1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
|
/* $OpenBSD: uvm_page.c,v 1.172 2023/05/13 09:24:59 mpi Exp $ */
/* $NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_page.c 8.3 (Berkeley) 3/21/94
* from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* uvm_page.c: page ops.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sched.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/smr.h>
#include <uvm/uvm.h>
/*
* for object trees
*/
RBT_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
int
uvm_pagecmp(const struct vm_page *a, const struct vm_page *b)
{
return a->offset < b->offset ? -1 : a->offset > b->offset;
}
/*
* global vars... XXXCDC: move to uvm. structure.
*/
/*
* physical memory config is stored in vm_physmem.
*/
struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
/*
* Some supported CPUs in a given architecture don't support all
* of the things necessary to do idle page zero'ing efficiently.
* We therefore provide a way to disable it from machdep code here.
*/
/*
* local variables
*/
/*
* these variables record the values returned by vm_page_bootstrap,
* for debugging purposes. The implementation of uvm_pageboot_alloc
* and pmap_startup here also uses them internally.
*/
static vaddr_t virtual_space_start;
static vaddr_t virtual_space_end;
/*
* local prototypes
*/
static void uvm_pageinsert(struct vm_page *);
static void uvm_pageremove(struct vm_page *);
int uvm_page_owner_locked_p(struct vm_page *);
/*
* inline functions
*/
/*
* uvm_pageinsert: insert a page in the object
*
* => caller must lock object
* => call should have already set pg's object and offset pointers
* and bumped the version counter
*/
static inline void
uvm_pageinsert(struct vm_page *pg)
{
struct vm_page *dupe;
KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) ||
rw_write_held(pg->uobject->vmobjlock));
KASSERT((pg->pg_flags & PG_TABLED) == 0);
dupe = RBT_INSERT(uvm_objtree, &pg->uobject->memt, pg);
/* not allowed to insert over another page */
KASSERT(dupe == NULL);
atomic_setbits_int(&pg->pg_flags, PG_TABLED);
pg->uobject->uo_npages++;
}
/*
* uvm_page_remove: remove page from object
*
* => caller must lock object
*/
static inline void
uvm_pageremove(struct vm_page *pg)
{
KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) ||
rw_write_held(pg->uobject->vmobjlock));
KASSERT(pg->pg_flags & PG_TABLED);
RBT_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
pg->uobject->uo_npages--;
pg->uobject = NULL;
pg->pg_version++;
}
/*
* uvm_page_init: init the page system. called from uvm_init().
*
* => we return the range of kernel virtual memory in kvm_startp/kvm_endp
*/
void
uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
{
vsize_t freepages, pagecount, n;
vm_page_t pagearray, curpg;
int lcv, i;
paddr_t paddr, pgno;
struct vm_physseg *seg;
/*
* init the page queues and page queue locks
*/
TAILQ_INIT(&uvm.page_active);
TAILQ_INIT(&uvm.page_inactive);
mtx_init(&uvm.pageqlock, IPL_VM);
mtx_init(&uvm.fpageqlock, IPL_VM);
uvm_pmr_init();
/*
* allocate vm_page structures.
*/
/*
* sanity check:
* before calling this function the MD code is expected to register
* some free RAM with the uvm_page_physload() function. our job
* now is to allocate vm_page structures for this memory.
*/
if (vm_nphysseg == 0)
panic("uvm_page_bootstrap: no memory pre-allocated");
/*
* first calculate the number of free pages...
*
* note that we use start/end rather than avail_start/avail_end.
* this allows us to allocate extra vm_page structures in case we
* want to return some memory to the pool after booting.
*/
freepages = 0;
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
freepages += (seg->end - seg->start);
/*
* we now know we have (PAGE_SIZE * freepages) bytes of memory we can
* use. for each page of memory we use we need a vm_page structure.
* thus, the total number of pages we can use is the total size of
* the memory divided by the PAGE_SIZE plus the size of the vm_page
* structure. we add one to freepages as a fudge factor to avoid
* truncation errors (since we can only allocate in terms of whole
* pages).
