1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
/* $OpenBSD: uvm_glue.c,v 1.55 2010/07/02 22:38:32 thib Exp $ */
/* $NetBSD: uvm_glue.c,v 1.44 2001/02/06 19:54:44 eeh Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor,
* Washington University, the University of California, Berkeley and
* its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
* from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* uvm_glue.c: glue functions
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/buf.h>
#include <sys/user.h>
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#include <sys/sched.h>
#include <uvm/uvm.h>
#include <machine/cpu.h>
/*
* uvm_kernacc: can the kernel access a region of memory
*
* - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
*/
boolean_t
uvm_kernacc(caddr_t addr, size_t len, int rw)
{
boolean_t rv;
vaddr_t saddr, eaddr;
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
saddr = trunc_page((vaddr_t)addr);
eaddr = round_page((vaddr_t)addr + len);
vm_map_lock_read(kernel_map);
rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
vm_map_unlock_read(kernel_map);
return(rv);
}
#ifdef KGDB
/*
* Change protections on kernel pages from addr to addr+len
* (presumably so debugger can plant a breakpoint).
*
* We force the protection change at the pmap level. If we were
* to use vm_map_protect a change to allow writing would be lazily-
* applied meaning we would still take a protection fault, something
* we really don't want to do. It would also fragment the kernel
* map unnecessarily. We cannot use pmap_protect since it also won't
* enforce a write-enable request. Using pmap_enter is the only way
* we can ensure the change takes place properly.
*/
void
uvm_chgkprot(caddr_t addr, size_t len, int rw)
{
vm_prot_t prot;
paddr_t pa;
vaddr_t sva, eva;
prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
eva = round_page((vaddr_t)addr + len);
for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
/*
* Extract physical address for the page.
* We use a cheezy hack to differentiate physical
* page 0 from an invalid mapping, not that it
* really matters...
*/
if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
panic("chgkprot: invalid page");
pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
}
pmap_update(pmap_kernel());
}
#endif
/*
* uvm_vslock: wire user memory for I/O
*
* - called from physio and sys___sysctl
*/
int
uvm_vslock(struct proc *p, caddr_t addr, size_t len, vm_prot_t access_type)
{
struct vm_map *map;
vaddr_t start, end;
int rv;
map = &p->p_vmspace->vm_map;
start = trunc_page((vaddr_t)addr);
end = round_page((vaddr_t)addr + len);
if (end <= start)
return (EINVAL);
rv = uvm_fault_wire(map, start, end, access_type);
return (rv);
}
/*
* uvm_vsunlock: unwire user memory wired by uvm_vslock()
*
* - called from physio and sys___sysctl
*/
void
uvm_vsunlock(struct proc *p, caddr_t addr, size_t len)
{
vaddr_t start, end;
start = trunc_page((vaddr_t)addr);
end = round_page((vaddr_t)addr + len);
if (end <= start)
return;
uvm_fault_unwire(&p->p_vmspace->vm_map, start, end);
}
/*
* uvm_vslock_device: wire user memory, make sure it's device reachable
* and bounce if necessary.
* Always bounces for now.
*/
int
uvm_vslock_device(struct proc *p, void *addr, size_t len,
vm_prot_t access_type, void **retp)
{
struct vm_page *pg;
struct pglist pgl;
int npages;
vaddr_t start, end, off;
vaddr_t sva, va;
vsize_t sz;
int error, i;
start = trunc_page((vaddr_t)addr);
end = round_page((vaddr_t)addr + len);
sz = end - start;
off = (vaddr_t)addr - start;
if (end <= start)
return (EINVAL);
if ((error = uvm_fault_wire(&p->p_vmspace->vm_map, start, end,
access_type))) {
return (error);
}
npages = atop(sz);
for (i = 0; i < npages; i++) {
paddr_t pa;
if (!pmap_extract(p->p_vmspace->vm_map.pmap,
start + ptoa(i), &pa))
return (EFAULT);
if (!PADDR_IS_DMA_REACHABLE(pa))
break;
}
if (i == npages) {
*retp = NULL;
return (0);
}
if ((va = uvm_km_valloc(kernel_map, sz)) == 0) {
return (ENOMEM);
}
TAILQ_INIT(&pgl);
error = uvm_pglistalloc(npages * PAGE_SIZE, dma_constraint.ucr_low,
dma_constraint.ucr_high, 0, 0, &pgl, npages, UVM_PLA_WAITOK);
KASSERT(error == 0);
sva = va;
while ((pg = TAILQ_FIRST(&pgl)) != NULL) {
TAILQ_REMOVE(&pgl, pg, pageq);
pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ|VM_PROT_WRITE);
va += PAGE_SIZE;
}
pmap_update(pmap_kernel());
KASSERT(va == sva + sz);
*retp = (void *)(sva + off);
error = copyin(addr, *retp, len);
return (error);
}
void
uvm_vsunlock_device(struct proc *p, void *addr, size_t len, void *map)
{
vaddr_t start, end;
vaddr_t kva;
vsize_t sz;
start = trunc_page((vaddr_t)addr);
end = round_page((vaddr_t)addr + len);
sz = end - start;
if (end <= start)
return;
if (map)
copyout(map, addr, len);
uvm_fault_unwire(&p->p_vmspace->vm_map, start, end);
if (!map)
return;
kva = trunc_page((vaddr_t)map);
pmap_kremove(kva, sz);
pmap_update(pmap_kernel());
uvm_km_pgremove_intrsafe(kva, kva + sz);
uvm_km_free(kernel_map, kva, sz);
}
/*
* uvm_fork: fork a virtual address space
*
* - the address space is copied as per parent map's inherit values
* - a new "user" structure is allocated for the child process
* [filled in by MD layer...]
