1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
|
/* $OpenBSD: uvm_swap.c,v 1.170 2024/04/16 10:06:37 claudio Exp $ */
/* $NetBSD: uvm_swap.c,v 1.40 2000/11/17 11:39:39 mrg Exp $ */
/*
* Copyright (c) 1995, 1996, 1997 Matthew R. Green
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
* from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/proc.h>
#include <sys/namei.h>
#include <sys/disklabel.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/vnode.h>
#include <sys/fcntl.h>
#include <sys/extent.h>
#include <sys/blist.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/pool.h>
#include <sys/syscallargs.h>
#include <sys/swap.h>
#include <sys/disk.h>
#include <sys/task.h>
#include <sys/pledge.h>
#if defined(NFSCLIENT)
#include <sys/socket.h>
#include <netinet/in.h>
#include <nfs/nfsproto.h>
#include <nfs/nfsdiskless.h>
#endif
#include <uvm/uvm.h>
#ifdef UVM_SWAP_ENCRYPT
#include <uvm/uvm_swap_encrypt.h>
#endif
#include <sys/specdev.h>
#include "vnd.h"
/*
* uvm_swap.c: manage configuration and i/o to swap space.
*/
/*
* swap space is managed in the following way:
*
* each swap partition or file is described by a "swapdev" structure.
* each "swapdev" structure contains a "swapent" structure which contains
* information that is passed up to the user (via system calls).
*
* each swap partition is assigned a "priority" (int) which controls
* swap partition usage.
*
* the system maintains a global data structure describing all swap
* partitions/files. there is a sorted LIST of "swappri" structures
* which describe "swapdev"'s at that priority. this LIST is headed
* by the "swap_priority" global var. each "swappri" contains a
* TAILQ of "swapdev" structures at that priority.
*
* locking:
* - swap_syscall_lock (sleep lock): this lock serializes the swapctl
* system call and prevents the swap priority list from changing
* while we are in the middle of a system call (e.g. SWAP_STATS).
* - uvm_swap_data_lock (mutex): this lock protects all swap data
* structures including the priority list, the swapdev structures,
* and the swapmap arena.
*
* each swap device has the following info:
* - swap device in use (could be disabled, preventing future use)
* - swap enabled (allows new allocations on swap)
* - map info in /dev/drum
* - vnode pointer
* for swap files only:
* - block size
* - max byte count in buffer
* - buffer
* - credentials to use when doing i/o to file
*
* userland controls and configures swap with the swapctl(2) system call.
* the sys_swapctl performs the following operations:
* [1] SWAP_NSWAP: returns the number of swap devices currently configured
* [2] SWAP_STATS: given a pointer to an array of swapent structures
* (passed in via "arg") of a size passed in via "misc" ... we load
* the current swap config into the array.
* [3] SWAP_ON: given a pathname in arg (could be device or file) and a
* priority in "misc", start swapping on it.
* [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
* [5] SWAP_CTL: changes the priority of a swap device (new priority in
* "misc")
*/
/*
* swapdev: describes a single swap partition/file
*
* note the following should be true:
* swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
* swd_nblks <= swd_mapsize [because mapsize includes disklabel]
*/
struct swapdev {
struct swapent swd_se;
#define swd_dev swd_se.se_dev /* device id */
#define swd_flags swd_se.se_flags /* flags:inuse/enable/fake */
#define swd_priority swd_se.se_priority /* our priority */
#define swd_inuse swd_se.se_inuse /* blocks used */
#define swd_nblks swd_se.se_nblks /* total blocks */
char *swd_path; /* saved pathname of device */
int swd_pathlen; /* length of pathname */
int swd_npages; /* #pages we can use */
int swd_npginuse; /* #pages in use */
int swd_npgbad; /* #pages bad */
int swd_drumoffset; /* page0 offset in drum */
int swd_drumsize; /* #pages in drum */
blist_t swd_blist; /* blist for this swapdev */
struct vnode *swd_vp; /* backing vnode */
TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
int swd_bsize; /* blocksize (bytes) */
int swd_maxactive; /* max active i/o reqs */
int swd_active; /* # of active i/o reqs */
struct bufq swd_bufq;
struct ucred *swd_cred; /* cred for file access */
#ifdef UVM_SWAP_ENCRYPT
#define SWD_KEY_SHIFT 7 /* One key per 0.5 MByte */
#define SWD_KEY(x,y) &((x)->swd_keys[((y) - (x)->swd_drumoffset) >> SWD_KEY_SHIFT])
#define SWD_KEY_SIZE(x) (((x) + (1 << SWD_KEY_SHIFT) - 1) >> SWD_KEY_SHIFT)
#define SWD_DCRYPT_SHIFT 5
#define SWD_DCRYPT_BITS 32
#define SWD_DCRYPT_MASK (SWD_DCRYPT_BITS - 1)
#define SWD_DCRYPT_OFF(x) ((x) >> SWD_DCRYPT_SHIFT)
#define SWD_DCRYPT_BIT(x) ((x) & SWD_DCRYPT_MASK)
#define SWD_DCRYPT_SIZE(x) (SWD_DCRYPT_OFF((x) + SWD_DCRYPT_MASK) * sizeof(u_int32_t))
u_int32_t *swd_decrypt; /* bitmap for decryption */
struct swap_key *swd_keys; /* keys for different parts */
#endif
};
/*
* swap device priority entry; the list is kept sorted on `spi_priority'.
*/
struct swappri {
int spi_priority; /* priority */
TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
/* tailq of swapdevs at this priority */
LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
};
/*
* The following two structures are used to keep track of data transfers
* on swap devices associated with regular files.
* NOTE: this code is more or less a copy of vnd.c; we use the same
* structure names here to ease porting..
*/
struct vndxfer {
struct buf *vx_bp; /* Pointer to parent buffer */
struct swapdev *vx_sdp;
int vx_error;
int vx_pending; /* # of pending aux buffers */
int vx_flags;
#define VX_BUSY 1
#define VX_DEAD 2
};
struct vndbuf {
struct buf vb_buf;
struct vndxfer *vb_vnx;
struct task vb_task;
};
/*
* We keep a of pool vndbuf's and vndxfer structures.
