(ufi, amap, NULL);
			locked = FALSE;
		}

		/* didn't get the lock?   release the page and retry. */
		if (locked == FALSE && uobjpage != PGO_DONTCARE) {
			uvm_lock_pageq();
			/* make sure it is in queues */
			uvm_pageactivate(uobjpage);
			uvm_unlock_pageq();

			if (uobjpage->pg_flags & PG_WANTED)
				/* still holding object lock */
				wakeup(uobjpage);
			atomic_clearbits_int(&uobjpage->pg_flags,
			    PG_BUSY|PG_WANTED);
			UVM_PAGE_OWN(uobjpage, NULL);
		}

		if (locked == FALSE) {
			if (uobjpage != PGO_DONTCARE)
				rw_exit(uobj->vmobjlock);
			return ERESTART;
		}

		/*
		 * we have the data in uobjpage which is PG_BUSY
		 */
	}

	/*
	 * notes:
	 *  - at this point uobjpage can not be NULL
	 *  - at this point uobjpage could be PG_WANTED (handle later)
	 */
	if (promote == FALSE) {
		/*
		 * we are not promoting.   if the mapping is COW ensure that we
		 * don't give more access than we should (e.g. when doing a read
		 * fault on a COPYONWRITE mapping we want to map the COW page in
		 * R/O even though the entry protection could be R/W).
		 *
		 * set "pg" to the page we want to map in (uobjpage, usually)
		 */
		counters_inc(uvmexp_counters, flt_obj);
		if (UVM_ET_ISCOPYONWRITE(ufi->entry))
			flt->enter_prot &= ~PROT_WRITE;
		pg = uobjpage;		/* map in the actual object */

		/* assert(uobjpage != PGO_DONTCARE) */

		/*
		 * we are faulting directly on the page.
		 */
	} else {
		/*
		 * if we are going to promote the data to an anon we
		 * allocate a blank anon here and plug it into our amap.
		 */
#ifdef DIAGNOSTIC
		if (amap == NULL)
			panic("uvm_fault: want to promote data, but no anon");
#endif

		anon = uvm_analloc();
		if (anon) {
			/*
			 * In `Fill in data...' below, if
			 * uobjpage == PGO_DONTCARE, we want
			 * a zero'd, dirty page, so have
			 * uvm_pagealloc() do that for us.
			 */
			anon->an_lock = amap->am_lock;
			pg = uvm_pagealloc(NULL, 0, anon,
			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
		}

		/*
		 * out of memory resources?
		 */
		if (anon == NULL || pg == NULL) {
			/*
			 * arg!  must unbusy our page and fail or sleep.
			 */
			if (uobjpage != PGO_DONTCARE) {
				uvm_lock_pageq();
				uvm_pageactivate(uobjpage);
				uvm_unlock_pageq();

				if (uobjpage->pg_flags & PG_WANTED)
					wakeup(uobjpage);
				atomic_clearbits_int(&uobjpage->pg_flags,
				    PG_BUSY|PG_WANTED);
				UVM_PAGE_OWN(uobjpage, NULL);
			}

			/* unlock and fail ... */
			uvmfault_unlockall(ufi, amap, uobj);
			if (anon == NULL)
				counters_inc(uvmexp_counters, flt_noanon);
			else {
				anon->an_lock = NULL;
				anon->an_ref--;
				uvm_anfree(anon);
				counters_inc(uvmexp_counters, flt_noram);
			}

			if (uvm_swapisfull())
				return (ENOMEM);

			/* out of RAM, wait for more */
			if (anon == NULL)
				uvm_anwait();
			else
				uvm_wait("flt_noram5");
			return ERESTART;
		}

		/*
		 * fill in the data
		 */
		if (uobjpage != PGO_DONTCARE) {
			counters_inc(uvmexp_counters, flt_prcopy);
			/* copy page [pg now dirty] */
			uvm_pagecopy(uobjpage, pg);

			/*
			 * promote to shared amap?  make sure all sharing
			 * procs see it
			 */
			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
				pmap_page_protect(uobjpage, PROT_NONE);
				}