*/
pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
(PAGE_SIZE + sizeof(struct vm_page));
pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
sizeof(struct vm_page));
memset(pagearray, 0, pagecount * sizeof(struct vm_page));
/* init the vm_page structures and put them in the correct place. */
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
n = seg->end - seg->start;
if (n > pagecount) {
panic("uvm_page_init: lost %ld page(s) in init",
(long)(n - pagecount));
/* XXXCDC: shouldn't happen? */
/* n = pagecount; */
}
/* set up page array pointers */
seg->pgs = pagearray;
pagearray += n;
pagecount -= n;
seg->lastpg = seg->pgs + (n - 1);
/* init and free vm_pages (we've already zeroed them) */
pgno = seg->start;
paddr = ptoa(pgno);
for (i = 0, curpg = seg->pgs; i < n;
i++, curpg++, pgno++, paddr += PAGE_SIZE) {
curpg->phys_addr = paddr;
VM_MDPAGE_INIT(curpg);
if (pgno >= seg->avail_start &&
pgno < seg->avail_end) {
uvmexp.npages++;
}
}
/* Add pages to free pool. */
uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start],
seg->avail_end - seg->avail_start);
}
/*
* pass up the values of virtual_space_start and
* virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
* layers of the VM.
*/
*kvm_startp = round_page(virtual_space_start);
*kvm_endp = trunc_page(virtual_space_end);
/* init locks for kernel threads */
mtx_init(&uvm.aiodoned_lock, IPL_BIO);
/*
* init reserve thresholds
* XXXCDC - values may need adjusting
*/
uvmexp.reserve_pagedaemon = 4;
uvmexp.reserve_kernel = 8;
uvmexp.anonminpct = 10;
uvmexp.vnodeminpct = 10;
uvmexp.vtextminpct = 5;
uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
uvm.page_init_done = TRUE;
}
/*
* uvm_setpagesize: set the page size
*
* => sets page_shift and page_mask from uvmexp.pagesize.
*/
void
uvm_setpagesize(void)
{
if (uvmexp.pagesize == 0)
uvmexp.pagesize = DEFAULT_PAGE_SIZE;
uvmexp.pagemask = uvmexp.pagesize - 1;
if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
panic("uvm_setpagesize: page size not a power of two");
for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
break;
}
/*
* uvm_pageboot_alloc: steal memory from physmem for bootstrapping
*/
vaddr_t
uvm_pageboot_alloc(vsize_t size)
{
#if defined(PMAP_STEAL_MEMORY)
vaddr_t addr;
/*
* defer bootstrap allocation to MD code (it may want to allocate
* from a direct-mapped segment). pmap_steal_memory should round
* off virtual_space_start/virtual_space_end.
*/
addr = pmap_steal_memory(size, &virtual_space_start,
&virtual_space_end);
return addr;
#else /* !PMAP_STEAL_MEMORY */
static boolean_t initialized = FALSE;
vaddr_t addr, vaddr;
paddr_t paddr;
/* round to page size */
size = round_page(size);
/* on first call to this function, initialize ourselves. */
if (initialized == FALSE) {
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
/* round it the way we like it */
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
initialized = TRUE;
}
/* allocate virtual memory for this request */
if (virtual_space_start == virtual_space_end ||
(virtual_space_end - virtual_space_start) < size)
panic("uvm_pageboot_alloc: out of virtual space");
addr = virtual_space_start;
#ifdef PMAP_GROWKERNEL
/*
* If the kernel pmap can't map the requested space,
* then allocate more resources for it.
*/
if (uvm_maxkaddr < (addr + size)) {
uvm_maxkaddr = pmap_growkernel(addr + size);
if (uvm_maxkaddr < (addr + size))
panic("uvm_pageboot_alloc: pmap_growkernel() failed");
}
#endif
virtual_space_start += size;
/* allocate and mapin physical pages to back new virtual pages */
for (vaddr = round_page(addr) ; vaddr < addr + size ;
vaddr += PAGE_SIZE) {
if (!uvm_page_physget(&paddr))
panic("uvm_pageboot_alloc: out of memory");
/*
* Note this memory is no longer managed, so using
* pmap_kenter is safe.
*/
pmap_kenter_pa(vaddr, paddr, PROT_READ | PROT_WRITE);
}
pmap_update(pmap_kernel());
return addr;
#endif /* PMAP_STEAL_MEMORY */
}
#if !defined(PMAP_STEAL_MEMORY)
/*
* uvm_page_physget: "steal" one page from the vm_physmem structure.