*/
struct pool vndxfer_pool;
struct pool vndbuf_pool;
/*
* local variables
*/
struct extent *swapmap; /* controls the mapping of /dev/drum */
/* list of all active swap devices [by priority] */
LIST_HEAD(swap_priority, swappri);
struct swap_priority swap_priority; /* [S] */
/* locks */
struct mutex uvm_swap_data_lock = MUTEX_INITIALIZER(IPL_MPFLOOR);
struct rwlock swap_syscall_lock = RWLOCK_INITIALIZER("swplk");
struct mutex oommtx = MUTEX_INITIALIZER(IPL_VM);
struct vm_page *oompps[SWCLUSTPAGES];
int oom = 0;
/*
* prototypes
*/
void swapdrum_add(struct swapdev *, int);
struct swapdev *swapdrum_getsdp(int);
struct swapdev *swaplist_find(struct vnode *, int);
void swaplist_insert(struct swapdev *,
struct swappri *, int);
void swaplist_trim(void);
int swap_on(struct proc *, struct swapdev *);
int swap_off(struct proc *, struct swapdev *);
void sw_reg_strategy(struct swapdev *, struct buf *, int);
void sw_reg_iodone(struct buf *);
void sw_reg_iodone_internal(void *);
void sw_reg_start(struct swapdev *);
int uvm_swap_io(struct vm_page **, int, int, int);
void swapmount(void);
int uvm_swap_allocpages(struct vm_page **, int, int);
#ifdef UVM_SWAP_ENCRYPT
/* for swap encrypt */
void uvm_swap_markdecrypt(struct swapdev *, int, int, int);
boolean_t uvm_swap_needdecrypt(struct swapdev *, int);
void uvm_swap_initcrypt(struct swapdev *, int);
#endif
/*
* uvm_swap_init: init the swap system data structures and locks
*
* => called at boot time from init_main.c after the filesystems
* are brought up (which happens after uvm_init())
*/
void
uvm_swap_init(void)
{
int error;
/*
* first, init the swap list, its counter, and its lock.
* then get a handle on the vnode for /dev/drum by using
* the its dev_t number ("swapdev", from MD conf.c).
*/
LIST_INIT(&swap_priority);
uvmexp.nswapdev = 0;
if (!swapdev_vp && bdevvp(swapdev, &swapdev_vp))
panic("uvm_swap_init: can't get vnode for swap device");
/*
* create swap block extent to map /dev/drum. The extent spans
* 1 to INT_MAX allows 2 gigablocks of swap space. Note that
* block 0 is reserved (used to indicate an allocation failure,
* or no allocation).
*/
swapmap = extent_create("swapmap", 1, INT_MAX,
M_VMSWAP, 0, 0, EX_NOWAIT);
if (swapmap == 0)
panic("uvm_swap_init: extent_create failed");
/* allocate pools for structures used for swapping to files. */
pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, IPL_BIO, 0,
"swp vnx", NULL);
pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, IPL_BIO, 0,
"swp vnd", NULL);
/* allocate pages for OOM situations. */
error = uvm_swap_allocpages(oompps, SWCLUSTPAGES, UVM_PLA_NOWAIT);
KASSERT(error == 0);
/* Setup the initial swap partition */
swapmount();
}
#ifdef UVM_SWAP_ENCRYPT
void
uvm_swap_initcrypt_all(void)
{
struct swapdev *sdp;
struct swappri *spp;
int npages;
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
if (sdp->swd_decrypt == NULL) {
npages = dbtob((uint64_t)sdp->swd_nblks) >>
PAGE_SHIFT;
uvm_swap_initcrypt(sdp, npages);
}
}
}
}
void
uvm_swap_initcrypt(struct swapdev *sdp, int npages)
{
/*
* keep information if a page needs to be decrypted when we get it
* from the swap device.
* We cannot chance a malloc later, if we are doing ASYNC puts,
* we may not call malloc with M_WAITOK. This consumes only
* 8KB memory for a 256MB swap partition.
*/
sdp->swd_decrypt = malloc(SWD_DCRYPT_SIZE(npages), M_VMSWAP,
M_WAITOK|M_ZERO);
sdp->swd_keys = mallocarray(SWD_KEY_SIZE(npages),
sizeof(struct swap_key), M_VMSWAP, M_WAITOK|M_ZERO);
}
#endif /* UVM_SWAP_ENCRYPT */
int
uvm_swap_allocpages(struct vm_page **pps, int npages, int flags)
{
struct pglist pgl;
int error, i;
KASSERT(npages <= SWCLUSTPAGES);
TAILQ_INIT(&pgl);
again:
error = uvm_pglistalloc(npages * PAGE_SIZE, dma_constraint.ucr_low,
dma_constraint.ucr_high, 0, 0, &pgl, npages, flags);
if (error && (curproc == uvm.pagedaemon_proc)) {
mtx_enter(&oommtx);
if (oom) {
msleep_nsec(&oom, &oommtx, PVM | PNORELOCK,
"oom", INFSLP);
goto again;
}
oom = 1;
for (i = 0; i < npages; i++) {
pps[i] = oompps[i];
atomic_setbits_int(&pps[i]->pg_flags, PG_BUSY);
}
mtx_leave(&oommtx);
return 0;
}
if (error)
return error;
for (i = 0; i < npages; i++) {
pps[i] = TAILQ_FIRST(&pgl);
/* *sigh* */
atomic_setbits_int(&pps[i]->pg_flags, PG_BUSY);
TAILQ_REMOVE(&pgl, pps[i], pageq);
}
return 0;
}
void
uvm_swap_freepages(struct vm_page **pps, int npages)
{
int i;
if (pps[0] == oompps[0]) {
for (i = 0; i < npages; i++)
uvm_pageclean(pps[i]);
mtx_enter(&oommtx);
KASSERT(oom == 1);
oom = 0;
mtx_leave(&oommtx);
wakeup(&oom);
return;
}
uvm_lock_pageq();
for (i = 0; i < npages; i++)
uvm_pagefree(pps[i]);
uvm_unlock_pageq();
}
#ifdef UVM_SWAP_ENCRYPT
/*
* Mark pages on the swap device for later decryption
*/
void
uvm_swap_markdecrypt(struct swapdev *sdp, int startslot, int npages,
int decrypt)
{
int pagestart, i;
int off, bit;
if (!sdp)
return;
pagestart = startslot - sdp->swd_drumoffset;
for (i = 0; i < npages; i++, pagestart++) {
off = SWD_DCRYPT_OFF(pagestart);
bit = SWD_DCRYPT_BIT(pagestart);
if (decrypt)
/* pages read need decryption */
sdp->swd_decrypt[off] |= 1 << bit;
else
/* pages read do not need decryption */
sdp->swd_decrypt[off] &= ~(1 << bit);
}
}
/*
* Check if the page that we got from disk needs to be decrypted
*/
boolean_t
uvm_swap_needdecrypt(struct swapdev *sdp, int off)
{
if (!sdp)
return FALSE;
off -= sdp->swd_drumoffset;
return sdp->swd_decrypt[SWD_DCRYPT_OFF(off)] & (1 << SWD_DCRYPT_BIT(off)) ?
TRUE : FALSE;
}
void
uvm_swap_finicrypt_all(void)
{
struct swapdev *sdp;
struct swappri *spp;
struct swap_key *key;
unsigned int nkeys;
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
if (sdp->swd_decrypt == NULL)
continue;
nkeys = dbtob((uint64_t)sdp->swd_nblks) >> PAGE_SHIFT;
key = sdp->swd_keys + (SWD_KEY_SIZE(nkeys) - 1);
do {
if (key->refcount != 0)
swap_key_delete(key);
} while (key-- != sdp->swd_keys);
}
}
}
#endif /* UVM_SWAP_ENCRYPT */
/*
* swaplist functions: functions that operate on the list of swap
* devices on the system.
