summaryrefslogtreecommitdiff
path: root/usr.bin/tsort/tsort.c
blob: de242dcb58164296c137c2905a123626050e685a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
/* $OpenBSD: tsort.c,v 1.22 2013/11/27 00:13:24 deraadt Exp $ */
/* ex:ts=8 sw=4:
 *
 * Copyright (c) 1999-2004 Marc Espie <espie@openbsd.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <assert.h>
#include <ctype.h>
#include <err.h>
#include <limits.h>
#include <stddef.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <unistd.h>
#include <ohash.h>

/* The complexity of topological sorting is O(e), where e is the
 * size of input.  While reading input, vertices have to be identified,
 * thus add the complexity of e keys retrieval among v keys using
 * an appropriate data structure.  This program uses open double hashing
 * for that purpose.  See Knuth for the expected complexity of double
 * hashing (Brent variation should probably be used if v << e, as a user
 * option).
 *
 * The algorithm used for longest cycle reporting is accurate, but somewhat
 * expensive.  It may need to build all free paths of the graph (a free
 * path is a path that never goes twice through the same node), whose
 * number can be as high as O(2^e).  Usually, the number of free paths is
 * much smaller though.  This program's author does not believe that a
 * significantly better worst-case complexity algorithm exists.
 *
 * In case of a hints file, the set of minimal nodes is maintained as a
 * heap.  The resulting complexity is O(e+v log v) for the worst case.
 * The average should actually be near O(e).
 *
 * If the hints file is incomplete, there is some extra complexity incurred
 * by make_transparent, which does propagate order values to unmarked
 * nodes. In the worst case, make_transparent is  O(e u),
 * where u is the number of originally unmarked nodes.
 * In practice, it is much faster.
 *
 * The simple topological sort algorithm detects cycles.  This program
 * goes further, breaking cycles through the use of simple heuristics.
 * Each cycle break checks the whole set of nodes, hence if c cycles break
 * are needed, this is an extra cost of O(c v).
 *
 * Possible heuristics are as follows:
 * - break cycle at node with lowest number of predecessors (default case),
 * - break longest cycle at node with lowest number of predecessors,
 * - break cycle at next node from the hints file.
 *
 * Except for the hints file case, which sets an explicit constraint on
 * which cycle to break, those heuristics locally result in the smallest
 * number of broken edges.
 *
 * Those are admittedly greedy strategies, as is the selection of the next
 * node from the hints file amongst equivalent candidates that is used for
 * `stable' topological sorting.
 */

#ifdef __GNUC__
#define UNUSED	__attribute__((unused))
#else
#define UNUSED
#endif

struct node;

/* The set of arcs from a given node is stored as a linked list.  */
struct link {
	struct link *next;
	struct node *node;
};

#define NO_ORDER	UINT_MAX

struct node {
	unsigned int refs;	/* Number of arcs left, coming into this node.
				 * Note that nodes with a null count can't
				 * be part of cycles.  */
	struct link  *arcs;	/* List of forward arcs.  */

	unsigned int order; 	/* Order of nodes according to a hint file.  */

	/* Cycle detection algorithms build a free path of nodes.  */
	struct node  *from; 	/* Previous node in the current path.  */

	unsigned int mark;	/* Mark processed nodes in cycle discovery.  */
	struct link  *traverse;	/* Next link to traverse when backtracking.  */
	char         k[1];	/* Name of this node.  */
};

#define HASH_START 9

struct array {
	unsigned int entries;
	struct node  **t;
};

static void nodes_init(struct ohash *);
static struct node *node_lookup(struct ohash *, const char *, const char *);
static void usage(void);
static struct node *new_node(const char *, const char *);

static unsigned int read_pairs(FILE *, struct ohash *, int,
    const char *, unsigned int, int);
static void split_nodes(struct ohash *, struct array *, struct array *);
static void make_transparent(struct ohash *);
static void insert_arc(struct node *, struct node *);

#ifdef DEBUG
static void dump_node(struct node *);
static void dump_array(struct array *);
static void dump_hash(struct ohash *);
#endif
static unsigned int read_hints(FILE *, struct ohash *, int,
    const char *, unsigned int);
static struct node *find_smallest_node(struct array *);
static struct node *find_good_cycle_break(struct array *);
static void print_cycle(struct array *);
static struct node *find_cycle_from(struct node *, struct array *);
static struct node *find_predecessor(struct array *, struct node *);
static unsigned int traverse_node(struct node *, unsigned int, struct array *);
static struct node *find_longest_cycle(struct array *, struct array *);

static void heap_down(struct array *, unsigned int);
static void heapify(struct array *, int);
static struct node *dequeue(struct array *);
static void enqueue(struct array *, struct node *);