*
* => attempt to allocate it off the end of a segment in which the "avail"
* values match the start/end values. if we can't do that, then we
* will advance both values (making them equal, and removing some
* vm_page structures from the non-avail area).
* => return false if out of memory.
*/
boolean_t
uvm_page_physget(paddr_t *paddrp)
{
int lcv;
struct vm_physseg *seg;
/* pass 1: try allocating from a matching end */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
lcv--, seg--)
#else
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
#endif
{
if (uvm.page_init_done == TRUE)
panic("uvm_page_physget: called _after_ bootstrap");
/* try from front */
if (seg->avail_start == seg->start &&
seg->avail_start < seg->avail_end) {
*paddrp = ptoa(seg->avail_start);
seg->avail_start++;
seg->start++;
/* nothing left? nuke it */
if (seg->avail_start == seg->end) {
if (vm_nphysseg == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysseg--;
for (; lcv < vm_nphysseg; lcv++, seg++)
/* structure copy */
seg[0] = seg[1];
}
return TRUE;
}
/* try from rear */
if (seg->avail_end == seg->end &&
seg->avail_start < seg->avail_end) {
*paddrp = ptoa(seg->avail_end - 1);
seg->avail_end--;
seg->end--;
/* nothing left? nuke it */
if (seg->avail_end == seg->start) {
if (vm_nphysseg == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysseg--;
for (; lcv < vm_nphysseg ; lcv++, seg++)
/* structure copy */
seg[0] = seg[1];
}
return TRUE;
}
}
/* pass2: forget about matching ends, just allocate something */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
lcv--, seg--)
#else
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
#endif
{
/* any room in this bank? */
if (seg->avail_start >= seg->avail_end)
continue; /* nope */
*paddrp = ptoa(seg->avail_start);
seg->avail_start++;
/* truncate! */
seg->start = seg->avail_start;
/* nothing left? nuke it */
if (seg->avail_start == seg->end) {
if (vm_nphysseg == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysseg--;
for (; lcv < vm_nphysseg ; lcv++, seg++)
/* structure copy */
seg[0] = seg[1];
}
return TRUE;
}
return FALSE; /* whoops! */
}
#endif /* PMAP_STEAL_MEMORY */
/*
* uvm_page_physload: load physical memory into VM system
*
* => all args are PFs
* => all pages in start/end get vm_page structures
* => areas marked by avail_start/avail_end get added to the free page pool
* => we are limited to VM_PHYSSEG_MAX physical memory segments
*/
void
uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
paddr_t avail_end, int flags)
{
int preload, lcv;
psize_t npages;
struct vm_page *pgs;
struct vm_physseg *ps, *seg;
#ifdef DIAGNOSTIC
if (uvmexp.pagesize == 0)
panic("uvm_page_physload: page size not set!");
if (start >= end)
panic("uvm_page_physload: start >= end");
#endif
/* do we have room? */
if (vm_nphysseg == VM_PHYSSEG_MAX) {
printf("uvm_page_physload: unable to load physical memory "
"segment\n");
printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
VM_PHYSSEG_MAX, (long long)start, (long long)end);
printf("\tincrease VM_PHYSSEG_MAX\n");
return;
}
/*
* check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
* called yet, so malloc is not available).
*/
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) {
if (seg->pgs)
break;
}
preload = (lcv == vm_nphysseg);
/* if VM is already running, attempt to malloc() vm_page structures */
if (!preload) {
/*
* XXXCDC: need some sort of lockout for this case
* right now it is only used by devices so it should be alright.