*/
/*
* swaplist_insert: insert swap device "sdp" into the global list
*
* => caller must hold both swap_syscall_lock and uvm_swap_data_lock
* => caller must provide a newly allocated swappri structure (we will
* FREE it if we don't need it... this it to prevent allocation
* blocking here while adding swap)
*/
void
swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
{
struct swappri *spp, *pspp;
KASSERT(rw_write_held(&swap_syscall_lock));
MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock);
/*
* find entry at or after which to insert the new device.
*/
pspp = NULL;
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
if (priority <= spp->spi_priority)
break;
pspp = spp;
}
/*
* new priority?
*/
if (spp == NULL || spp->spi_priority != priority) {
spp = newspp; /* use newspp! */
spp->spi_priority = priority;
TAILQ_INIT(&spp->spi_swapdev);
if (pspp)
LIST_INSERT_AFTER(pspp, spp, spi_swappri);
else
LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
} else {
/* we don't need a new priority structure, free it */
free(newspp, M_VMSWAP, sizeof(*newspp));
}
/*
* priority found (or created). now insert on the priority's
* tailq list and bump the total number of swapdevs.
*/
sdp->swd_priority = priority;
TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
uvmexp.nswapdev++;
}
/*
* swaplist_find: find and optionally remove a swap device from the
* global list.
*
* => caller must hold both swap_syscall_lock and uvm_swap_data_lock
* => we return the swapdev we found (and removed)
*/
struct swapdev *
swaplist_find(struct vnode *vp, boolean_t remove)
{
struct swapdev *sdp;
struct swappri *spp;
KASSERT(rw_write_held(&swap_syscall_lock));
MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock);
/*
* search the lists for the requested vp
*/
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
if (sdp->swd_vp != vp)
continue;
if (remove) {
TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
uvmexp.nswapdev--;
}
return (sdp);
}
}
return (NULL);
}
/*
* swaplist_trim: scan priority list for empty priority entries and kill
* them.
*
* => caller must hold both swap_syscall_lock and uvm_swap_data_lock
*/
void
swaplist_trim(void)
{
struct swappri *spp, *nextspp;
KASSERT(rw_write_held(&swap_syscall_lock));
MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock);
LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
if (!TAILQ_EMPTY(&spp->spi_swapdev))
continue;
LIST_REMOVE(spp, spi_swappri);
free(spp, M_VMSWAP, sizeof(*spp));
}
}
/*
* swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
*
* => caller must hold swap_syscall_lock
* => uvm_swap_data_lock should be unlocked (we may sleep)
*/
void
swapdrum_add(struct swapdev *sdp, int npages)
{
u_long result;
if (extent_alloc(swapmap, npages, EX_NOALIGN, 0, EX_NOBOUNDARY,
EX_WAITOK, &result))
panic("swapdrum_add");
sdp->swd_drumoffset = result;
sdp->swd_drumsize = npages;
}
/*
* swapdrum_getsdp: given a page offset in /dev/drum, convert it back
* to the "swapdev" that maps that section of the drum.
*
* => each swapdev takes one big contig chunk of the drum
* => caller must hold uvm_swap_data_lock
*/
struct swapdev *
swapdrum_getsdp(int pgno)
{
struct swapdev *sdp;
struct swappri *spp;
MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock);
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
if (pgno >= sdp->swd_drumoffset &&
pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
return sdp;
}
}
}
return NULL;
}
/*
* sys_swapctl: main entry point for swapctl(2) system call
* [with two helper functions: swap_on and swap_off]
*/
int
sys_swapctl(struct proc *p, void *v, register_t *retval)
{
struct sys_swapctl_args /* {
syscallarg(int) cmd;
syscallarg(void *) arg;
syscallarg(int) misc;
} */ *uap = (struct sys_swapctl_args *)v;
struct vnode *vp;
struct nameidata nd;
struct swappri *spp;
struct swapdev *sdp;
struct swapent *sep;
char userpath[MAXPATHLEN];
size_t len;
int count, error, misc;
int priority;
misc = SCARG(uap, misc);
if ((error = pledge_swapctl(p, SCARG(uap, cmd))))
return error;
/*
* ensure serialized syscall access by grabbing the swap_syscall_lock
*/
rw_enter_write(&swap_syscall_lock);
/*
* we handle the non-priv NSWAP and STATS request first.
*
* SWAP_NSWAP: return number of config'd swap devices
* [can also be obtained with uvmexp sysctl]
*/
if (SCARG(uap, cmd) == SWAP_NSWAP) {
*retval = uvmexp.nswapdev;
error = 0;
goto out;
}
/*
* SWAP_STATS: get stats on current # of configured swap devs
*
* note that the swap_priority list can't change as long
* as we are holding the swap_syscall_lock. we don't want
* to grab the uvm_swap_data_lock because we may fault&sleep during
* copyout() and we don't want to be holding that lock then!
*/
if (SCARG(uap, cmd) == SWAP_STATS) {
sep = (struct swapent *)SCARG(uap, arg);
count = 0;
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
if (count >= misc)
continue;
sdp->swd_inuse =
btodb((u_int64_t)sdp->swd_npginuse <<
PAGE_SHIFT);
error = copyout(&sdp->swd_se, sep,
sizeof(struct swapent));
if (error)
goto out;
/* now copy out the path if necessary */
error = copyoutstr(sdp->swd_path,
sep->se_path, sizeof(sep->se_path), NULL);
if (error)
goto out;
count++;
sep++;
}
}
*retval = count;
error = 0;
goto out;
}
/* all other requests require superuser privs. verify. */
if ((error = suser(p)))
goto out;
/*
* at this point we expect a path name in arg. we will
* use namei() to gain a vnode reference (vref), and lock
* the vnode (VOP_LOCK).
*/
error = copyinstr(SCARG(uap, arg), userpath, sizeof(userpath), &len);
if (error)
goto out;
disk_map(userpath, userpath, sizeof(userpath), DM_OPENBLCK);
NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_SYSSPACE, userpath, p);
if ((error = namei(&nd)))
goto out;
vp = nd.ni_vp;
/* note: "vp" is referenced and locked */
error = 0; /* assume no error */
switch(SCARG(uap, cmd)) {
case SWAP_DUMPDEV:
if (vp->v_type != VBLK) {
error = ENOTBLK;
break;
}
dumpdev = vp->v_rdev;
break;
case SWAP_CTL:
/*
* get new priority, remove old entry (if any) and then
* reinsert it in the correct place. finally, prune out
* any empty priority structures.
*/
priority = SCARG(uap, misc);
spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
mtx_enter(&uvm_swap_data_lock);
if ((sdp = swaplist_find(vp, 1)) == NULL) {
error = ENOENT;
} else {
swaplist_insert(sdp, spp, priority);
swaplist_trim();
}
mtx_leave(&uvm_swap_data_lock);
if (error)
free(spp, M_VMSWAP, sizeof(*spp));
break;
case SWAP_ON:
/*
* If the device is a regular file, make sure the filesystem
* can be used for swapping.
*/
if (vp->v_type == VREG &&
(vp->v_mount->mnt_flag & MNT_SWAPPABLE) == 0) {
error = ENOTSUP;
break;
}
/*
* check for duplicates. if none found, then insert a
* dummy entry on the list to prevent someone else from
* trying to enable this device while we are working on
* it.
