1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
/*
* Copyright (c) 2004-2005, 2007 Todd C. Miller <Todd.Miller@courtesan.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Adapted from the following code written by Emin Martinian:
* http://web.mit.edu/~emin/www/source_code/red_black_tree/index.html
*
* Copyright (c) 2001 Emin Martinian
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that neither the name of Emin
* Martinian nor the names of any contributors are be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <config.h>
#include <sys/types.h>
#include <sys/param.h>
#include <stdio.h>
#ifdef STDC_HEADERS
# include <stdlib.h>
# include <stddef.h>
#else
# ifdef HAVE_STDLIB_H
# include <stdlib.h>
# endif
#endif /* STDC_HEADERS */
#include "sudo.h"
#include "redblack.h"
#ifndef lint
__unused static const char rcsid[] = "$Sudo: redblack.c,v 1.10 2008/11/22 15:01:25 millert Exp $";
#endif /* lint */
static void rbrepair __P((struct rbtree *, struct rbnode *));
static void rotate_left __P((struct rbtree *, struct rbnode *));
static void rotate_right __P((struct rbtree *, struct rbnode *));
static void _rbdestroy __P((struct rbtree *, struct rbnode *,
void (*)(void *)));
/*
* Red-Black tree, see http://en.wikipedia.org/wiki/Red-black_tree
*
* A red-black tree is a binary search tree where each node has a color
* attribute, the value of which is either red or black. Essentially, it
* is just a convenient way to express a 2-3-4 binary search tree where
* the color indicates whether the node is part of a 3-node or a 4-node.
* In addition to the ordinary requirements imposed on binary search
* trees, we make the following additional requirements of any valid
* red-black tree:
* 1) The root is black.
* 2) All leaves are black.
* 3) Both children of each red node are black.
* 4) The paths from each leaf up to the root each contain the same
* number of black nodes.
*/
/*
* Create a red black tree struct using the specified compare routine.
* Allocates and returns the initialized (empty) tree.
*/
struct rbtree *
rbcreate(compar)
int (*compar)__P((const void *, const void*));
{
struct rbtree *tree;
tree = (struct rbtree *) emalloc(sizeof(*tree));
tree->compar = compar;
/*
* We use a self-referencing sentinel node called nil to simplify the
* code by avoiding the need to check for NULL pointers.
*/
tree->nil.left = tree->nil.right = tree->nil.parent = &tree->nil;
tree->nil.color = black;
tree->nil.data = NULL;
/*
* Similarly, the fake root node keeps us from having to worry
* about splitting the root.
*/
tree->root.left = tree->root.right = tree->root.parent = &tree->nil;
tree->root.color = black;
tree->root.data = NULL;
return(tree);
}
/*
* Perform a left rotation starting at node.
*/
static void
rotate_left(tree, node)
struct rbtree *tree;
struct rbnode *node;
{
struct rbnode *child;
child = node->right;
node->right = child->left;
if (child->left != rbnil(tree))
child->left->parent = node;
child->parent = node->parent;
if (node == node->parent->left)
node->parent->left = child;
else
node->parent->right = child;
child->left = node;
node->parent = child;
}
/*
* Perform a right rotation starting at node.
*/
static void
rotate_right(tree, node)
struct rbtree *tree;
struct rbnode *node;
{
struct rbnode *child;
child = node->left;
node->left = child->right;
if (child->right != rbnil(tree))
child->right->parent = node;
child->parent = node->parent;
if (node == node->parent->left)
node->parent->left = child;
else
node->parent->right = child;
child->right = node;
node->parent = child;
}
/*
* Insert data pointer into a redblack tree.
* Returns a NULL pointer on success. If a node matching "data"
* already exists, a pointer to the existant node is returned.
*/
struct rbnode *
rbinsert(tree, data)
struct rbtree *tree;
void *data;
{
struct rbnode *node = rbfirst(tree);
struct rbnode *parent = rbroot(tree);
int res;
/* Find correct insertion point. */
while (node != rbnil(tree)) {
parent = node;
if ((res = tree->compar(data, node->data)) == 0)
return(node);
node = res < 0 ? node->left : node->right;
}
node = (struct rbnode *) emalloc(sizeof(*node));
node->data = data;
node->left = node->right = rbnil(tree);
node->parent = parent;
if (parent == rbroot(tree) || tree->compar(data, parent->data) < 0)
parent->left = node;
else
parent->right = node;
node->color = red;
/*
* If the parent node is black we are all set, if it is red we have
* the following possible cases to deal with. We iterate through
* the rest of the tree to make sure none of the required properties
* is violated.
*
* 1) The uncle is red. We repaint both the parent and uncle black
* and repaint the grandparent node red.
*
* 2) The uncle is black and the new node is the right child of its
* parent, and the parent in turn is the left child of its parent.
* We do a left rotation to switch the roles of the parent and
* child, relying on further iterations to fixup the old parent.
*
* 3) The uncle is black and the new node is the left child of its
* parent, and the parent in turn is the left child of its parent.
* We switch the colors of the parent and grandparent and perform
* a right rotation around the grandparent. This makes the former
* parent the parent of the new node and the former grandparent.
*
* Note that because we use a sentinel for the root node we never
* need to worry about replacing the root.