*/
paddr_t paddr;
npages = end - start; /* # of pages */
pgs = km_alloc(round_page(npages * sizeof(*pgs)),
&kv_any, &kp_zero, &kd_waitok);
if (pgs == NULL) {
printf("uvm_page_physload: can not malloc vm_page "
"structs for segment\n");
printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
return;
}
/* init phys_addr and free pages, XXX uvmexp.npages */
for (lcv = 0, paddr = ptoa(start); lcv < npages;
lcv++, paddr += PAGE_SIZE) {
pgs[lcv].phys_addr = paddr;
VM_MDPAGE_INIT(&pgs[lcv]);
if (atop(paddr) >= avail_start &&
atop(paddr) < avail_end) {
if (flags & PHYSLOAD_DEVICE) {
atomic_setbits_int(&pgs[lcv].pg_flags,
PG_DEV);
pgs[lcv].wire_count = 1;
} else {
#if defined(VM_PHYSSEG_NOADD)
panic("uvm_page_physload: tried to add RAM after vm_mem_init");
#endif
}
}
}
/* Add pages to free pool. */
if ((flags & PHYSLOAD_DEVICE) == 0) {
uvm_pmr_freepages(&pgs[avail_start - start],
avail_end - avail_start);
}
/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
} else {
/* gcc complains if these don't get init'd */
pgs = NULL;
npages = 0;
}
/* now insert us in the proper place in vm_physmem[] */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
/* random: put it at the end (easy!) */
ps = &vm_physmem[vm_nphysseg];
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
{
int x;
/* sort by address for binary search */
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
if (start < seg->start)
break;
ps = seg;
/* move back other entries, if necessary ... */
for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
x--, seg--)
/* structure copy */
seg[1] = seg[0];
}
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
{
int x;
/* sort by largest segment first */
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
if ((end - start) >
(seg->end - seg->start))
break;
ps = &vm_physmem[lcv];
/* move back other entries, if necessary ... */
for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
x--, seg--)
/* structure copy */
seg[1] = seg[0];
}
#else
panic("uvm_page_physload: unknown physseg strategy selected!");
#endif
ps->start = start;
ps->end = end;
ps->avail_start = avail_start;
ps->avail_end = avail_end;
if (preload) {
ps->pgs = NULL;
} else {
ps->pgs = pgs;
ps->lastpg = pgs + npages - 1;
}
vm_nphysseg++;
return;
}
#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
void uvm_page_physdump(void); /* SHUT UP GCC */
/* call from DDB */
void
uvm_page_physdump(void)
{
int lcv;
struct vm_physseg *seg;
printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
vm_nphysseg, VM_PHYSSEG_MAX);
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
(long long)seg->start,
(long long)seg->end,
(long long)seg->avail_start,
(long long)seg->avail_end);
printf("STRATEGY = ");
switch (VM_PHYSSEG_STRAT) {
case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
default: printf("<<UNKNOWN>>!!!!\n");
}
}
#endif
void
uvm_shutdown(void)
{
#ifdef UVM_SWAP_ENCRYPT
uvm_swap_finicrypt_all();
#endif
smr_flush();
}
/*
* Perform insert of a given page in the specified anon of obj.
* This is basically, uvm_pagealloc, but with the page already given.
*/
void
uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off,
struct vm_anon *anon)
{
int flags;
KASSERT(obj == NULL || anon == NULL);
KASSERT(anon == NULL || off == 0);
KASSERT(off == trunc_page(off));
KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) ||
rw_write_held(obj->vmobjlock));
KASSERT(anon == NULL || anon->an_lock == NULL ||
rw_write_held(anon->an_lock));
flags = PG_BUSY | PG_FAKE;
pg->offset = off;
pg->uobject = obj;
pg->uanon = anon;
KASSERT(uvm_page_owner_locked_p(pg));
if (anon) {
anon->an_page = pg;
flags |= PQ_ANON;
} else if (obj)
uvm_pageinsert(pg);
atomic_setbits_int(&pg->pg_flags, flags);
#if defined(UVM_PAGE_TRKOWN)
pg->owner_tag = NULL;
#endif
UVM_PAGE_OWN(pg, "new alloc");
}
/*
* uvm_pglistalloc: allocate a list of pages
*
* => allocated pages are placed at the tail of rlist. rlist is
* assumed to be properly initialized by caller.
* => returns 0 on success or errno on failure
* => doesn't take into account clean non-busy pages on inactive list
* that could be used(?)
* => params:
* size the size of the allocation, rounded to page size.
* low the low address of the allowed allocation range.
* high the high address of the allowed allocation range.
* alignment memory must be aligned to this power-of-two boundary.
* boundary no segment in the allocation may cross this
* power-of-two boundary (relative to zero).
* => flags:
* UVM_PLA_NOWAIT fail if allocation fails
* UVM_PLA_WAITOK wait for memory to become avail
* UVM_PLA_ZERO return zeroed memory
*/
int
uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment,
paddr_t boundary, struct pglist *rlist, int nsegs, int flags)
{
KASSERT((alignment & (alignment - 1)) == 0);
KASSERT((boundary & (boundary - 1)) == 0);
KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
if (size == 0)
return EINVAL;
size = atop(round_page(size));
/*
* XXX uvm_pglistalloc is currently only used for kernel
* objects. Unlike the checks in uvm_pagealloc, below, here
* we are always allowed to use the kernel reserve.
