summaryrefslogtreecommitdiff
path: root/usr.bin/learn/lib/eqn/L1.1f
blob: 72d7e53dd3f2a1c4cb33a4ae62e8bc7f1c1c605a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#print
You can also make equations that are ________indented a fixed amount from
the left margin, with the command
  .EQ I
Again, if there is an equation number, it follows the I.

Convert all the equations in "Example" to indented ones.
(Naturally I've changed it.)
You can do this with a single editor command.

Print "Example" with neqn and nroff -ms,
then type "ready".
#once #create Ref
.LP
     EQUIVALENCES OF ONE SORT AND ANOTHER
.LP
.EQ I (2.01)
bold x sup { n alpha } (t) ~->~ bold x sup alpha ( bold X ,t).
.EN
.sp
.EQ I (2.02)
sum from n F( bold x sup { n alpha } (t))
~->~ 1 over OMEGA INT F( bold x sup alpha ( bold X ,t))d bold \|X
.EN
.EQ I (2.03)
bold x ( bold X ,t) ~==~
sum from  { alpha =1} to  N
rho sup alpha  over rho sup 0 bold x sup alpha ( bold X ,t)
.EN
.EQ I (2.08)
sum from  {alpha =1} to  N
U sup { mu alpha } V sup { mu alpha } ~=~ delta sup { mu nu }
.EN
.EQ I (2.06)
bold y sup { T mu } ( bold X ,t) 
~==~ sum from  {alpha =1} to  N
U sup { mu alpha }
bold x sup alpha
( bold X ,t)
.EN
.EQ I
~ partial over {partial d} 
 ( epsilon sub 0 bold E sup T times  bold B ) sub i  
- m sub ij,\|j ~=~
-q sup D E sub i sup T
-( bold ~j sup D times bold B ) sub i
.EN
#once #create Example
.LP
     EQUIVALENCES OF ONE SORT AND ANOTHER
.LP
.EQ (2.01)
bold x sup { n alpha } (t) ~->~ bold x sup alpha ( bold X ,t).
.EN
.sp
.EQ (2.02)
sum from n F( bold x sup { n alpha } (t))
~->~ 1 over OMEGA INT F( bold x sup alpha ( bold X ,t))d bold \|X
.EN
.EQ (2.03)
bold x ( bold X ,t) ~==~
sum from  { alpha =1} to  N
rho sup alpha  over rho sup 0 bold x sup alpha ( bold X ,t)
.EN
.EQ (2.08)
sum from  {alpha =1} to  N
U sup { mu alpha } V sup { mu alpha } ~=~ delta sup { mu nu }
.EN
.EQ (2.06)
bold y sup { T mu } ( bold X ,t) 
~==~ sum from  {alpha =1} to  N
U sup { mu alpha }
bold x sup alpha
( bold X ,t)
.EN
.EQ
~ partial over {partial d} 
 ( epsilon sub 0 bold E sup T times  bold B ) sub i  
- m sub ij,\|j ~=~
-q sup D E sub i sup T
-( bold ~j sup D times bold B ) sub i
.EN
#user
#cmp Ref Example
#log
#next
2.1a 10