#define erealloc(n, s)	emem(realloc(n, s))
static void *hash_alloc(size_t, void *);
static void hash_free(void *, size_t, void *);
static void* entry_alloc(size_t, void *);
static void *emalloc(size_t);
static void *emem(void *);
#define DEBUG_TRAVERSE 0
static struct ohash_info node_info = {
	offsetof(struct node, k), NULL, hash_alloc, hash_free, entry_alloc };


int main(int, char *[]);


/***
 *** Memory handling.
 ***/

static void *
emem(void *p)
{
	if (p)
		return p;
	else
		errx(EX_SOFTWARE, "Memory exhausted");
}

static void *
hash_alloc(size_t s, void *u UNUSED)
{
	return emem(calloc(s, 1));
}

static void
hash_free(void *p, size_t s UNUSED, void *u UNUSED)
{
	free(p);
}

static void *
entry_alloc(size_t s, void *u UNUSED)
{
	return emalloc(s);
}

static void *
emalloc(size_t s)
{
	return emem(malloc(s));
}


/***
 *** Hash table.
 ***/

/* Inserting and finding nodes in the hash structure.
 * We handle interval strings for efficiency wrt fgetln.  */
static struct node *
new_node(const char *start, const char *end)
{
	struct node 	*n;

	n = ohash_create_entry(&node_info, start, &end);
	n->from = NULL;
	n->arcs = NULL;
	n->refs = 0;
	n->mark = 0;
	n->order = NO_ORDER;
	n->traverse = NULL;
	return n;
}


static void
nodes_init(struct ohash *h)
{
	ohash_init(h, HASH_START, &node_info);
}

static struct node *
node_lookup(struct ohash *h, const char *start, const char *end)
{
	unsigned int	i;
	struct node *	n;

	i = ohash_qlookupi(h, start, &end);

	n = ohash_find(h, i);
	if (n == NULL)
		n = ohash_insert(h, i, new_node(start, end));
	return n;
}
	
#ifdef DEBUG
static void
dump_node(struct node *n)
{
	struct link 	*l;

	if (n->refs == 0)
		return;
	printf("%s (%u/%u): ", n->k, n->order, n->refs);
	for (l = n->arcs; l != NULL; l = l->next)
		if (n->refs != 0)
		printf("%s(%u/%u) ", l->node->k, l->node->order, l->node->refs);
    	putchar('\n');
}

static void
dump_array(struct array *a)
{
	unsigned int 	i;

	for (i = 0; i < a->entries; i++)
		dump_node(a->t[i]);
}
		
static void
dump_hash(struct ohash *h)
{
	unsigned int 	i;
	struct node 	*n;

	for (n = ohash_first(h, &i); n != NULL; n = ohash_next(h, &i))
		dump_node(n);
}
#endif
		

/***
 *** Reading data.
 ***/

static void
insert_arc(struct node *a, struct node *b)
{
	struct link 	*l;

	/* Check that this arc is not already present.  */
	for (l = a->arcs; l != NULL; l = l->next) {
		if (l->node == b)
			return;
	}
	b->refs++;
	l = emalloc(sizeof(struct link));
	l->node = b;
	l->next = a->arcs;
	a->arcs = l;
}

static unsigned int
read_pairs(FILE *f, struct ohash *h, int reverse, const char *name,
    unsigned int order, int hint)
{
	int 		toggle;
	struct node 	*a;
	size_t 		size;
	char 		*str;

	toggle = 1;
	a = NULL;
	
	while ((str = fgetln(f, &size)) != NULL) {
		char *sentinel;

		sentinel = str + size;
		for (;;) {
			char *e;

			while (str < sentinel &&
			    isspace((unsigned char)*str))
				str++;
			if (str == sentinel)
				break;
			for (e = str;
			    e < sentinel && !isspace((unsigned char)*e); e++)
				continue;
			if (toggle) {
				a = node_lookup(h, str, e);
				if (a->order == NO_ORDER && hint)
					a->order = order++;
			} else {
				struct node *b;

				b = node_lookup(h, str, e);
				assert(a != NULL);
				if (b != a) {
					if (reverse)
						insert_arc(b, a);
					else
						insert_arc(a, b);
				}
			}
			toggle = !toggle;
			str = e;
		}
	}
	if (toggle == 0)
		errx(EX_DATAERR, "odd number of node names in %s", name);
    	if (!feof(f))
		err(EX_IOERR, "error reading %s", name);
	return order;
}