*/
flags |= UVM_PLA_USERESERVE;
if ((high & PAGE_MASK) != PAGE_MASK) {
printf("uvm_pglistalloc: Upper boundary 0x%lx "
"not on pagemask.\n", (unsigned long)high);
}
/*
* Our allocations are always page granularity, so our alignment
* must be, too.
*/
if (alignment < PAGE_SIZE)
alignment = PAGE_SIZE;
low = atop(roundup(low, alignment));
/*
* high + 1 may result in overflow, in which case high becomes 0x0,
* which is the 'don't care' value.
* The only requirement in that case is that low is also 0x0, or the
* low<high assert will fail.
*/
high = atop(high + 1);
alignment = atop(alignment);
if (boundary < PAGE_SIZE && boundary != 0)
boundary = PAGE_SIZE;
boundary = atop(boundary);
return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs,
flags, rlist);
}
/*
* uvm_pglistfree: free a list of pages
*
* => pages should already be unmapped
*/
void
uvm_pglistfree(struct pglist *list)
{
uvm_pmr_freepageq(list);
}
/*
* interface used by the buffer cache to allocate a buffer at a time.
* The pages are allocated wired in DMA accessible memory
*/
int
uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
int flags)
{
struct pglist plist;
struct vm_page *pg;
int i, r;
KASSERT(UVM_OBJ_IS_BUFCACHE(obj));
KERNEL_ASSERT_LOCKED();
TAILQ_INIT(&plist);
r = uvm_pglistalloc(size, dma_constraint.ucr_low,
dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)),
flags);
if (r == 0) {
i = 0;
while ((pg = TAILQ_FIRST(&plist)) != NULL) {
pg->wire_count = 1;
atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
KASSERT((pg->pg_flags & PG_DEV) == 0);
TAILQ_REMOVE(&plist, pg, pageq);
uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL);
}
}
return r;
}
/*
* interface used by the buffer cache to reallocate a buffer at a time.
* The pages are reallocated wired outside the DMA accessible region.
*
*/
int
uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
int flags, struct uvm_constraint_range *where)
{
struct pglist plist;
struct vm_page *pg, *tpg;
int i, r;
voff_t offset;
KASSERT(UVM_OBJ_IS_BUFCACHE(obj));
KERNEL_ASSERT_LOCKED();
TAILQ_INIT(&plist);
if (size == 0)
panic("size 0 uvm_pagerealloc");
r = uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0,
0, &plist, atop(round_page(size)), flags);
if (r == 0) {
i = 0;
while((pg = TAILQ_FIRST(&plist)) != NULL) {
offset = off + ptoa(i++);
tpg = uvm_pagelookup(obj, offset);
KASSERT(tpg != NULL);
pg->wire_count = 1;
atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
KASSERT((pg->pg_flags & PG_DEV) == 0);
TAILQ_REMOVE(&plist, pg, pageq);
uvm_pagecopy(tpg, pg);
KASSERT(tpg->wire_count == 1);
tpg->wire_count = 0;
uvm_lock_pageq();
uvm_pagefree(tpg);
uvm_unlock_pageq();
uvm_pagealloc_pg(pg, obj, offset, NULL);
}
}
return r;
}
/*
* uvm_pagealloc: allocate vm_page from a particular free list.
*
* => return null if no pages free
* => wake up pagedaemon if number of free pages drops below low water mark
* => only one of obj or anon can be non-null
* => caller must activate/deactivate page if it is not wired.
*/
struct vm_page *
uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
int flags)
{
struct vm_page *pg;
struct pglist pgl;
int pmr_flags;
KASSERT(obj == NULL || anon == NULL);
KASSERT(anon == NULL || off == 0);
KASSERT(off == trunc_page(off));
KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) ||
rw_write_held(obj->vmobjlock));
KASSERT(anon == NULL || anon->an_lock == NULL ||
rw_write_held(anon->an_lock));
pmr_flags = UVM_PLA_NOWAIT;
/*
* We're allowed to use the kernel reserve if the page is
* being allocated to a kernel object.