*/
priority = SCARG(uap, misc);
sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK|M_ZERO);
spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
sdp->swd_flags = SWF_FAKE; /* placeholder only */
sdp->swd_vp = vp;
sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
/*
* XXX Is NFS elaboration necessary?
*/
if (vp->v_type == VREG) {
sdp->swd_cred = crdup(p->p_ucred);
}
mtx_enter(&uvm_swap_data_lock);
if (swaplist_find(vp, 0) != NULL) {
error = EBUSY;
mtx_leave(&uvm_swap_data_lock);
if (vp->v_type == VREG) {
crfree(sdp->swd_cred);
}
free(sdp, M_VMSWAP, sizeof *sdp);
free(spp, M_VMSWAP, sizeof *spp);
break;
}
swaplist_insert(sdp, spp, priority);
mtx_leave(&uvm_swap_data_lock);
sdp->swd_pathlen = len;
sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
strlcpy(sdp->swd_path, userpath, len);
/*
* we've now got a FAKE placeholder in the swap list.
* now attempt to enable swap on it. if we fail, undo
* what we've done and kill the fake entry we just inserted.
* if swap_on is a success, it will clear the SWF_FAKE flag
*/
if ((error = swap_on(p, sdp)) != 0) {
mtx_enter(&uvm_swap_data_lock);
(void) swaplist_find(vp, 1); /* kill fake entry */
swaplist_trim();
mtx_leave(&uvm_swap_data_lock);
if (vp->v_type == VREG) {
crfree(sdp->swd_cred);
}
free(sdp->swd_path, M_VMSWAP, sdp->swd_pathlen);
free(sdp, M_VMSWAP, sizeof(*sdp));
break;
}
break;
case SWAP_OFF:
mtx_enter(&uvm_swap_data_lock);
if ((sdp = swaplist_find(vp, 0)) == NULL) {
mtx_leave(&uvm_swap_data_lock);
error = ENXIO;
break;
}
/*
* If a device isn't in use or enabled, we
* can't stop swapping from it (again).
*/
if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
mtx_leave(&uvm_swap_data_lock);
error = EBUSY;
break;
}
/*
* do the real work.
*/
error = swap_off(p, sdp);
break;
default:
error = EINVAL;
}
/* done! release the ref gained by namei() and unlock. */
vput(vp);
out:
rw_exit_write(&swap_syscall_lock);
return (error);
}
/*
* swap_on: attempt to enable a swapdev for swapping. note that the
* swapdev is already on the global list, but disabled (marked
* SWF_FAKE).
*
* => we avoid the start of the disk (to protect disk labels)
* => caller should leave uvm_swap_data_lock unlocked, we may lock it
* if needed.
*/
int
swap_on(struct proc *p, struct swapdev *sdp)
{
struct vnode *vp;
int error, npages, nblocks, size;
long addr;
struct vattr va;
#if defined(NFSCLIENT)
extern const struct vops nfs_vops;
#endif /* defined(NFSCLIENT) */
dev_t dev;
/*
* we want to enable swapping on sdp. the swd_vp contains
* the vnode we want (locked and ref'd), and the swd_dev
* contains the dev_t of the file, if it a block device.
*/
vp = sdp->swd_vp;
dev = sdp->swd_dev;
#if NVND > 0
/* no swapping to vnds. */
if (bdevsw[major(dev)].d_strategy == vndstrategy)
return (EOPNOTSUPP);
#endif
/*
* open the swap file (mostly useful for block device files to
* let device driver know what is up).
*
* we skip the open/close for root on swap because the root
* has already been opened when root was mounted (mountroot).
*/
if (vp != rootvp) {
if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
return (error);
}
/* XXX this only works for block devices */
/*
* we now need to determine the size of the swap area. for
* block specials we can call the d_psize function.
* for normal files, we must stat [get attrs].
*
* we put the result in nblks.
* for normal files, we also want the filesystem block size
* (which we get with statfs).
*/
switch (vp->v_type) {
case VBLK:
if (bdevsw[major(dev)].d_psize == 0 ||
(nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
error = ENXIO;
goto bad;
}
break;
case VREG:
if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
goto bad;
nblocks = (int)btodb(va.va_size);
if ((error =
VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
goto bad;
sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
/*
* limit the max # of outstanding I/O requests we issue
* at any one time. take it easy on NFS servers.
*/
#if defined(NFSCLIENT)
if (vp->v_op == &nfs_vops)
sdp->swd_maxactive = 2; /* XXX */
else
#endif /* defined(NFSCLIENT) */
sdp->swd_maxactive = 8; /* XXX */
bufq_init(&sdp->swd_bufq, BUFQ_FIFO);
break;
default:
error = ENXIO;
goto bad;
}
/*
* save nblocks in a safe place and convert to pages.
*/
sdp->swd_nblks = nblocks;
npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
/*
* for block special files, we want to make sure that leave
* the disklabel and bootblocks alone, so we arrange to skip
* over them (arbitrarily choosing to skip PAGE_SIZE bytes).
* note that because of this the "size" can be less than the
* actual number of blocks on the device.
*/
if (vp->v_type == VBLK) {
/* we use pages 1 to (size - 1) [inclusive] */
size = npages - 1;
addr = 1;
} else {
/* we use pages 0 to (size - 1) [inclusive] */
size = npages;
addr = 0;
}
/*
* make sure we have enough blocks for a reasonable sized swap
* area. we want at least one page.
*/
if (size < 1) {
error = EINVAL;
goto bad;
}
/*
* now we need to allocate a blist to manage this swap device
*/
sdp->swd_blist = blist_create(npages);
/* mark all expect the `saved' region free. */
blist_free(sdp->swd_blist, addr, size);
#ifdef HIBERNATE
/*
* Lock down the last region of primary disk swap, in case
* hibernate needs to place a signature there.
*/
if (dev == swdevt[0].sw_dev && vp->v_type == VBLK && size > 3 ) {
if (blist_fill(sdp->swd_blist, npages - 1, 1) != 1)
panic("hibernate reserve");
}
#endif
/* add a ref to vp to reflect usage as a swap device. */
vref(vp);
#ifdef UVM_SWAP_ENCRYPT
if (uvm_doswapencrypt)
uvm_swap_initcrypt(sdp, npages);
#endif
/* now add the new swapdev to the drum and enable. */
swapdrum_add(sdp, npages);
sdp->swd_npages = size;
mtx_enter(&uvm_swap_data_lock);
sdp->swd_flags &= ~SWF_FAKE; /* going live */
sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
uvmexp.swpages += size;
mtx_leave(&uvm_swap_data_lock);
return (0);
/*
* failure: clean up and return error.
*/
bad:
if (vp != rootvp)
(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
return (error);
}
/*
* swap_off: stop swapping on swapdev
*
* => swap data should be locked, we will unlock.
*/
int
swap_off(struct proc *p, struct swapdev *sdp)
{
int npages = sdp->swd_npages;
int error = 0;
KASSERT(rw_write_held(&swap_syscall_lock));
MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock);
/* disable the swap area being removed */
sdp->swd_flags &= ~SWF_ENABLE;
mtx_leave(&uvm_swap_data_lock);
/*
* the idea is to find all the pages that are paged out to this
* device, and page them all in. in uvm, swap-backed pageable
* memory can take two forms: aobjs and anons. call the
* swapoff hook for each subsystem to bring in pages.
