1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
/* $OpenBSD: vm_page.h,v 1.17 2001/08/11 10:57:22 art Exp $ */
/* $NetBSD: vm_page.h,v 1.35 2000/03/26 20:54:48 kleink Exp $ */
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_page.h 7.3 (Berkeley) 4/21/91
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Resident memory system definitions.
*/
#ifndef _VM_PAGE_
#define _VM_PAGE_
/*
* Management of resident (logical) pages.
*
* A small structure is kept for each resident
* page, indexed by page number. Each structure
* is an element of several lists:
*
* A hash table bucket used to quickly
* perform object/offset lookups
*
* A list of all pages for a given object,
* so they can be quickly deactivated at
* time of deallocation.
*
* An ordered list of pages due for pageout.
*
* In addition, the structure contains the object
* and offset to which this page belongs (for pageout),
* and sundry status bits.
*
* Fields in this structure are locked either by the lock on the
* object that the page belongs to (O) or by the lock on the page
* queues (P) [or both].
*/
/*
* locking note: the mach version of this data structure had bit
* fields for the flags, and the bit fields were divided into two
* items (depending on who locked what). some time, in BSD, the bit
* fields were dumped and all the flags were lumped into one short.
* that is fine for a single threaded uniprocessor OS, but bad if you
* want to actual make use of locking (simple_lock's). so, we've
* separated things back out again.
*
* note the page structure has no lock of its own.
*/
#include <uvm/uvm_extern.h>
#include <vm/pglist.h>
struct vm_page {
TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO
* queue or free list (P) */
TAILQ_ENTRY(vm_page) hashq; /* hash table links (O)*/
TAILQ_ENTRY(vm_page) listq; /* pages in same object (O)*/
struct vm_anon *uanon; /* anon (O,P) */
struct uvm_object *uobject; /* object (O,P) */
voff_t offset; /* offset into object (O,P) */
u_short flags; /* object flags [O] */
u_short version; /* version count [O] */
u_short wire_count; /* wired down map refs [P] */
u_short pqflags; /* page queue flags [P] */
u_int loan_count; /* number of active loans
* to read: [O or P]
* to modify: [O _and_ P] */
paddr_t phys_addr; /* physical address of page */
#if defined(UVM_PAGE_TRKOWN)
/* debugging fields to track page ownership */
pid_t owner; /* proc that set PG_BUSY */
char *owner_tag; /* why it was set busy */
#endif
};
/*
* These are the flags defined for vm_page.
*
* Note: PG_FILLED and PG_DIRTY are added for the filesystems.
*/
/*
* locking rules:
* PG_ ==> locked by object lock
* PQ_ ==> lock by page queue lock
* PQ_FREE is locked by free queue lock and is mutex with all other PQs
*
* PG_ZERO is used to indicate that a page has been pre-zero'd. This flag
* is only set when the page is on no queues, and is cleared when the page
* is placed on the free list.
*
* possible deadwood: PG_FAULTING, PQ_LAUNDRY
*/
#define PG_CLEAN 0x0008 /* page has not been modified */
#define PG_BUSY 0x0010 /* page is in transit */
#define PG_WANTED 0x0020 /* someone is waiting for page */
#define PG_TABLED 0x0040 /* page is in VP table */
#define PG_ZERO 0x0100 /* page is pre-zero'd */
#define PG_FAKE 0x0200 /* page is placeholder for pagein */
#define PG_FILLED 0x0400 /* client flag to set when filled */
#define PG_DIRTY 0x0800 /* client flag to set when dirty */
#define PG_RELEASED 0x1000 /* page released while paging */
#define PG_FAULTING 0x2000 /* page is being faulted in */
#define PG_CLEANCHK 0x4000 /* clean bit has been checked */
#define PQ_FREE 0x0001 /* page is on free list */
#define PQ_INACTIVE 0x0002 /* page is in inactive list */
#define PQ_ACTIVE 0x0004 /* page is in active list */
#define PQ_LAUNDRY 0x0008 /* page is being cleaned now */
#define PQ_ANON 0x0010 /* page is part of an anon, rather
than an uvm_object */
#define PQ_AOBJ 0x0020 /* page is part of an anonymous
uvm_object */
#define PQ_SWAPBACKED (PQ_ANON|PQ_AOBJ)
#define PQ_ENCRYPT 0x0040 /* page needs {en,de}cryption */
/*
* physical memory layout structure
*
* MD vmparam.h must #define:
* VM_PHYSEG_MAX = max number of physical memory segments we support
* (if this is "1" then we revert to a "contig" case)
* VM_PHYSSEG_STRAT: memory sort/search options (for VM_PHYSEG_MAX > 1)
* - VM_PSTRAT_RANDOM: linear search (random order)
* - VM_PSTRAT_BSEARCH: binary search (sorted by address)
* - VM_PSTRAT_BIGFIRST: linear search (sorted by largest segment first)
* - others?
