summaryrefslogtreecommitdiff
path: root/sys/vm/vm_pageout.c
blob: 8903bd57c6a70e7768698333facd99b633df75ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*	$OpenBSD: vm_pageout.c,v 1.11 2001/03/21 23:24:51 art Exp $	*/
/*	$NetBSD: vm_pageout.c,v 1.23 1996/02/05 01:54:07 christos Exp $	*/

/* 
 * Copyright (c) 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)vm_pageout.c	8.7 (Berkeley) 6/19/95
 *
 *
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
 * 
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 * 
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 * 
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 *	The proverbial page-out daemon.
 */

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/pool.h>

#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>

#ifndef VM_PAGE_FREE_MIN
#define VM_PAGE_FREE_MIN	(cnt.v_free_count / 20)
#endif

#ifndef VM_PAGE_FREE_TARGET
#define VM_PAGE_FREE_TARGET	((cnt.v_free_min * 4) / 3)
#endif

int	vm_page_free_min_min = 16 * 1024;
int	vm_page_free_min_max = 256 * 1024;

int	vm_pages_needed;	/* Event on which pageout daemon sleeps */

int	vm_page_max_wired = 0;	/* XXX max # of wired pages system-wide */

#ifdef CLUSTERED_PAGEOUT
#define MAXPOCLUSTER		(MAXPHYS/NBPG)	/* XXX */
int doclustered_pageout = 1;
#endif

/*
 * Activate the pageout daemon and sleep awaiting more free memory
 */
void
vm_wait(msg)
	char *msg;
{
	int timo = 0;

	if(curproc == pageout_daemon) {
		/*
		 * We might be toast here, but IF some paging operations
		 * are pending then pages will magically appear. We
		 * usually can't return an error because callers of
		 * malloc who can wait generally don't check for
		 * failure.
		 *
		 * Only the pageout_daemon wakes up this channel!
		 */
		printf("pageout daemon has stalled\n");
		timo = hz >> 3;
	}
	simple_lock(&vm_pages_needed_lock);
	thread_wakeup(&vm_pages_needed);
	thread_sleep_msg(&cnt.v_free_count, &vm_pages_needed_lock, FALSE, msg,
		timo);
}

/*
 *	vm_pageout_scan does the dirty work for the pageout daemon.
 */
void
vm_pageout_scan()
{
	register vm_page_t	m, next;
	register int		page_shortage;
	register int		s;
	register int		pages_freed;
	int			free;
	vm_object_t		object;

	/*
	 *	Only continue when we want more pages to be "free"
	 */

	cnt.v_rev++;

	s = splimp();
	simple_lock(&vm_page_queue_free_lock);
	free = cnt.v_free_count;
	simple_unlock(&vm_page_queue_free_lock);
	splx(s);

#ifndef __SWAP_BROKEN					/* XXX */
	if (free < cnt.v_free_target) {
		swapout_threads();

		/*
		 *	Be sure the pmap system is updated so
		 *	we can scan the inactive queue.
		 */

		pmap_update();
	}
#endif							/* XXX */

	/*
	 *	Acquire the resident page system lock,
	 *	as we may be changing what's resident quite a bit.
	 */
	vm_page_lock_queues();

	/*
	 *	Start scanning the inactive queue for pages we can free.
	 *	We keep scanning until we have enough free pages or
	 *	we have scanned through the entire queue.  If we
	 *	encounter dirty pages, we start cleaning them.
	 */

	pages_freed = 0;
	for (m = vm_page_queue_inactive.tqh_first; m != NULL; m = next) {
		s = splimp();
		simple_lock(&vm_page_queue_free_lock);
		free = cnt.v_free_count;
		simple_unlock(&vm_page_queue_free_lock);
		splx(s);
		if (free >= cnt.v_free_target)
			break;

		cnt.v_scan++;
		next = m->pageq.tqe_next;

		/*
		 * If the page has been referenced, move it back to the
		 * active queue.
		 */
		if (pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
			vm_page_activate(m);
			cnt.v_reactivated++;
			continue;
		}

		/*
		 * If the page is clean, free it up.
		 */
		if (m->flags & PG_CLEAN) {
			object = m->object;
			if (vm_object_lock_try(object)) {
				pmap_page_protect(VM_PAGE_TO_PHYS(m),
						  VM_PROT_NONE);
				vm_page_free(m);
				pages_freed++;
				cnt.v_dfree++;
				vm_object_unlock(object);
			}
			continue;
		}