*/
if (uao_swap_off(sdp->swd_drumoffset,
sdp->swd_drumoffset + sdp->swd_drumsize) ||
amap_swap_off(sdp->swd_drumoffset,
sdp->swd_drumoffset + sdp->swd_drumsize)) {
error = ENOMEM;
} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
error = EBUSY;
}
if (error) {
mtx_enter(&uvm_swap_data_lock);
sdp->swd_flags |= SWF_ENABLE;
mtx_leave(&uvm_swap_data_lock);
return error;
}
/*
* done with the vnode and saved creds.
* drop our ref on the vnode before calling VOP_CLOSE()
* so that spec_close() can tell if this is the last close.
*/
if (sdp->swd_vp->v_type == VREG) {
crfree(sdp->swd_cred);
bufq_destroy(&sdp->swd_bufq);
}
vrele(sdp->swd_vp);
if (sdp->swd_vp != rootvp) {
(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
}
mtx_enter(&uvm_swap_data_lock);
uvmexp.swpages -= npages;
if (swaplist_find(sdp->swd_vp, 1) == NULL)
panic("swap_off: swapdev not in list");
swaplist_trim();
mtx_leave(&uvm_swap_data_lock);
/*
* free all resources!
*/
extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
EX_WAITOK);
blist_destroy(sdp->swd_blist);
/* free sdp->swd_path ? */
free(sdp, M_VMSWAP, sizeof(*sdp));
return (0);
}
/*
* /dev/drum interface and i/o functions
*/
/*
* swstrategy: perform I/O on the drum
*
* => we must map the i/o request from the drum to the correct swapdev.
*/
void
swstrategy(struct buf *bp)
{
struct swapdev *sdp;
int s, pageno, bn;
/*
* convert block number to swapdev. note that swapdev can't
* be yanked out from under us because we are holding resources
* in it (i.e. the blocks we are doing I/O on).
*/
pageno = dbtob((u_int64_t)bp->b_blkno) >> PAGE_SHIFT;
mtx_enter(&uvm_swap_data_lock);
sdp = swapdrum_getsdp(pageno);
mtx_leave(&uvm_swap_data_lock);
if (sdp == NULL) {
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR;
s = splbio();
biodone(bp);
splx(s);
return;
}
/* convert drum page number to block number on this swapdev. */
pageno -= sdp->swd_drumoffset; /* page # on swapdev */
bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
/*
* for block devices we finish up here.
* for regular files we have to do more work which we delegate
* to sw_reg_strategy().
*/
switch (sdp->swd_vp->v_type) {
default:
panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
case VBLK:
/*
* must convert "bp" from an I/O on /dev/drum to an I/O
* on the swapdev (sdp).
*/
s = splbio();
buf_replacevnode(bp, sdp->swd_vp);
bp->b_blkno = bn;
splx(s);
VOP_STRATEGY(bp->b_vp, bp);
return;
case VREG:
/* delegate to sw_reg_strategy function. */
sw_reg_strategy(sdp, bp, bn);
return;
}
/* NOTREACHED */
}
/*
* sw_reg_strategy: handle swap i/o to regular files
*/
void
sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
{
struct vnode *vp;
struct vndxfer *vnx;
daddr_t nbn;
caddr_t addr;
off_t byteoff;
int s, off, nra, error, sz, resid;
/*
* allocate a vndxfer head for this transfer and point it to
* our buffer.
*/
vnx = pool_get(&vndxfer_pool, PR_WAITOK);
vnx->vx_flags = VX_BUSY;
vnx->vx_error = 0;
vnx->vx_pending = 0;
vnx->vx_bp = bp;
vnx->vx_sdp = sdp;
/*
* setup for main loop where we read filesystem blocks into
* our buffer.
*/
error = 0;
bp->b_resid = bp->b_bcount; /* nothing transferred yet! */
addr = bp->b_data; /* current position in buffer */
byteoff = dbtob((u_int64_t)bn);
for (resid = bp->b_resid; resid; resid -= sz) {
struct vndbuf *nbp;
/*
* translate byteoffset into block number. return values:
* vp = vnode of underlying device
* nbn = new block number (on underlying vnode dev)
* nra = num blocks we can read-ahead (excludes requested
* block)
*/
nra = 0;
error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
&vp, &nbn, &nra);
if (error == 0 && nbn == -1) {
/*
* this used to just set error, but that doesn't
* do the right thing. Instead, it causes random
* memory errors. The panic() should remain until
* this condition doesn't destabilize the system.
*/
#if 1
panic("sw_reg_strategy: swap to sparse file");
#else
error = EIO; /* failure */
#endif
}
/*
* punt if there was an error or a hole in the file.
* we must wait for any i/o ops we have already started
* to finish before returning.
*
* XXX we could deal with holes here but it would be
* a hassle (in the write case).
*/
if (error) {
s = splbio();
vnx->vx_error = error; /* pass error up */
goto out;
}
/*
* compute the size ("sz") of this transfer (in bytes).
*/
off = byteoff % sdp->swd_bsize;
sz = (1 + nra) * sdp->swd_bsize - off;
if (sz > resid)
sz = resid;
/*
* now get a buf structure. note that the vb_buf is
* at the front of the nbp structure so that you can
* cast pointers between the two structure easily.
*/
nbp = pool_get(&vndbuf_pool, PR_WAITOK);
nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
nbp->vb_buf.b_bcount = sz;
nbp->vb_buf.b_bufsize = sz;
nbp->vb_buf.b_error = 0;
nbp->vb_buf.b_data = addr;
nbp->vb_buf.b_bq = NULL;
nbp->vb_buf.b_blkno = nbn + btodb(off);
nbp->vb_buf.b_proc = bp->b_proc;
nbp->vb_buf.b_iodone = sw_reg_iodone;
nbp->vb_buf.b_vp = NULLVP;
nbp->vb_buf.b_vnbufs.le_next = NOLIST;
/*
* set b_dirtyoff/end and b_validoff/end. this is
* required by the NFS client code (otherwise it will
* just discard our I/O request).
