summaryrefslogtreecommitdiff
path: root/usr.bin/dc/dc.1
blob: 844d3c939d1fb733553f62ac3754d5152d2b1e69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
.\"	$OpenBSD: dc.1,v 1.8 2003/10/18 19:47:10 otto Exp $
.\"
.\" Copyright (C) Caldera International Inc.  2001-2002.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code and documentation must retain the above
.\"    copyright notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\" 3. All advertising materials mentioning features or use of this software
.\"    must display the following acknowledgement:
.\"	This product includes software developed or owned by Caldera
.\"	International, Inc.
.\" 4. Neither the name of Caldera International, Inc. nor the names of other
.\"    contributors may be used to endorse or promote products derived from
.\"    this software without specific prior written permission.
.\"
.\" USE OF THE SOFTWARE PROVIDED FOR UNDER THIS LICENSE BY CALDERA
.\" INTERNATIONAL, INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
.\" IN NO EVENT SHALL CALDERA INTERNATIONAL, INC. BE LIABLE FOR ANY DIRECT,
.\" INDIRECT INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
.\" (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
.\" SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
.\" STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
.\" IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
.\"	@(#)dc.1	8.1 (Berkeley) 6/6/93
.\"
.Dd June 6, 1993
.Dt DC 1
.Sh NAME
.Nm dc
.Nd desk calculator
.Sh SYNOPSIS
.Nm
.Op Ar file
.Sh DESCRIPTION
.Nm
is an arbitrary precision arithmetic package.
The overall structure of
.Nm
is
a stacking (reverse Polish) calculator i.e.\&
numbers are stored on a stack.
Adding a number pushes it onto the stack.
Arithmetic operations pop arguments off the stack
and push the results.
See also the
.Xr bc 1
utility, which is a preprocessor for
.Nm
providing infix notation and a C-like syntax
which implements functions and reasonable control
structures for programs.
.Pp
Ordinarily,
.Nm
operates on decimal integers,
but one may specify an input base, output base,
and a number of fractional digits (scale) to be maintained.
If an argument is given,
input is taken from that file until its end,
then from the standard input.
Whitespace is ignored, expect where it signals the end of a number,
end of a line or when a register name is expected.
The following constructions are recognized:
.Bl -tag -width "number"
.It Va number
The value of the number is pushed on the stack.
A number is an unbroken string of the digits 0\-9 and letters A\-F.
It may be preceded by an underscore
.Pq Sq _
to input a negative number.
A number may contain a single decimal point.
A number may also contain the characters A\-F, with the values 10\-15.
.It Cm "+ - / * % ~ ^"
The
top two values on the stack are added
(+),
subtracted
(\-),
multiplied (*),
divided (/),
remaindered (%),
divided and remaindered (~),
or exponentiated (^).
The two entries are popped off the stack;
the result is pushed on the stack in their place.
Any fractional part of an exponent is ignored.
.Pp
For addition and subtraction, the scale of the result is the maximum
of scales of the operands.
For division the scale of the result is defined
by the scale set by the
.Ic k
operation.
For multiplication, the scale is defined by the expression
.Sy min(a+b,max(a,b,scale)) ,
where
.Sy a
and
.Sy b
are the scales of the operands, and
.Sy scale
is the scale defined by the
.Ic k
operation.
For exponentation with a non-negative exponent, the scale of the result is
.Sy min(a*b,max(scale,a)) ,
where
.Sy a
is the scale of the base, and
.Sy b
is the
.Em value
of the exponent.
If the exponent is negative, the scale of the result is the scale
defined by the
.Ic k
operation.
.Pp
In the case of the division and modulus operator (~),
the resultant quotient is pushed first followed by the remainder.
This is a shorthand for the sequence:
.Bd -literal -offset indent -compact
x y / x y %
.Ed
The division and modulus operator is a non-portable extension.
.It Ic s Ns Ar x
The
top of the stack is popped and stored into
a register named
.Ar x ,
where
.Ar x
may be any character, including space, tab or any other special character.
If the
.Ic s
is capitalized,
.Ar x
is treated as a stack and the value is pushed on it.
.It Ic l Ns Ar x
The
value in register
.Ar x
is pushed on the stack.
The register
.Ar x
is not altered.
Initially, all registers contain the value zero.
If the
.Ar l
is capitalized,
register
.Ar x
is treated as a stack and its top value is popped onto the main stack.
.It Ic d
The top value on the stack is duplicated.
.It Ic p
The top value on the stack is printed with a trailing newline.
The top value remains unchanged.
.It Ic P
The top of the stack is popped.
If the top of the stack is a string, it is printed without a trailing newline.
If the top of the stack is a number, it is interpreted as a
base 256 number, and each digit of this base 256 number is printed as
an
.Tn ASCII
character, without a trailing newline.
.It Ic f
All values on the stack are printed, separated by newlines.
.It Ic q
Exits the program.
If executing a string, the recursion level is
popped by two.
If
.Ic q
is capitalized,
the top value on the stack is popped and the string execution level is popped
by that value.
.It Ic x
Treats the top element of the stack as a character string
and executes it as a string of
.Nm
commands.
.It Ic X
Replaces the number on the top of the stack with its scale factor.
If the top of the stack is a string, replace it with the integer 0.
.It Cm [ Ns ... Ns Cm ]
Puts the bracketed
.Tn ASCII
string onto the top of the stack.
If the string includes brackets, these must be properly balanced.
The backslash character
.Pq Sq \e
may be used as an escape character, making it
possible to include unbalanced brackets in strings.