		/*
		 * If the page is dirty but already being washed, skip it.
		 */
		if ((m->flags & PG_LAUNDRY) == 0)
			continue;

		/*
		 * Otherwise the page is dirty and still in the laundry,
		 * so we start the cleaning operation and remove it from
		 * the laundry.
		 */
		object = m->object;
		if (!vm_object_lock_try(object))
			continue;
#ifdef CLUSTERED_PAGEOUT
		if (object->pager &&
		    vm_pager_cancluster(object->pager, PG_CLUSTERPUT))
			vm_pageout_cluster(m, object);
		else
#endif
		vm_pageout_page(m, object);
		thread_wakeup(object);
		vm_object_unlock(object);
		/*
		 * Former next page may no longer even be on the inactive
		 * queue (due to potential blocking in the pager with the
		 * queues unlocked).  If it isn't, we just start over.
		 */
		if (next && (next->flags & PG_INACTIVE) == 0)
			next = vm_page_queue_inactive.tqh_first;
	}
	
	/*
	 *	Compute the page shortage.  If we are still very low on memory
	 *	be sure that we will move a minimal amount of pages from active
	 *	to inactive.
	 */

	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count;
	if (page_shortage <= 0 && pages_freed == 0)
		page_shortage = 1;

	while (page_shortage > 0) {
		/*
		 *	Move some more pages from active to inactive.
		 */

		if ((m = vm_page_queue_active.tqh_first) == NULL)
			break;
		vm_page_deactivate(m);
		page_shortage--;
	}

	vm_page_unlock_queues();
}

/*
 * Called with object and page queues locked.
 * If reactivate is TRUE, a pager error causes the page to be
 * put back on the active queue, ow it is left on the inactive queue.
 */
void
vm_pageout_page(m, object)
	vm_page_t m;
	vm_object_t object;
{
	vm_pager_t pager;
	int pageout_status;

	/*
	 * We set the busy bit to cause potential page faults on
	 * this page to block.
	 *
	 * We also set pageout-in-progress to keep the object from
	 * disappearing during pageout.  This guarantees that the
	 * page won't move from the inactive queue.  (However, any
	 * other page on the inactive queue may move!)
	 */
	pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
	m->flags |= PG_BUSY;

	/*
	 * Try to collapse the object before making a pager for it.
	 * We must unlock the page queues first.
	 */
	vm_page_unlock_queues();

#if 0
	/*
	 * vm_object_collapse might want to sleep waiting for pages which
	 * is not allowed to do in this thread.  Anyway, we now aggressively
	 * collapse object-chains as early as possible so this call ought
	 * to not be very useful anyhow.  This is just an educated guess.
	 * Not doing a collapse operation is never fatal though, so we skip
	 * it for the time being.  Later we might add some NOWAIT option for
	 * the collapse code to look at, if it's deemed necessary.
	 */
	if (object->pager == NULL)
		vm_object_collapse(object);
#endif

	vm_object_paging_begin(object);
	vm_object_unlock(object);

	/*
	 * We _used_ to wakeup page consumers here, "in case the following
	 * operations block". That leads to livelock if the pageout fails,
	 * which is actually quite a common thing for NFS paging.
	 */

	/*
	 * If there is no pager for the page, use the default pager.
	 * If there is no place to put the page at the moment,
	 * leave it in the laundry and hope that there will be
	 * paging space later.
	 */
	if ((pager = object->pager) == NULL) {
		pager = vm_pager_allocate(PG_DFLT, (caddr_t)0, object->size,
		    VM_PROT_ALL, (vm_offset_t)0);
		if (pager != NULL)
			vm_object_setpager(object, pager, 0, FALSE);
	}
	pageout_status = pager ? vm_pager_put(pager, m, FALSE) : VM_PAGER_FAIL;
	vm_object_lock(object);
	vm_page_lock_queues();