*/
if (bp->b_dirtyend == 0) {
nbp->vb_buf.b_dirtyoff = 0;
nbp->vb_buf.b_dirtyend = sz;
} else {
nbp->vb_buf.b_dirtyoff =
max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
nbp->vb_buf.b_dirtyend =
min(sz,
max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
}
if (bp->b_validend == 0) {
nbp->vb_buf.b_validoff = 0;
nbp->vb_buf.b_validend = sz;
} else {
nbp->vb_buf.b_validoff =
max(0, bp->b_validoff - (bp->b_bcount-resid));
nbp->vb_buf.b_validend =
min(sz,
max(0, bp->b_validend - (bp->b_bcount-resid)));
}
/* patch it back to the vnx */
nbp->vb_vnx = vnx;
task_set(&nbp->vb_task, sw_reg_iodone_internal, nbp);
s = splbio();
if (vnx->vx_error != 0) {
pool_put(&vndbuf_pool, nbp);
goto out;
}
vnx->vx_pending++;
/* assoc new buffer with underlying vnode */
bgetvp(vp, &nbp->vb_buf);
/* start I/O if we are not over our limit */
bufq_queue(&sdp->swd_bufq, &nbp->vb_buf);
sw_reg_start(sdp);
splx(s);
/*
* advance to the next I/O
*/
byteoff += sz;
addr += sz;
}
s = splbio();
out: /* Arrive here at splbio */
vnx->vx_flags &= ~VX_BUSY;
if (vnx->vx_pending == 0) {
if (vnx->vx_error != 0) {
bp->b_error = vnx->vx_error;
bp->b_flags |= B_ERROR;
}
pool_put(&vndxfer_pool, vnx);
biodone(bp);
}
splx(s);
}
/* sw_reg_start: start an I/O request on the requested swapdev. */
void
sw_reg_start(struct swapdev *sdp)
{
struct buf *bp;
/* XXX: recursion control */
if ((sdp->swd_flags & SWF_BUSY) != 0)
return;
sdp->swd_flags |= SWF_BUSY;
while (sdp->swd_active < sdp->swd_maxactive) {
bp = bufq_dequeue(&sdp->swd_bufq);
if (bp == NULL)
break;
sdp->swd_active++;
if ((bp->b_flags & B_READ) == 0)
bp->b_vp->v_numoutput++;
VOP_STRATEGY(bp->b_vp, bp);
}
sdp->swd_flags &= ~SWF_BUSY;
}
/*
* sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
*
* => note that we can recover the vndbuf struct by casting the buf ptr
*
* XXX:
* We only put this onto a taskq here, because of the maxactive game since
* it basically requires us to call back into VOP_STRATEGY() (where we must
* be able to sleep) via sw_reg_start().
*/
void
sw_reg_iodone(struct buf *bp)
{
struct vndbuf *vbp = (struct vndbuf *)bp;
task_add(systq, &vbp->vb_task);
}
void
sw_reg_iodone_internal(void *xvbp)
{
struct vndbuf *vbp = xvbp;
struct vndxfer *vnx = vbp->vb_vnx;
struct buf *pbp = vnx->vx_bp; /* parent buffer */
struct swapdev *sdp = vnx->vx_sdp;
int resid, s;
s = splbio();
resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
pbp->b_resid -= resid;
vnx->vx_pending--;
/* pass error upward */
if (vbp->vb_buf.b_error)
vnx->vx_error = vbp->vb_buf.b_error;
/* disassociate this buffer from the vnode (if any). */
if (vbp->vb_buf.b_vp != NULL) {
brelvp(&vbp->vb_buf);
}
/* kill vbp structure */
pool_put(&vndbuf_pool, vbp);
/*
* wrap up this transaction if it has run to completion or, in
* case of an error, when all auxiliary buffers have returned.
*/
if (vnx->vx_error != 0) {
/* pass error upward */
pbp->b_flags |= B_ERROR;
pbp->b_error = vnx->vx_error;
if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
pool_put(&vndxfer_pool, vnx);
biodone(pbp);
}
} else if (pbp->b_resid == 0) {
KASSERT(vnx->vx_pending == 0);
if ((vnx->vx_flags & VX_BUSY) == 0) {
pool_put(&vndxfer_pool, vnx);
biodone(pbp);
}
}
/*
* done! start next swapdev I/O if one is pending
*/
sdp->swd_active--;
sw_reg_start(sdp);
splx(s);
}
/*
* uvm_swap_alloc: allocate space on swap
*
* => allocation is done "round robin" down the priority list, as we
* allocate in a priority we "rotate" the tail queue.
* => space can be freed with uvm_swap_free
* => we return the page slot number in /dev/drum (0 == invalid slot)
* => we lock uvm_swap_data_lock
* => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
*/
int
uvm_swap_alloc(int *nslots, boolean_t lessok)
{
struct swapdev *sdp;
struct swappri *spp;
/*
* no swap devices configured yet? definite failure.
*/
if (uvmexp.nswapdev < 1)
return 0;
/*
* lock data lock, convert slots into blocks, and enter loop
*/
KERNEL_ASSERT_LOCKED();
mtx_enter(&uvm_swap_data_lock);
ReTry: /* XXXMRG */
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
swblk_t result;
/* if it's not enabled, then we can't swap from it */
if ((sdp->swd_flags & SWF_ENABLE) == 0)
continue;
if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
continue;
result = blist_alloc(sdp->swd_blist, *nslots);
if (result == SWAPBLK_NONE) {
continue;
}
KASSERT(result < sdp->swd_drumsize);
/*
* successful allocation! now rotate the tailq.
*/
TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
sdp->swd_npginuse += *nslots;
uvmexp.swpginuse += *nslots;
mtx_leave(&uvm_swap_data_lock);
/* done! return drum slot number */
return result + sdp->swd_drumoffset;
}
}
/* XXXMRG: BEGIN HACK */
if (*nslots > 1 && lessok) {
*nslots = 1;
/* XXXMRG: ugh! blist should support this for us */
goto ReTry;
}
/* XXXMRG: END HACK */
mtx_leave(&uvm_swap_data_lock);
return 0; /* failed */
}
/*
* uvm_swapisfilled: return true if the amount of free space in swap is
* smaller than the size of a cluster.
*
* As long as some swap slots are being used by pages currently in memory,
* it is possible to reuse them. Even if the swap space has been completly
* filled we do not consider it full.
*/
int
uvm_swapisfilled(void)
{
int result;
mtx_enter(&uvm_swap_data_lock);
KASSERT(uvmexp.swpginuse <= uvmexp.swpages);
result = (uvmexp.swpginuse + SWCLUSTPAGES) >= uvmexp.swpages;
mtx_leave(&uvm_swap_data_lock);
return result;
}
/*
* uvm_swapisfull: return true if the amount of pages only in swap
* accounts for more than 99% of the total swap space.
*
*/
int
uvm_swapisfull(void)
{
int result;
mtx_enter(&uvm_swap_data_lock);
KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
result = (uvmexp.swpgonly >= ((long)uvmexp.swpages * 99 / 100));
mtx_leave(&uvm_swap_data_lock);
return result;
}
/*
* uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
*
* => we lock uvm_swap_data_lock
*/
void
uvm_swap_markbad(int startslot, int nslots)
{
struct swapdev *sdp;
mtx_enter(&uvm_swap_data_lock);
sdp = swapdrum_getsdp(startslot);
if (sdp != NULL) {
/*
* we just keep track of how many pages have been marked bad
* in this device, to make everything add up in swap_off().
* we assume here that the range of slots will all be within
* one swap device.
*/
sdp->swd_npgbad += nslots;
}
mtx_leave(&uvm_swap_data_lock);
}
/*
* uvm_swap_free: free swap slots
*
* => this can be all or part of an allocation made by uvm_swap_alloc
* => we lock uvm_swap_data_lock
*/
void
uvm_swap_free(int startslot, int nslots)
{
struct swapdev *sdp;
/*
* ignore attempts to free the "bad" slot.