To include a backslash in a string, use a double backslash.
.It Xo
.Cm < Ns Va x
.Cm > Ns Va x
.Cm = Ns Va x
.Cm !< Ns Va x
.Cm !> Ns Va x
.Cm != Ns Va x
.Xc
The top two elements of the stack are popped and compared.
Register
.Ar x
is executed if they obey the stated
relation.
.It Ic v
Replaces the top element on the stack by its square root.
The scale of the result is the maximum of the scale of the argument
and the current value of scale.
.It Ic \&!
Interprets the rest of the line as a
.Ux
command.
.It Ic c
All values on the stack are popped.
.It Ic i
The top value on the stack is popped and used as the
base for further input.
The initial input base is 10.
.Ic I
Pushes the input base on the top of the stack.
.It Ic o
The top value on the stack is popped and used as the
base for further output.
The initial output base is 10.
.It Ic O
Pushes the output base on the top of the stack.
.It Ic k
The top of the stack is popped, and that value is used as
a non-negative scale factor:
the appropriate number of places
are printed on output,
and maintained during multiplication, division, and exponentiation.
The interaction of scale factor,
input base, and output base will be reasonable if all are changed
together.
.It Ic K
The current scale factor is pushed onto the stack.
.It Ic z
The stack level is pushed onto the stack.
.It Ic Z
Replaces the number on the top of the stack with its length.
The length of a string is its number of characters.
The length of a number is its number of digits, not counting the minus sign
and decimal point.
.It Ic \&?
A line of input is taken from the input source (usually the terminal)
and executed.
.It Ic : Ns Ar r
Pop two values from the stack.
The second value on the stack is stored into the array
.Ar r
indexed by the top of stack.
.It Ic ; Ns Ar r
Pop a value from the stack.
The value is used as an index into register
.Ar r .
The value in this register is pushed onto the stack.
.Pp
Array elements initially have the value zero.
Each level of a stacked register has its own array associated with
it.
The command sequence
.Bd -literal -offset indent
[first] 0:a [dummy] Sa [second] 0:a 0;a p La 0;a p
.Ed
.Pp
will print
.Bd -literal -offset indent
second
first
.Ed
.Pp
since the string
.Ql second
is written in an array that is later popped, to reveal the array that
stored
.Ql first .
.It Ic J
Pop the top value of the stack. The recursion level is popped by that value,
and following that, the input is skipped until the first occurence of
the
.Ic M
operator.
.It Ic M
Mark used by the
.Ic J
operator.
The
.Ic J
and
.Ic M
operators are non-portable extensions, used by the
.Xr bc 1
command.
.El
.Sh EXAMPLES
An example which prints the first ten values of
.Ic n! :
.Bd -literal -offset indent
[la1+dsa*pla10>y]sy
0sa1
lyx
.Ed
.Pp
Independent of the current input base, the command
.Bd -literal -offset indent
Ai
.Ed
.Pp
will reset the input base to decimal 10.
.Sh DIAGNOSTICS
.Bl -diag
.It %c (0%o) is unimplemented
an undefined operation was called.
.It stack empty
for not enough elements on the stack to do what was asked.
.It stack register '%c' (0%o) is empty
for an
.Ar L
operation from a stack register that is empty.
.It Runtime warning: non-zero scale in exponent
for a fractional part of an exponent that is being ignored.
.It divide by zero
for trying to divide by zero.
.It remainder by zero
for trying to take a remainder by zero.
.It square root of negative number
for trying to take the square root of a negative number.
.It index too big
for an array index that is larger than 2048.
.It negative index
for a negative array index.
.It input base must be a number between 2 and 16
for trying to set an illegal input base.
.It output base must be a number greater than 1
for trying to set an illegal input base.
.It scale must be a nonnegative number
for trying to set a negative or zero scale.
.It scale too large
for trying to set a scale that is too large.
A scale must be representable as a 32-bit unsigned number.
.It Q command argument exceeded string execution depth
for trying to pop the recursion level more than the current
recursion level.
.It Q command requires a number >= 1
for trying to pop an illegal number of recursion levels.
.It recursion too deep
for too many levels of nested execution.
.Pp
The recursion level is increased by one if the
.Ar x
or
.Ar ?\&
operation or one of the compare operations resulting in the execution
of register is executed.
As an exception, the recursion level is not increased if the operation
is executed as the last command of a string.
For example, the commands
.Bd -literal -offset indent
[lax]sa
1 lax
.Ed
.Pp
will execute an endless loop, while the commands
.Bd -literal -offset indent
[laxp]sa
1 lax
.Ed
.Pp
will terminate because of a too deep recursion level.
.It J command argument exceeded string execution depth
for trying to pop the recursion level more than the current
recursion level.
.It mark not found
for a failed scan for an occurence of the
.Ic M
operator.
.El
.Sh SEE ALSO
.Xr bc 1
.Pp
USD:05
.Em "DC \- An Interactive Desk Calculator"
.Sh STANDARDS
The arithmetic operations of the
.Nm
utility are expected to conform to the definition listed in the
.Xr bc 1
section of the
.St -p1003.2
specification.
.Sh HISTORY
The
.Nm
command first appeared in
.At v6 .
A complete rewrite of the
.Nm
command using the
.Xr bn 3
big number routines first appeared in
.Ox 3.5 .
.Sh AUTHORS
The original version of the
.Nm
command was written by
.An Robert Morris
and
.An Lorinda Cherry .
The current version of the
.Nm
utility was written by
.An Otto Moerbeek .