			/* dispose of uobjpage. drop handle to uobj as well. */
			if (uobjpage->pg_flags & PG_WANTED)
				wakeup(uobjpage);
			atomic_clearbits_int(&uobjpage->pg_flags,
			    PG_BUSY|PG_WANTED);
			UVM_PAGE_OWN(uobjpage, NULL);
			uvm_lock_pageq();
			uvm_pageactivate(uobjpage);
			uvm_unlock_pageq();
			rw_exit(uobj->vmobjlock);
			uobj = NULL;
		} else {
			counters_inc(uvmexp_counters, flt_przero);
			/*
			 * Page is zero'd and marked dirty by uvm_pagealloc()
			 * above.
			 */
		}

		if (amap_add(&ufi->entry->aref,
		    ufi->orig_rvaddr - ufi->entry->start, anon, 0)) {
			uvmfault_unlockall(ufi, amap, uobj);
			uvm_anfree(anon);
			counters_inc(uvmexp_counters, flt_noamap);

			if (uvm_swapisfull())
				return (ENOMEM);

			amap_populate(&ufi->entry->aref,
			    ufi->orig_rvaddr - ufi->entry->start);
			return ERESTART;
		}
	}

	/* note: pg is either the uobjpage or the new page in the new anon */
	/*
	 * all resources are present.   we can now map it in and free our
	 * resources.
	 */
	if (amap == NULL)
		KASSERT(anon == NULL);
	else {
		KASSERT(rw_write_held(amap->am_lock));
		KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
	}
	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
		/*
		 * No need to undo what we did; we can simply think of
		 * this as the pmap throwing away the mapping information.
		 *
		 * We do, however, have to go through the ReFault path,
		 * as the map may change while we're asleep.
		 */
		if (pg->pg_flags & PG_WANTED)
			wakeup(pg);

		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
		UVM_PAGE_OWN(pg, NULL);
		uvmfault_unlockall(ufi, amap, uobj);
		if (uvm_swapisfull()) {
			/* XXX instrumentation */
			return (ENOMEM);
		}
		/* XXX instrumentation */
		uvm_wait("flt_pmfail2");
		return ERESTART;
	}

	if (fault_type == VM_FAULT_WIRE) {
		uvm_lock_pageq();
		uvm_pagewire(pg);
		uvm_unlock_pageq();
		if (pg->pg_flags & PQ_AOBJ) {
			/*
			 * since the now-wired page cannot be paged out,
			 * release its swap resources for others to use.
			 * since an aobj page with no swap cannot be clean,
			 * mark it dirty now.
			 *
			 * use pg->uobject here.  if the page is from a
			 * tmpfs vnode, the pages are backed by its UAO and
			 * not the vnode.
			 */
			KASSERT(uobj != NULL);
			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
		}
	} else {
		/* activate it */
		uvm_lock_pageq();
		uvm_pageactivate(pg);
		uvm_unlock_pageq();
	}

	if (pg->pg_flags & PG_WANTED)
		wakeup(pg);

	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
	UVM_PAGE_OWN(pg, NULL);
	uvmfault_unlockall(ufi, amap, uobj);
	pmap_update(ufi->orig_map->pmap);

	return (0);
}


/*
 * uvm_fault_wire: wire down a range of virtual addresses in a map.
 *
 * => map may be read-locked by caller, but MUST NOT be write-locked.
 * => if map is read-locked, any operations which may cause map to
 *	be write-locked in uvm_fault() must be taken care of by
 *	the caller.  See uvm_map_pageable().
 */
int
uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
{
	vaddr_t va;
	int rv;

	/*
	 * now fault it in a page at a time.   if the fault fails then we have
	 * to undo what we have done.   note that in uvm_fault PROT_NONE
	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
	 */
	for (va = start ; va < end ; va += PAGE_SIZE) {
		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
		if (rv) {
			if (va != start) {
				uvm_fault_unwire(map, start, va);
			}
			return (rv);
		}
	}

	return (0);
}

/*
 * uvm_fault_unwire(): unwire range of virtual space.
 */
void
uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
{

	vm_map_lock_read(map);
	uvm_fault_unwire_locked(map, start, end);
	vm_map_unlock_read(map);
}

/*
 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
 *
 * => map must be at least read-locked.
 */
void
uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
{
	vm_map_entry_t entry, oentry = NULL, next;
	pmap_t pmap = vm_map_pmap(map);
	vaddr_t va;
	paddr_t pa;
	struct vm_page *pg;

	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);

	/*
	 * we assume that the area we are unwiring has actually been wired
	 * in the first place.   this means that we should be able to extract
	 * the PAs from the pmap.
	 */

	/*
	 * find the beginning map entry for the region.
	 */
	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
		panic("uvm_fault_unwire_locked: address not in map");

	for (va = start; va < end ; va += PAGE_SIZE) {
		if (pmap_extract(pmap, va, &pa) == FALSE)
			continue;

