1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
|
/* $Id: io.c,v 1.9 2019/02/17 16:34:04 deraadt Exp $ */
/*
* Copyright (c) 2019 Kristaps Dzonsons <kristaps@bsd.lv>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/stat.h>
#include <assert.h>
#include <endian.h>
#include <errno.h>
#include <poll.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "extern.h"
/*
* A non-blocking check to see whether there's POLLIN data in fd.
* Returns <0 on failure, 0 if there's no data, >0 if there is.
*/
int
io_read_check(struct sess *sess, int fd)
{
struct pollfd pfd;
pfd.fd = fd;
pfd.events = POLLIN;
if (poll(&pfd, 1, 0) < 0) {
ERR(sess, "poll");
return -1;
}
return (pfd.revents & POLLIN);
}
/*
* Write buffer to non-blocking descriptor.
* Returns zero on failure, non-zero on success (zero or more bytes).
* On success, fills in "sz" with the amount written.
*/
static int
io_write_nonblocking(struct sess *sess, int fd, const void *buf, size_t bsz,
size_t *sz)
{
struct pollfd pfd;
ssize_t wsz;
int c;
*sz = 0;
if (bsz == 0)
return 1;
pfd.fd = fd;
pfd.events = POLLOUT;
/* Poll and check for all possible errors. */
if ((c = poll(&pfd, 1, POLL_TIMEOUT)) == -1) {
ERR(sess, "poll");
return 0;
} else if (c == 0) {
ERRX(sess, "poll: timeout");
return 0;
} else if ((pfd.revents & (POLLERR|POLLNVAL))) {
ERRX(sess, "poll: bad fd");
return 0;
} else if ((pfd.revents & POLLHUP)) {
ERRX(sess, "poll: hangup");
return 0;
} else if (!(pfd.revents & POLLOUT)) {
ERRX(sess, "poll: unknown event");
return 0;
}
/* Now the non-blocking write. */
if ((wsz = write(fd, buf, bsz)) < 0) {
ERR(sess, "write");
return 0;
}
*sz = wsz;
return 1;
}
/*
* Blocking write of the full size of the buffer.
* Returns 0 on failure, non-zero on success (all bytes written).
*/
static int
io_write_blocking(struct sess *sess, int fd, const void *buf, size_t sz)
{
size_t wsz;
int c;
while (sz > 0) {
c = io_write_nonblocking(sess, fd, buf, sz, &wsz);
if (!c) {
ERRX1(sess, "io_write_nonblocking");
return 0;
} else if (wsz == 0) {
ERRX(sess, "io_write_nonblocking: short write");
return 0;
}
buf += wsz;
sz -= wsz;
}
return 1;
}
/*
* Write "buf" of size "sz" to non-blocking descriptor.
* Returns zero on failure, non-zero on success (all bytes written to
* the descriptor).
*/
int
io_write_buf(struct sess *sess, int fd, const void *buf, size_t sz)
{
int32_t tag, tagbuf;
size_t wsz;
int c;
if (!sess->mplex_writes) {
c = io_write_blocking(sess, fd, buf, sz);
sess->total_write += sz;
return c;
}
while (sz > 0) {
wsz = sz & 0xFFFFFF;
tag = (7 << 24) + wsz;
tagbuf = htole32(tag);
if (!io_write_blocking(sess, fd, &tagbuf, sizeof(tagbuf))) {
ERRX1(sess, "io_write_blocking");
return 0;
}
if (!io_write_blocking(sess, fd, buf, wsz)) {
ERRX1(sess, "io_write_blocking");
return 0;
}
sess->total_write += wsz;
sz -= wsz;
buf += wsz;
}
return 1;
}
/*
* Write "line" (NUL-terminated) followed by a newline.
* Returns zero on failure, non-zero on succcess.
*/
int
io_write_line(struct sess *sess, int fd, const char *line)
{
if (!io_write_buf(sess, fd, line, strlen(line)))
ERRX1(sess, "io_write_buf");
else if (!io_write_byte(sess, fd, '\n'))
ERRX1(sess, "io_write_byte");
else
return 1;
return 0;
}
/*
* Read buffer from non-blocking descriptor.
* Returns zero on failure, non-zero on success (zero or more bytes).