*/
if (startslot == SWSLOT_BAD) {
return;
}
/*
* convert drum slot offset back to sdp, free the blocks
* in the extent, and return. must hold pri lock to do
* lookup and access the extent.
*/
KERNEL_LOCK();
mtx_enter(&uvm_swap_data_lock);
sdp = swapdrum_getsdp(startslot);
KASSERT(uvmexp.nswapdev >= 1);
KASSERT(sdp != NULL);
KASSERT(sdp->swd_npginuse >= nslots);
blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
sdp->swd_npginuse -= nslots;
uvmexp.swpginuse -= nslots;
mtx_leave(&uvm_swap_data_lock);
#ifdef UVM_SWAP_ENCRYPT
{
int i;
if (swap_encrypt_initialized) {
/* Dereference keys */
for (i = 0; i < nslots; i++)
if (uvm_swap_needdecrypt(sdp, startslot + i)) {
struct swap_key *key;
key = SWD_KEY(sdp, startslot + i);
if (key->refcount != 0)
SWAP_KEY_PUT(sdp, key);
}
/* Mark range as not decrypt */
uvm_swap_markdecrypt(sdp, startslot, nslots, 0);
}
}
#endif /* UVM_SWAP_ENCRYPT */
KERNEL_UNLOCK();
}
/*
* uvm_swap_put: put any number of pages into a contig place on swap
*
* => can be sync or async
*/
int
uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
{
int result;
result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
return (result);
}
/*
* uvm_swap_get: get a single page from swap
*
* => usually a sync op (from fault)
*/
int
uvm_swap_get(struct vm_page *page, int swslot, int flags)
{
int result;
atomic_inc_int(&uvmexp.nswget);
KASSERT(flags & PGO_SYNCIO);
if (swslot == SWSLOT_BAD) {
return VM_PAGER_ERROR;
}
KERNEL_LOCK();
result = uvm_swap_io(&page, swslot, 1, B_READ);
KERNEL_UNLOCK();
if (result == VM_PAGER_OK || result == VM_PAGER_PEND) {
/*
* this page is no longer only in swap.
*/
atomic_dec_int(&uvmexp.swpgonly);
}
return (result);
}
/*
* uvm_swap_io: do an i/o operation to swap
*/
int
uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
{
daddr_t startblk;
struct buf *bp;
vaddr_t kva;
int result, s, mapinflags, pflag, bounce = 0, i;
boolean_t write, async;
vaddr_t bouncekva;
struct vm_page *tpps[SWCLUSTPAGES];
int pdaemon = (curproc == uvm.pagedaemon_proc);
#ifdef UVM_SWAP_ENCRYPT
struct swapdev *sdp;
int encrypt = 0;
#endif
KERNEL_ASSERT_LOCKED();
write = (flags & B_READ) == 0;
async = (flags & B_ASYNC) != 0;
/* convert starting drum slot to block number */
startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
pflag = (async || pdaemon) ? PR_NOWAIT : PR_WAITOK;
bp = pool_get(&bufpool, pflag | PR_ZERO);
if (bp == NULL)
return (VM_PAGER_AGAIN);
/*
* map the pages into the kernel (XXX: currently required
* by buffer system).
*/
mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
if (!async)
mapinflags |= UVMPAGER_MAPIN_WAITOK;
kva = uvm_pagermapin(pps, npages, mapinflags);
if (kva == 0) {
pool_put(&bufpool, bp);
return (VM_PAGER_AGAIN);
}
#ifdef UVM_SWAP_ENCRYPT
if (write) {
/*
* Check if we need to do swap encryption on old pages.
* Later we need a different scheme, that swap encrypts
* all pages of a process that had at least one page swap
* encrypted. Then we might not need to copy all pages
* in the cluster, and avoid the memory overheard in
* swapping.
*/
if (uvm_doswapencrypt)
encrypt = 1;
}
if (swap_encrypt_initialized || encrypt) {
/*
* we need to know the swap device that we are swapping to/from
* to see if the pages need to be marked for decryption or
* actually need to be decrypted.
* XXX - does this information stay the same over the whole
* execution of this function?
*/
mtx_enter(&uvm_swap_data_lock);
sdp = swapdrum_getsdp(startslot);
mtx_leave(&uvm_swap_data_lock);
}
/*
* Check that we are dma capable for read (write always bounces
* through the swapencrypt anyway...
*/
if (write && encrypt) {
bounce = 1; /* bounce through swapencrypt always */
} else {
#else
{
#endif
for (i = 0; i < npages; i++) {
if (VM_PAGE_TO_PHYS(pps[i]) < dma_constraint.ucr_low ||
VM_PAGE_TO_PHYS(pps[i]) > dma_constraint.ucr_high) {
bounce = 1;
break;
}
}
}
if (bounce) {
int swmapflags, plaflags;
/* We always need write access. */
swmapflags = UVMPAGER_MAPIN_READ;
plaflags = UVM_PLA_NOWAIT;
if (!async) {
swmapflags |= UVMPAGER_MAPIN_WAITOK;
plaflags = UVM_PLA_WAITOK;
}
if (uvm_swap_allocpages(tpps, npages, plaflags)) {
pool_put(&bufpool, bp);
uvm_pagermapout(kva, npages);
return (VM_PAGER_AGAIN);
}
bouncekva = uvm_pagermapin(tpps, npages, swmapflags);
if (bouncekva == 0) {
pool_put(&bufpool, bp);
uvm_pagermapout(kva, npages);
uvm_swap_freepages(tpps, npages);
return (VM_PAGER_AGAIN);
}
}
/* encrypt to swap */
if (write && bounce) {
int i, opages;
caddr_t src, dst;
u_int64_t block;
src = (caddr_t) kva;
dst = (caddr_t) bouncekva;
block = startblk;
for (i = 0; i < npages; i++) {
#ifdef UVM_SWAP_ENCRYPT
struct swap_key *key;
if (encrypt) {
key = SWD_KEY(sdp, startslot + i);
SWAP_KEY_GET(sdp, key); /* add reference */
swap_encrypt(key, src, dst, block, PAGE_SIZE);
block += btodb(PAGE_SIZE);
} else {
#else
{
#endif /* UVM_SWAP_ENCRYPT */
memcpy(dst, src, PAGE_SIZE);
}
/* this just tells async callbacks to free */
atomic_setbits_int(&tpps[i]->pg_flags, PQ_ENCRYPT);
src += PAGE_SIZE;
dst += PAGE_SIZE;
}
uvm_pagermapout(kva, npages);
/* dispose of pages we dont use anymore */
opages = npages;
uvm_pager_dropcluster(NULL, NULL, pps, &opages,
PGO_PDFREECLUST);
kva = bouncekva;
}
/*
* prevent ASYNC reads.
* uvm_swap_io is only called from uvm_swap_get, uvm_swap_get
* assumes that all gets are SYNCIO. Just make sure here.
* XXXARTUBC - might not be true anymore.
*/
if (!write) {
flags &= ~B_ASYNC;
async = 0;
}
/*
* fill in the bp. we currently route our i/o through
* /dev/drum's vnode [swapdev_vp].