* XXXCDC: eventually we should remove contig and old non-contig cases
* and purge all left-over global variables...
*/
#define VM_PSTRAT_RANDOM 1
#define VM_PSTRAT_BSEARCH 2
#define VM_PSTRAT_BIGFIRST 3
/*
* vm_physmemseg: describes one segment of physical memory
*/
struct vm_physseg {
paddr_t start; /* PF# of first page in segment */
paddr_t end; /* (PF# of last page in segment) + 1 */
paddr_t avail_start; /* PF# of first free page in segment */
paddr_t avail_end; /* (PF# of last free page in segment) +1 */
int free_list; /* which free list they belong on */
struct vm_page *pgs; /* vm_page structures (from start) */
struct vm_page *lastpg; /* vm_page structure for end */
struct pmap_physseg pmseg; /* pmap specific (MD) data */
};
#if defined(_KERNEL)
/*
* physical memory config is stored in vm_physmem.
*/
extern struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];
extern int vm_nphysseg;
/*
* prototypes
*/
static struct vm_page *PHYS_TO_VM_PAGE __P((paddr_t));
static int vm_physseg_find __P((paddr_t, int *));
/*
* macros and inlines
*/
#define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
/*
* when VM_PHYSSEG_MAX is 1, we can simplify these functions
*/
/*
* vm_physseg_find: find vm_physseg structure that belongs to a PA
*/
static __inline int
vm_physseg_find(pframe, offp)
paddr_t pframe;
int *offp;
{
#if VM_PHYSSEG_MAX == 1
/* 'contig' case */
if (pframe >= vm_physmem[0].start && pframe < vm_physmem[0].end) {
if (offp)
*offp = pframe - vm_physmem[0].start;
return(0);
}
return(-1);
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
/* binary search for it */
int start, len, try;
/*
* if try is too large (thus target is less than than try) we reduce
* the length to trunc(len/2) [i.e. everything smaller than "try"]
*
* if the try is too small (thus target is greater than try) then
* we set the new start to be (try + 1). this means we need to
* reduce the length to (round(len/2) - 1).
*
* note "adjust" below which takes advantage of the fact that
* (round(len/2) - 1) == trunc((len - 1) / 2)
* for any value of len we may have
*/
for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
try = start + (len / 2); /* try in the middle */
/* start past our try? */
if (pframe >= vm_physmem[try].start) {
/* was try correct? */
if (pframe < vm_physmem[try].end) {
if (offp)
*offp = pframe - vm_physmem[try].start;
return(try); /* got it */
}
start = try + 1; /* next time, start here */
len--; /* "adjust" */
} else {
/*
* pframe before try, just reduce length of
* region, done in "for" loop
*/
}
}
return(-1);
#else
/* linear search for it */
int lcv;
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
if (pframe >= vm_physmem[lcv].start &&
pframe < vm_physmem[lcv].end) {
if (offp)
*offp = pframe - vm_physmem[lcv].start;
return(lcv); /* got it */
}
}
return(-1);
#endif
}
/*
* PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
* back from an I/O mapping (ugh!). used in some MD code as well.
*/
static __inline struct vm_page *
PHYS_TO_VM_PAGE(pa)
paddr_t pa;
{
paddr_t pf = atop(pa);
int off;
int psi;
psi = vm_physseg_find(pf, &off);
if (psi != -1)
return(&vm_physmem[psi].pgs[off]);
return(NULL);
}
#define VM_PAGE_IS_FREE(entry) ((entry)->pqflags & PQ_FREE)
#endif /* _KERNEL */
#endif /* !_VM_PAGE_ */
|