	switch (pageout_status) {
	case VM_PAGER_OK:
	case VM_PAGER_PEND:
		/* hmm, don't wakeup if memory is _very_ low? */
		thread_wakeup(&cnt.v_free_count);
		cnt.v_pageouts++;
		cnt.v_pgpgout++;
		m->flags &= ~PG_LAUNDRY;
		break;
	case VM_PAGER_BAD:
		/*
		 * Page outside of range of object.  Right now we
		 * essentially lose the changes by pretending it
		 * worked.
		 *
		 * XXX dubious, what should we do?
		 */
		m->flags &= ~PG_LAUNDRY;
		m->flags |= PG_CLEAN;
		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
		break;
	case VM_PAGER_AGAIN:
	{
		/*
		 * FAIL on a write is interpreted to mean a resource
		 * shortage, so we put pause for awhile and try again.
		 * XXX could get stuck here.
		 */
		(void)tsleep((caddr_t)&vm_pages_needed, PZERO|PCATCH,
		    "pageout", hz>>3);
		break;
	}
	case VM_PAGER_FAIL:
	case VM_PAGER_ERROR:
		/*
		 * If page couldn't be paged out, then reactivate
		 * the page so it doesn't clog the inactive list.
		 * (We will try paging out it again later).
		 */
		vm_page_activate(m);
		cnt.v_reactivated++;
		break;
	}

	pmap_clear_reference(VM_PAGE_TO_PHYS(m));

	/*
	 * If the operation is still going, leave the page busy
	 * to block all other accesses.  Also, leave the paging
	 * in progress indicator set so that we don't attempt an
	 * object collapse.
	 */
	if (pageout_status != VM_PAGER_PEND) {
		m->flags &= ~PG_BUSY;
		PAGE_WAKEUP(m);
		vm_object_paging_end(object);
	}
}

#ifdef CLUSTERED_PAGEOUT
#define PAGEOUTABLE(p) \
	((((p)->flags & (PG_INACTIVE|PG_CLEAN|PG_LAUNDRY)) == \
	  (PG_INACTIVE|PG_LAUNDRY)) && !pmap_is_referenced(VM_PAGE_TO_PHYS(p)))

/*
 * Attempt to pageout as many contiguous (to ``m'') dirty pages as possible
 * from ``object''.  Using information returned from the pager, we assemble
 * a sorted list of contiguous dirty pages and feed them to the pager in one
 * chunk.  Called with paging queues and object locked.  Also, object must
 * already have a pager.
 */
void
vm_pageout_cluster(m, object)
	vm_page_t m;
	vm_object_t object;
{
	vm_offset_t offset, loff, hoff;
	vm_page_t plist[MAXPOCLUSTER], *plistp, p;
	int postatus, ix, count;

	cnt.v_pageouts++;
	/*
	 * Determine the range of pages that can be part of a cluster
	 * for this object/offset.  If it is only our single page, just
	 * do it normally.
	 */
	vm_pager_cluster(object->pager, m->offset, &loff, &hoff);
	if (hoff - loff == PAGE_SIZE) {
		vm_pageout_page(m, object);
		return;
	}

	plistp = plist;

	/*
	 * Target page is always part of the cluster.
	 */
	pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
	m->flags |= PG_BUSY;
	plistp[atop(m->offset - loff)] = m;
	count = 1;

	/*
	 * Backup from the given page til we find one not fulfilling
	 * the pageout criteria or we hit the lower bound for the
	 * cluster.  For each page determined to be part of the
	 * cluster, unmap it and busy it out so it won't change.
	 */
	ix = atop(m->offset - loff);
	offset = m->offset;
	while (offset > loff && count < MAXPOCLUSTER-1) {
		p = vm_page_lookup(object, offset - PAGE_SIZE);
		if (p == NULL || !PAGEOUTABLE(p))
			break;
		pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
		p->flags |= PG_BUSY;
		plistp[--ix] = p;
		offset -= PAGE_SIZE;
		count++;
	}
	plistp += atop(offset - loff);
	loff = offset;

	/*
	 * Now do the same moving forward from the target.
	 */
	ix = atop(m->offset - loff) + 1;
	offset = m->offset + PAGE_SIZE;
	while (offset < hoff && count < MAXPOCLUSTER) {
		p = vm_page_lookup(object, offset);
		if (p == NULL || !PAGEOUTABLE(p))
			break;
		pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
		p->flags |= PG_BUSY;
		plistp[ix++] = p;
		offset += PAGE_SIZE;
		count++;
	}
	hoff = offset;