		/*
		 * find the map entry for the current address.
		 */
		KASSERT(va >= entry->start);
		while (va >= entry->end) {
			next = RBT_NEXT(uvm_map_addr, entry);
			KASSERT(next != NULL && next->start <= entry->end);
			entry = next;
		}

		/*
		 * lock it.
		 */
		if (entry != oentry) {
			if (oentry != NULL) {
				uvm_map_unlock_entry(oentry);
			}
			uvm_map_lock_entry(entry);
			oentry = entry;
		}

		/*
		 * if the entry is no longer wired, tell the pmap.
		 */
		if (VM_MAPENT_ISWIRED(entry) == 0)
			pmap_unwire(pmap, va);

		pg = PHYS_TO_VM_PAGE(pa);
		if (pg) {
			uvm_lock_pageq();
			uvm_pageunwire(pg);
			uvm_unlock_pageq();
		}
	}

	if (oentry != NULL) {
		uvm_map_unlock_entry(entry);
	}
}

/*
 * uvmfault_unlockmaps: unlock the maps
 */
void
uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
{
	/*
	 * ufi can be NULL when this isn't really a fault,
	 * but merely paging in anon data.
	 */
	if (ufi == NULL) {
		return;
	}

	uvmfault_update_stats(ufi);
	if (write_locked) {
		vm_map_unlock(ufi->map);
	} else {
		vm_map_unlock_read(ufi->map);
	}
}

/*
 * uvmfault_unlockall: unlock everything passed in.
 *
 * => maps must be read-locked (not write-locked).
 */
void
uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    struct uvm_object *uobj)
{
	if (uobj)
		rw_exit(uobj->vmobjlock);
	if (amap != NULL)
		amap_unlock(amap);
	uvmfault_unlockmaps(ufi, FALSE);
}

/*
 * uvmfault_lookup: lookup a virtual address in a map
 *
 * => caller must provide a uvm_faultinfo structure with the IN
 *	params properly filled in
 * => we will lookup the map entry (handling submaps) as we go
 * => if the lookup is a success we will return with the maps locked
 * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
 *	get a read lock.
 * => note that submaps can only appear in the kernel and they are
 *	required to use the same virtual addresses as the map they
 *	are referenced by (thus address translation between the main
 *	map and the submap is unnecessary).
 */

boolean_t
uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
{
	vm_map_t tmpmap;

	/*
	 * init ufi values for lookup.
	 */
	ufi->map = ufi->orig_map;
	ufi->size = ufi->orig_size;

	/*
	 * keep going down levels until we are done.   note that there can
	 * only be two levels so we won't loop very long.
	 */
	while (1) {
		if (ufi->orig_rvaddr < ufi->map->min_offset ||
		    ufi->orig_rvaddr >= ufi->map->max_offset)
			return FALSE;

		/* lock map */
		if (write_lock) {
			vm_map_lock(ufi->map);
		} else {
			vm_map_lock_read(ufi->map);
		}

		/* lookup */
		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
		    &ufi->entry)) {
			uvmfault_unlockmaps(ufi, write_lock);
			return FALSE;
		}

		/* reduce size if necessary */
		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
			ufi->size = ufi->entry->end - ufi->orig_rvaddr;

		/*
		 * submap?    replace map with the submap and lookup again.
		 * note: VAs in submaps must match VAs in main map.
		 */
		if (UVM_ET_ISSUBMAP(ufi->entry)) {
			tmpmap = ufi->entry->object.sub_map;
			uvmfault_unlockmaps(ufi, write_lock);
			ufi->map = tmpmap;
			continue;
		}

		/*
		 * got it!
		 */
		ufi->mapv = ufi->map->timestamp;
		return TRUE;

	}	/* while loop */

	/*NOTREACHED*/
}

/*
 * uvmfault_relock: attempt to relock the same version of the map
 *
 * => fault data structures should be unlocked before calling.
 * => if a success (TRUE) maps will be locked after call.
 */
boolean_t
uvmfault_relock(struct uvm_faultinfo *ufi)
{
	/*
	 * ufi can be NULL when this isn't really a fault,
	 * but merely paging in anon data.
	 */
	if (ufi == NULL) {
		return TRUE;
	}

	counters_inc(uvmexp_counters, flt_relck);

	/*
	 * relock map.   fail if version mismatch (in which case nothing
	 * gets locked).
	 */
	vm_map_lock_read(ufi->map);
	if (ufi->mapv != ufi->map->timestamp) {
		vm_map_unlock_read(ufi->map);
		return FALSE;
	}

	counters_inc(uvmexp_counters, flt_relckok);
	return TRUE;		/* got it! */
}