*/
static int
io_read_nonblocking(struct sess *sess,
int fd, void *buf, size_t bsz, size_t *sz)
{
struct pollfd pfd;
ssize_t rsz;
int c;
*sz = 0;
if (bsz == 0)
return 1;
pfd.fd = fd;
pfd.events = POLLIN;
/* Poll and check for all possible errors. */
if ((c = poll(&pfd, 1, POLL_TIMEOUT)) == -1) {
ERR(sess, "poll");
return 0;
} else if (c == 0) {
ERRX(sess, "poll: timeout");
return 0;
} else if ((pfd.revents & (POLLERR|POLLNVAL))) {
ERRX(sess, "poll: bad fd");
return 0;
} else if (!(pfd.revents & (POLLIN|POLLHUP))) {
ERRX(sess, "poll: unknown event");
return 0;
}
/* Now the non-blocking read, checking for EOF. */
if ((rsz = read(fd, buf, bsz)) < 0) {
ERR(sess, "read");
return 0;
} else if (rsz == 0) {
ERRX(sess, "unexpected end of file");
return 0;
}
*sz = rsz;
return 1;
}
/*
* Blocking read of the full size of the buffer.
* This can be called from either the error type message or a regular
* message---or for that matter, multiplexed or not.
* Returns 0 on failure, non-zero on success (all bytes read).
*/
static int
io_read_blocking(struct sess *sess,
int fd, void *buf, size_t sz)
{
size_t rsz;
int c;
while (sz > 0) {
c = io_read_nonblocking(sess, fd, buf, sz, &rsz);
if (!c) {
ERRX1(sess, "io_read_nonblocking");
return 0;
} else if (rsz == 0) {
ERRX(sess, "io_read_nonblocking: short read");
return 0;
}
buf += rsz;
sz -= rsz;
}
return 1;
}
/*
* When we do a lot of writes in a row (such as when the sender emits
* the file list), the server might be sending us multiplexed log
* messages.
* If it sends too many, it clogs the socket.
* This function looks into the read buffer and clears out any log
* messages pending.
* If called when there are valid data reads available, this function
* does nothing.
* Returns zero on failure, non-zero on success.
*/
int
io_read_flush(struct sess *sess, int fd)
{
int32_t tagbuf, tag;
char mpbuf[1024];
if (sess->mplex_read_remain)
return 1;
/*
* First, read the 4-byte multiplex tag.
* The first byte is the tag identifier (7 for normal
* data, !7 for out-of-band data), the last three are
* for the remaining data size.
*/
if (!io_read_blocking(sess, fd, &tagbuf, sizeof(tagbuf))) {
ERRX1(sess, "io_read_blocking");
return 0;
}
tag = le32toh(tagbuf);
sess->mplex_read_remain = tag & 0xFFFFFF;
tag >>= 24;
if (tag == 7)
return 1;
tag -= 7;
if (sess->mplex_read_remain > sizeof(mpbuf)) {
ERRX(sess, "multiplex buffer overflow");
return 0;
} else if (sess->mplex_read_remain == 0)
return 1;
if (!io_read_blocking(sess, fd,
mpbuf, sess->mplex_read_remain)) {
ERRX1(sess, "io_read_blocking");
return 0;
}
if (mpbuf[sess->mplex_read_remain - 1] == '\n')
mpbuf[--sess->mplex_read_remain] = '\0';
/*
* Always print the server's messages, as the server
* will control its own log levelling.
*/
LOG0(sess, "%.*s", (int)sess->mplex_read_remain, mpbuf);
sess->mplex_read_remain = 0;
/*
* I only know that a tag of one means an error.
* This means that we should exit.
*/
if (tag == 1) {
ERRX1(sess, "error from remote host");
return 0;
}
return 1;
}
/*
* Read buffer from non-blocking descriptor, possibly in multiplex read
* mode.
* Returns zero on failure, non-zero on success (all bytes read from
* the descriptor).
*/
int
io_read_buf(struct sess *sess, int fd, void *buf, size_t sz)
{
size_t rsz;
int c;
/* If we're not multiplexing, read directly. */
if (!sess->mplex_reads) {
assert(sess->mplex_read_remain == 0);
c = io_read_blocking(sess, fd, buf, sz);
sess->total_read += sz;
return c;
}
while (sz > 0) {
/*
* First, check to see if we have any regular data
* hanging around waiting to be read.
* If so, read the lesser of that data and whatever
* amount we currently want.