*/
while (node->parent->color == red) {
struct rbnode *uncle;
if (node->parent == node->parent->parent->left) {
uncle = node->parent->parent->right;
if (uncle->color == red) {
node->parent->color = black;
uncle->color = black;
node->parent->parent->color = red;
node = node->parent->parent;
} else /* if (uncle->color == black) */ {
if (node == node->parent->right) {
node = node->parent;
rotate_left(tree, node);
}
node->parent->color = black;
node->parent->parent->color = red;
rotate_right(tree, node->parent->parent);
}
} else { /* if (node->parent == node->parent->parent->right) */
uncle = node->parent->parent->left;
if (uncle->color == red) {
node->parent->color = black;
uncle->color = black;
node->parent->parent->color = red;
node = node->parent->parent;
} else /* if (uncle->color == black) */ {
if (node == node->parent->left) {
node = node->parent;
rotate_right(tree, node);
}
node->parent->color = black;
node->parent->parent->color = red;
rotate_left(tree, node->parent->parent);
}
}
}
rbfirst(tree)->color = black; /* first node is always black */
return(NULL);
}
/*
* Look for a node matching key in tree.
* Returns a pointer to the node if found, else NULL.
*/
struct rbnode *
rbfind(tree, key)
struct rbtree *tree;
void *key;
{
struct rbnode *node = rbfirst(tree);
int res;
while (node != rbnil(tree)) {
if ((res = tree->compar(key, node->data)) == 0)
return(node);
node = res < 0 ? node->left : node->right;
}
return(NULL);
}
/*
* Call func() for each node, passing it the node data and a cookie;
* If func() returns non-zero for a node, the traversal stops and the
* error value is returned. Returns 0 on successful traversal.
*/
int
rbapply_node(tree, node, func, cookie, order)
struct rbtree *tree;
struct rbnode *node;
int (*func)__P((void *, void *));
void *cookie;
enum rbtraversal order;
{
int error;
if (node != rbnil(tree)) {
if (order == preorder)
if ((error = func(node->data, cookie)) != 0)
return(error);
if ((error = rbapply_node(tree, node->left, func, cookie, order)) != 0)
return(error);
if (order == inorder)
if ((error = func(node->data, cookie)) != 0)
return(error);
if ((error = rbapply_node(tree, node->right, func, cookie, order)) != 0)
return(error);
if (order == postorder)
if ((error = func(node->data, cookie)) != 0)
return(error);
}
return (0);
}
/*
* Returns the successor of node, or nil if there is none.
*/
static struct rbnode *
rbsuccessor(tree, node)
struct rbtree *tree;
struct rbnode *node;
{
struct rbnode *succ;
if ((succ = node->right) != rbnil(tree)) {
while (succ->left != rbnil(tree))
succ = succ->left;
} else {
/* No right child, move up until we find it or hit the root */
for (succ = node->parent; node == succ->right; succ = succ->parent)
node = succ;
if (succ == rbroot(tree))
succ = rbnil(tree);
}
return(succ);
}
/*
* Recursive portion of rbdestroy().
*/
static void
_rbdestroy(tree, node, destroy)
struct rbtree *tree;
struct rbnode *node;
void (*destroy)__P((void *));
{
if (node != rbnil(tree)) {
_rbdestroy(tree, node->left, destroy);
_rbdestroy(tree, node->right, destroy);
if (destroy != NULL)
destroy(node->data);
efree(node);
}
}
/*
* Destroy the specified tree, calling the destructor destroy
* for each node and then freeing the tree itself.
*/
void
rbdestroy(tree, destroy)
struct rbtree *tree;
void (*destroy)__P((void *));
{
_rbdestroy(tree, rbfirst(tree), destroy);
efree(tree);
}
/*
* Delete node 'z' from the tree and return its data pointer.
*/
void *rbdelete(tree, z)
struct rbtree* tree;
struct rbnode* z;
{
struct rbnode *x, *y;
void *data = z->data;
if (z->left == rbnil(tree) || z->right == rbnil(tree))
y = z;
else
y = rbsuccessor(tree, z);
x = (y->left == rbnil(tree)) ? y->right : y->left;
if ((x->parent = y->parent) == rbroot(tree)) {
rbfirst(tree) = x;
} else {
if (y == y->parent->left)
y->parent->left = x;
else
y->parent->right = x;
}
if (y->color == black)
rbrepair(tree, x);
if (y != z) {
y->left = z->left;
y->right = z->right;
y->parent = z->parent;
y->color = z->color;
z->left->parent = z->right->parent = y;
if (z == z->parent->left)
z->parent->left = y;
else
z->parent->right = y;
}
free(z);
return (data);
}
/*
* Repair the tree after a node has been deleted by rotating and repainting
* colors to restore the 4 properties inherent in red-black trees.
*/
static void
rbrepair(tree, node)
struct rbtree *tree;
struct rbnode *node;
{
struct rbnode *sibling;
while (node->color == black) {
if (node == node->parent->left) {
sibling = node->parent->right;
if (sibling->color == red) {
sibling->color = black;
node->parent->color = red;
rotate_left(tree, node->parent);
sibling = node->parent->right;
}
if (sibling->right->color == black && sibling->left->color == black) {
sibling->color = red;
node = node->parent;
} else {
if (sibling->right->color == black) {
sibling->left->color = black;
sibling->color = red;
rotate_right(tree, sibling);
sibling = node->parent->right;
}
sibling->color = node->parent->color;
node->parent->color = black;
sibling->right->color = black;
rotate_left(tree, node->parent);
break;
}
} else { /* if (node == node->parent->right) */
sibling = node->parent->left;
if (sibling->color == red) {
sibling->color = black;
node->parent->color = red;
rotate_right(tree, node->parent);
sibling = node->parent->left;
}
if (sibling->right->color == black && sibling->left->color == black) {
sibling->color = red;
node = node->parent;
} else {
if (sibling->left->color == black) {
sibling->right->color = black;
sibling->color = red;
rotate_left(tree, sibling);
sibling = node->parent->left;
}
sibling->color = node->parent->color;
node->parent->color = black;
sibling->left->color = black;
rotate_right(tree, node->parent);
break;
}
}
}
}
|