*/
if ((flags & UVM_PGA_USERESERVE) ||
(obj != NULL && UVM_OBJ_IS_KERN_OBJECT(obj)))
pmr_flags |= UVM_PLA_USERESERVE;
if (flags & UVM_PGA_ZERO)
pmr_flags |= UVM_PLA_ZERO;
TAILQ_INIT(&pgl);
if (uvm_pmr_getpages(1, 0, 0, 1, 0, 1, pmr_flags, &pgl) != 0)
goto fail;
pg = TAILQ_FIRST(&pgl);
KASSERT(pg != NULL && TAILQ_NEXT(pg, pageq) == NULL);
uvm_pagealloc_pg(pg, obj, off, anon);
KASSERT((pg->pg_flags & PG_DEV) == 0);
if (flags & UVM_PGA_ZERO)
atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
else
atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
return pg;
fail:
return NULL;
}
/*
* uvm_pagerealloc: reallocate a page from one object to another
*/
void
uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
{
/* remove it from the old object */
if (pg->uobject) {
uvm_pageremove(pg);
}
/* put it in the new object */
if (newobj) {
pg->uobject = newobj;
pg->offset = newoff;
pg->pg_version++;
uvm_pageinsert(pg);
}
}
/*
* uvm_pageclean: clean page
*
* => erase page's identity (i.e. remove from object)
* => caller must lock page queues if `pg' is managed
* => assumes all valid mappings of pg are gone
*/
void
uvm_pageclean(struct vm_page *pg)
{
u_int flags_to_clear = 0;
if ((pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE)) &&
(pg->uobject == NULL || !UVM_OBJ_IS_PMAP(pg->uobject)))
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
#ifdef DEBUG
if (pg->uobject == (void *)0xdeadbeef &&
pg->uanon == (void *)0xdeadbeef) {
panic("uvm_pagefree: freeing free page %p", pg);
}
#endif
KASSERT((pg->pg_flags & PG_DEV) == 0);
KASSERT(pg->uobject == NULL || UVM_OBJ_IS_DUMMY(pg->uobject) ||
rw_write_held(pg->uobject->vmobjlock));
KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
rw_write_held(pg->uanon->an_lock));
/*
* if the page was an object page (and thus "TABLED"), remove it
* from the object.
*/
if (pg->pg_flags & PG_TABLED)
uvm_pageremove(pg);
/*
* now remove the page from the queues
*/
uvm_pagedequeue(pg);
/*
* if the page was wired, unwire it now.
*/
if (pg->wire_count) {
pg->wire_count = 0;
uvmexp.wired--;
}
if (pg->uanon) {
pg->uanon->an_page = NULL;
pg->uanon = NULL;
}
/* Clean page state bits. */
flags_to_clear |= PQ_ANON|PQ_AOBJ|PQ_ENCRYPT|PG_ZERO|PG_FAKE|PG_BUSY|
PG_RELEASED|PG_CLEAN|PG_CLEANCHK;
atomic_clearbits_int(&pg->pg_flags, flags_to_clear);
#ifdef DEBUG
pg->uobject = (void *)0xdeadbeef;
pg->offset = 0xdeadbeef;
pg->uanon = (void *)0xdeadbeef;
#endif
}
/*
* uvm_pagefree: free page
*
* => erase page's identity (i.e. remove from object)
* => put page on free list
* => caller must lock page queues if `pg' is managed
* => assumes all valid mappings of pg are gone
*/
void
uvm_pagefree(struct vm_page *pg)
{
if ((pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE)) &&
(pg->uobject == NULL || !UVM_OBJ_IS_PMAP(pg->uobject)))
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
uvm_pageclean(pg);
uvm_pmr_freepages(pg, 1);
}
/*
* uvm_page_unbusy: unbusy an array of pages.
*
* => pages must either all belong to the same object, or all belong to anons.
* => if pages are object-owned, object must be locked.
* => if pages are anon-owned, anons must have 0 refcount.
* => caller must make sure that anon-owned pages are not PG_RELEASED.