*/
if (sess->mplex_read_remain) {
rsz = sess->mplex_read_remain < sz ?
sess->mplex_read_remain : sz;
if (!io_read_blocking(sess, fd, buf, rsz)) {
ERRX1(sess, "io_read_blocking");
return 0;
}
sz -= rsz;
sess->mplex_read_remain -= rsz;
buf += rsz;
sess->total_read += rsz;
continue;
}
assert(sess->mplex_read_remain == 0);
if (!io_read_flush(sess, fd)) {
ERRX1(sess, "io_read_flush");
return 0;
}
}
return 1;
}
/*
* Like io_write_buf(), but for a long (which is a composite type).
* Returns zero on failure, non-zero on success.
*/
int
io_write_long(struct sess *sess, int fd, int64_t val)
{
int64_t nv;
/* Short-circuit: send as an integer if possible. */
if (val <= INT32_MAX && val >= 0) {
if (!io_write_int(sess, fd, (int32_t)val)) {
ERRX1(sess, "io_write_int");
return 0;
}
return 1;
}
/* Otherwise, pad with max integer, then send 64-bit. */
nv = htole64(val);
if (!io_write_int(sess, fd, INT32_MAX))
ERRX1(sess, "io_write_int");
else if (!io_write_buf(sess, fd, &nv, sizeof(int64_t)))
ERRX1(sess, "io_write_buf");
else
return 1;
return 0;
}
/*
* Like io_write_buf(), but for an integer.
* Returns zero on failure, non-zero on success.
*/
int
io_write_int(struct sess *sess, int fd, int32_t val)
{
int32_t nv;
nv = htole32(val);
if (!io_write_buf(sess, fd, &nv, sizeof(int32_t))) {
ERRX1(sess, "io_write_buf");
return 0;
}
return 1;
}
/*
* A simple assertion-protected memory copy from th einput "val" or size
* "valsz" into our buffer "buf", full size "buflen", position "bufpos".
* Increases our "bufpos" appropriately.
* This has no return value, but will assert() if the size of the buffer
* is insufficient for the new data.
*/
void
io_buffer_buf(struct sess *sess, void *buf,
size_t *bufpos, size_t buflen, const void *val, size_t valsz)
{
assert(*bufpos + valsz <= buflen);
memcpy(buf + *bufpos, val, valsz);
*bufpos += valsz;
}
/*
* Like io_buffer_buf(), but also accomodating for multiplexing codes.
* This should NEVER be passed to io_write_buf(), but instead passed
* directly to a write operation.
*/
void
io_lowbuffer_buf(struct sess *sess, void *buf,
size_t *bufpos, size_t buflen, const void *val, size_t valsz)
{
int32_t tagbuf;
if (valsz == 0)
return;
if (!sess->mplex_writes) {
io_buffer_buf(sess, buf, bufpos, buflen, val, valsz);
return;
}
assert(*bufpos + valsz + sizeof(int32_t) <= buflen);
assert(valsz == (valsz & 0xFFFFFF));
tagbuf = htole32((7 << 24) + valsz);
io_buffer_int(sess, buf, bufpos, buflen, tagbuf);
io_buffer_buf(sess, buf, bufpos, buflen, val, valsz);
}
/*
* Allocate the space needed for io_lowbuffer_buf() and friends.
* This should be called for *each* lowbuffer operation, so:
* io_lowbuffer_alloc(... sizeof(int32_t));
* io_lowbuffer_int(...);
* io_lowbuffer_alloc(... sizeof(int32_t));
* io_lowbuffer_int(...);
* And not sizeof(int32_t) * 2 or whatnot.
* Returns zero on failure, non-zero on succes.
*/
int
io_lowbuffer_alloc(struct sess *sess, void **buf,
size_t *bufsz, size_t *bufmax, size_t sz)
{
void *pp;
size_t extra;
extra = sess->mplex_writes ? sizeof(int32_t) : 0;
if (*bufsz + sz + extra > *bufmax) {
pp = realloc(*buf, *bufsz + sz + extra);
if (pp == NULL) {
ERR(sess, "realloc");
return 0;
}
*buf = pp;
*bufmax = *bufsz + sz + extra;
}
*bufsz += sz + extra;
return 1;
}
/*
* Like io_lowbuffer_buf(), but for a single integer.
*/
void
io_lowbuffer_int(struct sess *sess, void *buf,
size_t *bufpos, size_t buflen, int32_t val)
{
int32_t nv = htole32(val);
io_lowbuffer_buf(sess, buf, bufpos, buflen, &nv, sizeof(int32_t));
}
/*
* Like io_buffer_buf(), but for a single integer.