static unsigned int
read_hints(FILE *f, struct ohash *h, int quiet, const char *name,
    unsigned int order)
{
	char 		*str;
	size_t 		size;

	while ((str = fgetln(f, &size)) != NULL) {
		char *sentinel;

		sentinel = str + size;
		for (;;) {
			char *e;
			struct node *a;

			while (str < sentinel && isspace((unsigned char)*str))
				str++;
			if (str == sentinel)
				break;
			for (e = str;
			    e < sentinel && !isspace((unsigned char)*e); e++)
				continue;
			a = node_lookup(h, str, e);
			if (a->order != NO_ORDER) {
				if (!quiet)
				    warnx(
					"duplicate node %s in hints file %s",
					a->k, name);
			} else
				a->order = order++;
			str = e;
		}
	}
	return order;
}


/***
 *** Standard heap handling routines.
 ***/

static void
heap_down(struct array *h, unsigned int i)
{
	unsigned int 	j;
	struct node 	*swap;

	for (; (j=2*i+1) < h->entries; i = j) {
		if (j+1 < h->entries && h->t[j+1]->order < h->t[j]->order)
		    	j++;
		if (h->t[i]->order <= h->t[j]->order)
			break;
		swap = h->t[i];
		h->t[i] = h->t[j];
		h->t[j] = swap;
	}
}

static void
heapify(struct array *h, int verbose)
{
	unsigned int 	i;

	for (i = h->entries; i != 0;) {
		if (h->t[--i]->order == NO_ORDER && verbose)
			warnx("node %s absent from hints file", h->t[i]->k);
		heap_down(h, i);
	}
}

#define DEQUEUE(h) ( hints_flag ? dequeue(h) : (h)->t[--(h)->entries] )

static struct node *
dequeue(struct array *h)
{
	struct node 	*n;

	if (h->entries == 0)
		n = NULL;
	else {
		n = h->t[0];
		if (--h->entries != 0) {
		    h->t[0] = h->t[h->entries];
		    heap_down(h, 0);
		}
	}
	return n;
}
	
#define ENQUEUE(h, n) do {			\
	if (hints_flag)				\
		enqueue((h), (n));		\
	else					\
		(h)->t[(h)->entries++] = (n);	\
	} while(0);

static void
enqueue(struct array *h, struct node *n)
{
	unsigned int 	i, j;
	struct node 	*swap;

	h->t[h->entries++] = n;
	for (i = h->entries-1; i > 0; i = j) {
		j = (i-1)/2;
		if (h->t[j]->order < h->t[i]->order)
			break;
		swap = h->t[j];
		h->t[j] = h->t[i];
		h->t[i] = swap;
	}
}

/* Nodes without order should not hinder direct dependencies.
 * Iterate until no nodes are left.
 */
static void
make_transparent(struct ohash *hash)
{
	struct node 	*n;
	unsigned int 	i;
	struct link 	*l;
	int		adjusted;
	int		bad;
	unsigned int	min;

	/* first try to solve complete nodes */
	do {
		adjusted = 0;
		bad = 0;
		for (n = ohash_first(hash, &i); n != NULL;
		    n = ohash_next(hash, &i)) {
			if (n->order == NO_ORDER) {
				min = NO_ORDER;

				for (l = n->arcs; l != NULL; l = l->next) {
					/* unsolved node -> delay resolution */
					if (l->node->order == NO_ORDER) {
						bad = 1;
						break;
					} else if (l->node->order < min)
						min = l->node->order;
				}
				if (min < NO_ORDER && l == NULL) {
					n->order = min;
					adjusted = 1;
				}
			}
		}

	} while (adjusted);

	/* then, if incomplete nodes are left, do them */
	if (bad) do {
		adjusted = 0;
		for (n = ohash_first(hash, &i); n != NULL;
		    n = ohash_next(hash, &i))
			if (n->order == NO_ORDER)
				for (l = n->arcs; l != NULL; l = l->next)
					if (l->node->order < n->order) {
						n->order = l->node->order;
						adjusted = 1;
					}
	} while (adjusted);
}