*/
void
uvm_page_unbusy(struct vm_page **pgs, int npgs)
{
struct vm_page *pg;
int i;
for (i = 0; i < npgs; i++) {
pg = pgs[i];
if (pg == NULL || pg == PGO_DONTCARE) {
continue;
}
KASSERT(uvm_page_owner_locked_p(pg));
KASSERT(pg->pg_flags & PG_BUSY);
if (pg->pg_flags & PG_WANTED) {
wakeup(pg);
}
if (pg->pg_flags & PG_RELEASED) {
KASSERT(pg->uobject != NULL ||
(pg->uanon != NULL && pg->uanon->an_ref > 0));
atomic_clearbits_int(&pg->pg_flags, PG_RELEASED);
pmap_page_protect(pg, PROT_NONE);
uvm_pagefree(pg);
} else {
KASSERT((pg->pg_flags & PG_FAKE) == 0);
atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
UVM_PAGE_OWN(pg, NULL);
}
}
}
/*
* uvm_pagewait: wait for a busy page
*
* => page must be known PG_BUSY
* => object must be locked
* => object will be unlocked on return
*/
void
uvm_pagewait(struct vm_page *pg, struct rwlock *lock, const char *wmesg)
{
KASSERT(rw_lock_held(lock));
KASSERT((pg->pg_flags & PG_BUSY) != 0);
atomic_setbits_int(&pg->pg_flags, PG_WANTED);
rwsleep_nsec(pg, lock, PVM | PNORELOCK, wmesg, INFSLP);
}
#if defined(UVM_PAGE_TRKOWN)
/*
* uvm_page_own: set or release page ownership
*
* => this is a debugging function that keeps track of who sets PG_BUSY
* and where they do it. it can be used to track down problems
* such a thread setting "PG_BUSY" and never releasing it.
* => if "tag" is NULL then we are releasing page ownership
*/
void
uvm_page_own(struct vm_page *pg, char *tag)
{
/* gain ownership? */
if (tag) {
if (pg->owner_tag) {
printf("uvm_page_own: page %p already owned "
"by thread %d [%s]\n", pg,
pg->owner, pg->owner_tag);
panic("uvm_page_own");
}
pg->owner = (curproc) ? curproc->p_tid : (pid_t) -1;
pg->owner_tag = tag;
return;
}
/* drop ownership */
if (pg->owner_tag == NULL) {
printf("uvm_page_own: dropping ownership of an non-owned "
"page (%p)\n", pg);
panic("uvm_page_own");
}
pg->owner_tag = NULL;
return;
}
#endif
/*
* when VM_PHYSSEG_MAX is 1, we can simplify these functions
*/
#if VM_PHYSSEG_MAX > 1
/*
* vm_physseg_find: find vm_physseg structure that belongs to a PA
*/
int
vm_physseg_find(paddr_t pframe, int *offp)
{
struct vm_physseg *seg;
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
/* binary search for it */
int start, len, try;
/*
* if try is too large (thus target is less than try) we reduce
* the length to trunc(len/2) [i.e. everything smaller than "try"]
*
* if the try is too small (thus target is greater than try) then
* we set the new start to be (try + 1). this means we need to
* reduce the length to (round(len/2) - 1).
*
* note "adjust" below which takes advantage of the fact that
* (round(len/2) - 1) == trunc((len - 1) / 2)
* for any value of len we may have
*/
for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
try = start + (len / 2); /* try in the middle */
seg = vm_physmem + try;
/* start past our try? */
if (pframe >= seg->start) {
/* was try correct? */
if (pframe < seg->end) {
if (offp)
*offp = pframe - seg->start;
return try; /* got it */
}
start = try + 1; /* next time, start here */
len--; /* "adjust" */
} else {
/*
* pframe before try, just reduce length of
* region, done in "for" loop
*/
}
}
return -1;
#else
/* linear search for it */
int lcv;
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
if (pframe >= seg->start && pframe < seg->end) {
if (offp)
*offp = pframe - seg->start;
return lcv; /* got it */
}
}
return -1;
#endif
}
/*
* PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
* back from an I/O mapping (ugh!). used in some MD code as well.