*/
void
io_buffer_int(struct sess *sess, void *buf,
size_t *bufpos, size_t buflen, int32_t val)
{
int32_t nv = htole32(val);
io_buffer_buf(sess, buf, bufpos, buflen, &nv, sizeof(int32_t));
}
/*
* Like io_read_buf(), but for a long >=0.
* Returns zero on failure, non-zero on success.
*/
int
io_read_ulong(struct sess *sess, int fd, uint64_t *val)
{
int64_t oval;
if (!io_read_long(sess, fd, &oval)) {
ERRX1(sess, "io_read_long");
return 0;
} else if (oval < 0) {
ERRX(sess, "io_read_size: negative value");
return 1;
}
*val = oval;
return 1;
}
/*
* Like io_read_buf(), but for a long.
* Returns zero on failure, non-zero on success.
*/
int
io_read_long(struct sess *sess, int fd, int64_t *val)
{
int64_t oval;
int32_t sval;
/* Start with the short-circuit: read as an int. */
if (!io_read_int(sess, fd, &sval)) {
ERRX1(sess, "io_read_int");
return 0;
} else if (sval != INT32_MAX) {
*val = sval;
return 1;
}
/* If the int is maximal, read as 64 bits. */
if (!io_read_buf(sess, fd, &oval, sizeof(int64_t))) {
ERRX1(sess, "io_read_buf");
return 0;
}
*val = le64toh(oval);
return 1;
}
/*
* One thing we often need to do is read a size_t.
* These are transmitted as int32_t, so make sure that the value
* transmitted is not out of range.
* FIXME: I assume that size_t can handle int32_t's max.
* Returns zero on failure, non-zero on success.
*/
int
io_read_size(struct sess *sess, int fd, size_t *val)
{
int32_t oval;
if (!io_read_int(sess, fd, &oval)) {
ERRX1(sess, "io_read_int");
return 0;
} else if (oval < 0) {
ERRX(sess, "io_read_size: negative value");
return 0;
}
*val = oval;
return 1;
}
/*
* Like io_read_buf(), but for an integer.
* Returns zero on failure, non-zero on success.
*/
int
io_read_int(struct sess *sess, int fd, int32_t *val)
{
int32_t oval;
if (!io_read_buf(sess, fd, &oval, sizeof(int32_t))) {
ERRX1(sess, "io_read_buf");
return 0;
}
*val = le32toh(oval);
return 1;
}
/*
* Copies "valsz" from "buf", full size "bufsz" at position" bufpos",
* into "val".
* Calls assert() if the source doesn't have enough data.
* Increases "bufpos" to the new position.
*/
void
io_unbuffer_buf(struct sess *sess, const void *buf,
size_t *bufpos, size_t bufsz, void *val, size_t valsz)
{
assert(*bufpos + valsz <= bufsz);
memcpy(val, buf + *bufpos, valsz);
*bufpos += valsz;
}
/*
* Calls io_unbuffer_buf() and converts.
*/
void
io_unbuffer_int(struct sess *sess, const void *buf,
size_t *bufpos, size_t bufsz, int32_t *val)
{
int32_t oval;
io_unbuffer_buf(sess, buf, bufpos, bufsz, &oval, sizeof(int32_t));
*val = le32toh(oval);
}
/*
* Calls io_unbuffer_buf() and converts.
*/
int
io_unbuffer_size(struct sess *sess, const void *buf,
size_t *bufpos, size_t bufsz, size_t *val)
{
int32_t oval;
io_unbuffer_int(sess, buf, bufpos, bufsz, &oval);
if (oval < 0) {
ERRX(sess, "io_unbuffer_size: negative value");
return 0;
}
*val = oval;
return 1;
}
/*
* Like io_read_buf(), but for a single byte >=0.
* Returns zero on failure, non-zero on success.
*/
int
io_read_byte(struct sess *sess, int fd, uint8_t *val)
{
if (!io_read_buf(sess, fd, val, sizeof(uint8_t))) {
ERRX1(sess, "io_read_buf");
return 0;
}
return 1;
}
/*
* Like io_write_buf(), but for a single byte.
* Returns zero on failure, non-zero on success.
*/
int
io_write_byte(struct sess *sess, int fd, uint8_t val)
{
if (!io_write_buf(sess, fd, &val, sizeof(uint8_t))) {
ERRX1(sess, "io_write_buf");
return 0;
}
return 1;
}
|