*/
bp->b_flags = B_BUSY | B_NOCACHE | B_RAW | (flags & (B_READ|B_ASYNC));
bp->b_proc = &proc0; /* XXX */
bp->b_vnbufs.le_next = NOLIST;
if (bounce)
bp->b_data = (caddr_t)bouncekva;
else
bp->b_data = (caddr_t)kva;
bp->b_bq = NULL;
bp->b_blkno = startblk;
s = splbio();
bp->b_vp = NULL;
buf_replacevnode(bp, swapdev_vp);
splx(s);
bp->b_bufsize = bp->b_bcount = (long)npages << PAGE_SHIFT;
/*
* for pageouts we must set "dirtyoff" [NFS client code needs it].
* and we bump v_numoutput (counter of number of active outputs).
*/
if (write) {
bp->b_dirtyoff = 0;
bp->b_dirtyend = npages << PAGE_SHIFT;
#ifdef UVM_SWAP_ENCRYPT
/* mark the pages in the drum for decryption */
if (swap_encrypt_initialized)
uvm_swap_markdecrypt(sdp, startslot, npages, encrypt);
#endif
s = splbio();
swapdev_vp->v_numoutput++;
splx(s);
}
/* for async ops we must set up the iodone handler. */
if (async) {
bp->b_flags |= B_CALL | (pdaemon ? B_PDAEMON : 0);
bp->b_iodone = uvm_aio_biodone;
}
/* now we start the I/O, and if async, return. */
VOP_STRATEGY(bp->b_vp, bp);
if (async)
return (VM_PAGER_PEND);
/* must be sync i/o. wait for it to finish */
(void) biowait(bp);
result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
/* decrypt swap */
if (!write && !(bp->b_flags & B_ERROR)) {
int i;
caddr_t data = (caddr_t)kva;
caddr_t dst = (caddr_t)kva;
u_int64_t block = startblk;
if (bounce)
data = (caddr_t)bouncekva;
for (i = 0; i < npages; i++) {
#ifdef UVM_SWAP_ENCRYPT
struct swap_key *key;
/* Check if we need to decrypt */
if (swap_encrypt_initialized &&
uvm_swap_needdecrypt(sdp, startslot + i)) {
key = SWD_KEY(sdp, startslot + i);
if (key->refcount == 0) {
result = VM_PAGER_ERROR;
break;
}
swap_decrypt(key, data, dst, block, PAGE_SIZE);
} else if (bounce) {
#else
if (bounce) {
#endif
memcpy(dst, data, PAGE_SIZE);
}
data += PAGE_SIZE;
dst += PAGE_SIZE;
block += btodb(PAGE_SIZE);
}
if (bounce)
uvm_pagermapout(bouncekva, npages);
}
/* kill the pager mapping */
uvm_pagermapout(kva, npages);
/* Not anymore needed, free after encryption/bouncing */
if (!write && bounce)
uvm_swap_freepages(tpps, npages);
/* now dispose of the buf */
s = splbio();
if (bp->b_vp)
brelvp(bp);
if (write && bp->b_vp)
vwakeup(bp->b_vp);
pool_put(&bufpool, bp);
splx(s);
/* finally return. */
return (result);
}
void
swapmount(void)
{
struct swapdev *sdp;
struct swappri *spp;
struct vnode *vp;
dev_t swap_dev = swdevt[0].sw_dev;
char *nam;
char path[MNAMELEN + 1];
if (swap_dev == NODEV)
return;
rw_enter_write(&swap_syscall_lock);
#if defined(NFSCLIENT)
if (swap_dev == NETDEV) {
extern struct nfs_diskless nfs_diskless;
snprintf(path, sizeof(path), "%s",
nfs_diskless.nd_swap.ndm_host);
vp = nfs_diskless.sw_vp;
goto gotit;
} else
#endif
if (bdevvp(swap_dev, &vp)) {
rw_exit_write(&swap_syscall_lock);
return;
}
/* Construct a potential path to swap */
if ((nam = findblkname(major(swap_dev))))
snprintf(path, sizeof(path), "/dev/%s%d%c", nam,
DISKUNIT(swap_dev), 'a' + DISKPART(swap_dev));
else
snprintf(path, sizeof(path), "blkdev0x%x",
swap_dev);
#if defined(NFSCLIENT)
gotit:
#endif
sdp = malloc(sizeof(*sdp), M_VMSWAP, M_WAITOK|M_ZERO);
spp = malloc(sizeof(*spp), M_VMSWAP, M_WAITOK);
sdp->swd_flags = SWF_FAKE;
sdp->swd_dev = swap_dev;
sdp->swd_pathlen = strlen(path) + 1;
sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK | M_ZERO);
strlcpy(sdp->swd_path, path, sdp->swd_pathlen);
sdp->swd_vp = vp;
mtx_enter(&uvm_swap_data_lock);
swaplist_insert(sdp, spp, 0);
mtx_leave(&uvm_swap_data_lock);
if (swap_on(curproc, sdp)) {
mtx_enter(&uvm_swap_data_lock);
swaplist_find(vp, 1);
swaplist_trim();
vput(sdp->swd_vp);
mtx_leave(&uvm_swap_data_lock);
rw_exit_write(&swap_syscall_lock);
free(sdp->swd_path, M_VMSWAP, sdp->swd_pathlen);
free(sdp, M_VMSWAP, sizeof(*sdp));
return;
}
rw_exit_write(&swap_syscall_lock);
}
#ifdef HIBERNATE
int
uvm_hibswap(dev_t dev, u_long *sp, u_long *ep)
{
struct swapdev *sdp, *swd = NULL;
struct swappri *spp;
/* no swap devices configured yet? */
if (uvmexp.nswapdev < 1 || dev != swdevt[0].sw_dev)
return (1);
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
if (sdp->swd_dev == dev)
swd = sdp;
}
}
if (swd == NULL || (swd->swd_flags & SWF_ENABLE) == 0)
return (1);
blist_gapfind(swd->swd_blist, sp, ep);
if (*ep - *sp == 0)
/* no gap found */
return (1);
/*
* blist_gapfind returns the gap as [sp,ep[ ,
* whereas [sp,ep] is expected from uvm_hibswap().
*/
*ep -= 1;
return (0);
}
#endif /* HIBERNATE */
#ifdef DDB
void
swap_print_all(int (*pr)(const char *, ...))
{
struct swappri *spp;
struct swapdev *sdp;
LIST_FOREACH(spp, &swap_priority, spi_swappri) {
TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
#ifdef HIBERNATE
u_long bgap = 0, egap = 0;
#endif
pr("swap %p path \"%s\" flags 0x%x\n", sdp,
sdp->swd_path, sdp->swd_flags);
blist_print(sdp->swd_blist);
#ifdef HIBERNATE
if (!uvm_hibswap(sdp->swd_dev, &bgap, &egap))
pr("hibernate gap: [0x%lx, 0x%lx] size=%lu\n",
bgap, egap, (egap - bgap + 1));
else
pr("hibernate gap: not found\n");
#endif
}
}
}
#endif /* DDB */
|