*/
struct vm_page *
PHYS_TO_VM_PAGE(paddr_t pa)
{
paddr_t pf = atop(pa);
int off;
int psi;
psi = vm_physseg_find(pf, &off);
return (psi == -1) ? NULL : &vm_physmem[psi].pgs[off];
}
#endif /* VM_PHYSSEG_MAX > 1 */
/*
* uvm_pagelookup: look up a page
*/
struct vm_page *
uvm_pagelookup(struct uvm_object *obj, voff_t off)
{
/* XXX if stack is too much, handroll */
struct vm_page pg;
pg.offset = off;
return RBT_FIND(uvm_objtree, &obj->memt, &pg);
}
/*
* uvm_pagewire: wire the page, thus removing it from the daemon's grasp
*
* => caller must lock page queues
*/
void
uvm_pagewire(struct vm_page *pg)
{
KASSERT(uvm_page_owner_locked_p(pg));
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
if (pg->wire_count == 0) {
uvm_pagedequeue(pg);
uvmexp.wired++;
}
pg->wire_count++;
}
/*
* uvm_pageunwire: unwire the page.
*
* => activate if wire count goes to zero.
* => caller must lock page queues
*/
void
uvm_pageunwire(struct vm_page *pg)
{
KASSERT(uvm_page_owner_locked_p(pg));
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
pg->wire_count--;
if (pg->wire_count == 0) {
uvm_pageactivate(pg);
uvmexp.wired--;
}
}
/*
* uvm_pagedeactivate: deactivate page -- no pmaps have access to page
*
* => caller must lock page queues
* => caller must check to make sure page is not wired
* => object that page belongs to must be locked (so we can adjust pg->flags)
*/
void
uvm_pagedeactivate(struct vm_page *pg)
{
KASSERT(uvm_page_owner_locked_p(pg));
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
if (pg->pg_flags & PQ_ACTIVE) {
TAILQ_REMOVE(&uvm.page_active, pg, pageq);
atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
uvmexp.active--;
}
if ((pg->pg_flags & PQ_INACTIVE) == 0) {
KASSERT(pg->wire_count == 0);
TAILQ_INSERT_TAIL(&uvm.page_inactive, pg, pageq);
atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
uvmexp.inactive++;
pmap_clear_reference(pg);
/*
* update the "clean" bit. this isn't 100%
* accurate, and doesn't have to be. we'll
* re-sync it after we zap all mappings when
* scanning the inactive list.
*/
if ((pg->pg_flags & PG_CLEAN) != 0 &&
pmap_is_modified(pg))
atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
}
}
/*
* uvm_pageactivate: activate page
*
* => caller must lock page queues
*/
void
uvm_pageactivate(struct vm_page *pg)
{
KASSERT(uvm_page_owner_locked_p(pg));
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
uvm_pagedequeue(pg);
if (pg->wire_count == 0) {
TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
uvmexp.active++;
}
}
/*
* uvm_pagedequeue: remove a page from any paging queue
*/
void
uvm_pagedequeue(struct vm_page *pg)
{
if (pg->pg_flags & PQ_ACTIVE) {
TAILQ_REMOVE(&uvm.page_active, pg, pageq);
atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
uvmexp.active--;
}
if (pg->pg_flags & PQ_INACTIVE) {
TAILQ_REMOVE(&uvm.page_inactive, pg, pageq);
atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
uvmexp.inactive--;
}
}
/*
* uvm_pagezero: zero fill a page
*/
void
uvm_pagezero(struct vm_page *pg)
{
atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
pmap_zero_page(pg);
}
/*
* uvm_pagecopy: copy a page
*/
void
uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
{
atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
pmap_copy_page(src, dst);
}
/*
* uvm_page_owner_locked_p: return true if object associated with page is
* locked. this is a weak check for runtime assertions only.
*/
int
uvm_page_owner_locked_p(struct vm_page *pg)
{
if (pg->uobject != NULL) {
if (UVM_OBJ_IS_DUMMY(pg->uobject))
return 1;
return rw_write_held(pg->uobject->vmobjlock);
}
if (pg->uanon != NULL) {
return rw_write_held(pg->uanon->an_lock);
}
return 1;
}
/*
* uvm_pagecount: count the number of physical pages in the address range.
*/
psize_t
uvm_pagecount(struct uvm_constraint_range* constraint)
{
int lcv;
psize_t sz;
paddr_t low, high;
paddr_t ps_low, ps_high;
/* Algorithm uses page numbers. */
low = atop(constraint->ucr_low);
high = atop(constraint->ucr_high);
sz = 0;
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
ps_low = MAX(low, vm_physmem[lcv].avail_start);
ps_high = MIN(high, vm_physmem[lcv].avail_end);
if (ps_low < ps_high)
sz += ps_high - ps_low;
}
return sz;
}
|