	/*
	 * Pageout the page.
	 * Unlock everything and do a wakeup prior to the pager call
	 * in case it blocks.
	 */
	vm_page_unlock_queues();
	vm_object_paging_begin(object);
	vm_object_unlock(object);
again:
	thread_wakeup(&cnt.v_free_count);
	postatus = vm_pager_put_pages(object->pager, plistp, count, FALSE);
	/*
	 * XXX rethink this
	 */
	if (postatus == VM_PAGER_AGAIN) {
		(void)tsleep((caddr_t)&vm_pages_needed, PZERO|PCATCH,
		    "pageout", 0);
		goto again;
	} else if (postatus == VM_PAGER_BAD)
		panic("vm_pageout_cluster: VM_PAGER_BAD");
	vm_object_lock(object);
	vm_page_lock_queues();

	/*
	 * Loop through the affected pages, reflecting the outcome of
	 * the operation.
	 */
	for (ix = 0; ix < count; ix++) {
		p = *plistp++;
		switch (postatus) {
		case VM_PAGER_OK:
		case VM_PAGER_PEND:
			cnt.v_pgpgout++;
			p->flags &= ~PG_LAUNDRY;
			break;
		case VM_PAGER_FAIL:
		case VM_PAGER_ERROR:
			/*
			 * Pageout failed, reactivate the target page so it
			 * doesn't clog the inactive list.  Other pages are
			 * left as they are.
			 */
			if (p == m) {
				vm_page_activate(p);
				cnt.v_reactivated++;
			}
			break;
		}
		pmap_clear_reference(VM_PAGE_TO_PHYS(p));
		/*
		 * If the operation is still going, leave the page busy
		 * to block all other accesses.
		 */
		if (postatus != VM_PAGER_PEND) {
			p->flags &= ~PG_BUSY;
			PAGE_WAKEUP(p);
		}
	}
	/*
	 * If the operation is still going, leave the paging in progress
	 * indicator set so that we don't attempt an object collapse.
	 */
	if (postatus != VM_PAGER_PEND)
		vm_object_paging_end(object);
}
#endif

/*
 *	vm_pageout is the high level pageout daemon.
 */

void
vm_pageout()
{
	pageout_daemon = curproc;
	(void) spl0();

	/*
	 *	Initialize some paging parameters.
	 */

	if (cnt.v_free_min == 0) {
		cnt.v_free_min = VM_PAGE_FREE_MIN;
		vm_page_free_min_min /= cnt.v_page_size;
		vm_page_free_min_max /= cnt.v_page_size;
		if (cnt.v_free_min < vm_page_free_min_min)
			cnt.v_free_min = vm_page_free_min_min;
		if (cnt.v_free_min > vm_page_free_min_max)
			cnt.v_free_min = vm_page_free_min_max;
	}

	if (cnt.v_free_target == 0)
		cnt.v_free_target = VM_PAGE_FREE_TARGET;

	if (cnt.v_free_target <= cnt.v_free_min)
		cnt.v_free_target = cnt.v_free_min + 1;

	/* XXX does not really belong here */
	if (vm_page_max_wired == 0)
		vm_page_max_wired = cnt.v_free_count / 3;

	/*
	 *	The pageout daemon is never done, so loop
	 *	forever.
	 */

	simple_lock(&vm_pages_needed_lock);
	while (TRUE) {
		thread_sleep_msg(&vm_pages_needed, &vm_pages_needed_lock,
			FALSE, "paged", 0);
		/*
		 * Compute the inactive target for this scan.
		 * We need to keep a reasonable amount of memory in the
		 * inactive list to better simulate LRU behavior.
		 */
		cnt.v_inactive_target =
			(cnt.v_active_count + cnt.v_inactive_count) / 3;
		if (cnt.v_inactive_target <= cnt.v_free_target)
			cnt.v_inactive_target = cnt.v_free_target + 1;

		/*
		 * Only make a scan if we are likely to do something.
		 * Otherwise we might have been awakened by a pager
		 * to clean up async pageouts.
		 */
		if (cnt.v_free_count < cnt.v_free_target ||
		    cnt.v_inactive_count < cnt.v_inactive_target) {
			pool_drain(0);
			vm_pageout_scan();
		}
		vm_pager_sync();
		simple_lock(&vm_pages_needed_lock);
		thread_wakeup(&cnt.v_free_count);
	}
}