* - if specified, the child gets a new user stack described by
* stack and stacksize
* - NOTE: the kernel stack may be at a different location in the child
* process, and thus addresses of automatic variables may be invalid
* after cpu_fork returns in the child process. We do nothing here
* after cpu_fork returns.
* - XXXCDC: we need a way for this to return a failure value rather
* than just hang
*/
void
uvm_fork(struct proc *p1, struct proc *p2, boolean_t shared, void *stack,
size_t stacksize, void (*func)(void *), void * arg)
{
struct user *up = p2->p_addr;
if (shared == TRUE) {
p2->p_vmspace = NULL;
uvmspace_share(p1, p2); /* share vmspace */
} else
p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
#ifdef PMAP_UAREA
/* Tell the pmap this is a u-area mapping */
PMAP_UAREA((vaddr_t)up);
#endif
/*
* p_stats currently points at a field in the user struct. Copy
* parts of p_stats, and zero out the rest.
*/
p2->p_stats = &up->u_stats;
memset(&up->u_stats.pstat_startzero, 0,
((caddr_t)&up->u_stats.pstat_endzero -
(caddr_t)&up->u_stats.pstat_startzero));
memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
((caddr_t)&up->u_stats.pstat_endcopy -
(caddr_t)&up->u_stats.pstat_startcopy));
/*
* cpu_fork() copy and update the pcb, and make the child ready
* to run. If this is a normal user fork, the child will exit
* directly to user mode via child_return() on its first time
* slice and will not return here. If this is a kernel thread,
* the specified entry point will be executed.
*/
cpu_fork(p1, p2, stack, stacksize, func, arg);
}
/*
* uvm_exit: exit a virtual address space
*
* - the process passed to us is a dead (pre-zombie) process; we
* are running on a different context now (the reaper).
* - we must run in a separate thread because freeing the vmspace
* of the dead process may block.
*/
void
uvm_exit(struct proc *p)
{
uvmspace_free(p->p_vmspace);
p->p_vmspace = NULL;
uvm_km_free(kernel_map, (vaddr_t)p->p_addr, USPACE);
p->p_addr = NULL;
}
/*
* uvm_init_limit: init per-process VM limits
*
* - called for process 0 and then inherited by all others.
*/
void
uvm_init_limits(struct proc *p)
{
/*
* Set up the initial limits on process VM. Set the maximum
* resident set size to be all of (reasonably) available memory.
* This causes any single, large process to start random page
* replacement once it fills memory.
*/
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
}
#ifdef DEBUG
int enableswap = 1;
int swapdebug = 0;
#define SDB_FOLLOW 1
#define SDB_SWAPIN 2
#define SDB_SWAPOUT 4
#endif
/*
* swappable: is process "p" swappable?
*/
#define swappable(p) (((p)->p_flag & (P_SYSTEM | P_WEXIT)) == 0)
/*
* swapout_threads: find threads that can be swapped
*
* - called by the pagedaemon
* - try and swap at least one processs
* - processes that are sleeping or stopped for maxslp or more seconds
* are swapped... otherwise the longest-sleeping or stopped process
* is swapped, otherwise the longest resident process...
*/
void
uvm_swapout_threads(void)
{
struct proc *p;
struct proc *outp, *outp2;
int outpri, outpri2;
int didswap = 0;
extern int maxslp;
/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
#ifdef DEBUG
if (!enableswap)
return;
#endif
/*
* outp/outpri : stop/sleep process with largest sleeptime < maxslp
* outp2/outpri2: the longest resident process (its swap time)
*/
outp = outp2 = NULL;
outpri = outpri2 = 0;
LIST_FOREACH(p, &allproc, p_list) {
if (!swappable(p))
continue;
switch (p->p_stat) {
case SRUN:
if (p->p_swtime > outpri2) {
outp2 = p;
outpri2 = p->p_swtime;
}
continue;
case SSLEEP:
case SSTOP:
if (p->p_slptime >= maxslp) {
pmap_collect(p->p_vmspace->vm_map.pmap);
didswap++;
} else if (p->p_slptime > outpri) {
outp = p;
outpri = p->p_slptime;
}
continue;
}
}
/*
* If we didn't get rid of any real duds, toss out the next most
* likely sleeping/stopped or running candidate. We only do this
* if we are real low on memory since we don't gain much by doing
* it.
*/
if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
if ((p = outp) == NULL)
p = outp2;
#ifdef DEBUG
if (swapdebug & SDB_SWAPOUT)
printf("swapout_threads: no duds, try procp %p\n", p);
#endif
if (p)
pmap_collect(p->p_vmspace->vm_map.pmap);
}
}
|