/***
 *** Search through hash array for nodes.
 ***/

/* Split nodes into unrefed nodes/live nodes.  */
static void
split_nodes(struct ohash *hash, struct array *heap, struct array *remaining)
{

	struct node *n;
	unsigned int i;

	heap->t = emalloc(sizeof(struct node *) * ohash_entries(hash));
	remaining->t = emalloc(sizeof(struct node *) * ohash_entries(hash));
	heap->entries = 0;
	remaining->entries = 0;

	for (n = ohash_first(hash, &i); n != NULL; n = ohash_next(hash, &i)) {
		if (n->refs == 0)
			heap->t[heap->entries++] = n;
		else
			remaining->t[remaining->entries++] = n;
	}
}

/* Good point to break a cycle: live node with as few refs as possible. */
static struct node *
find_good_cycle_break(struct array *h)
{
	unsigned int 	i;
	unsigned int 	best;
	struct node 	*u;

	best = UINT_MAX;
	u = NULL;

	assert(h->entries != 0);
	for (i = 0; i < h->entries; i++) {
		struct node *n = h->t[i];
		/* No need to look further. */		
		if (n->refs == 1)
			return n;
		if (n->refs != 0 && n->refs < best) {
			best = n->refs;
			u = n;
		}
	}
	assert(u != NULL);
	return u;
}
			
/*  Retrieve the node with the smallest order.  */
static struct node *
find_smallest_node(struct array *h)
{
	unsigned int 	i;
	unsigned int 	best;
	struct node 	*u;

	best = UINT_MAX;
	u = NULL;

	assert(h->entries != 0);
	for (i = 0; i < h->entries; i++) {
		struct node *n = h->t[i];
		if (n->refs != 0 && n->order < best) {
			best = n->order;
			u = n;
		}
	}
	assert(u != NULL);
	return u;
}


/***
 *** Graph algorithms.
 ***/

/* Explore the nodes reachable from i to find a cycle, store it in c.
 * This may fail.  */
static struct node *
find_cycle_from(struct node *i, struct array *c)
{
	struct node 	*n;

	n = i;
	/* XXX Previous cycle findings may have left this pointer non-null.  */
	i->from = NULL;

	for (;;) {
		/* Note that all marks are reversed before this code exits.  */
		n->mark = 1;
		if (n->traverse)
			n->traverse = n->traverse->next;
		else
			n->traverse = n->arcs;
		/* Skip over dead nodes.  */
		while (n->traverse && n->traverse->node->refs == 0)
			n->traverse = n->traverse->next;
		if (n->traverse) {
			struct node *go = n->traverse->node;

			if (go->mark) {
				c->entries = 0;
				for (; n != NULL && n != go; n = n->from) {
					c->t[c->entries++] = n;
					n->mark = 0;
				}
				for (; n != NULL; n = n->from)
					n->mark = 0;
				c->t[c->entries++] = go;
				return go;
			} else {
			    go->from = n;
			    n = go;
			}
		} else {
			n->mark = 0;
			n = n->from;
			if (n == NULL)
				return NULL;
		}
	}
}

/* Find a live predecessor of node n.  This is a slow routine, as it needs
 * to go through the whole array, but it is not needed often.
 */
static struct node *
find_predecessor(struct array *a, struct node *n)
{
	unsigned int i;

	for (i = 0; i < a->entries; i++) {
		struct node *m;

		m = a->t[i];
		if (m->refs != 0) {
			struct link *l;

			for (l = m->arcs; l != NULL; l = l->next)
				if (l->node == n)
					return m;
		}
	}
	assert(1 == 0);
	return NULL;
}

/* Traverse all strongly connected components reachable from node n.
   Start numbering them at o. Return the maximum order reached.
   Update the largest cycle found so far.
 */
static unsigned int
traverse_node(struct node *n, unsigned int o, struct array *c)
{
	unsigned int 	min, max;

	n->from = NULL;
	min = o;
	max = ++o;

	for (;;) {
		n->mark = o;
		if (DEBUG_TRAVERSE)
			printf("%s(%u) ", n->k, n->mark);
		/* Find next arc to explore.  */
		if (n->traverse)
			n->traverse = n->traverse->next;
		else
			n->traverse = n->arcs;
		/* Skip over dead nodes.  */
		while (n->traverse && n->traverse->node->refs == 0)
			n->traverse = n->traverse->next;
		/* If arc left.  */
		if (n->traverse) {
			struct node 	*go;

			go = n->traverse->node;
			/* Optimisation: if go->mark < min, we already
			 * visited this strongly-connected component in
			 * a previous pass.  Hence, this can yield no new
			 * cycle.  */

			/* Not part of the current path: go for it.  */
			if (go->mark == 0 || go->mark == min) {
				go->from = n;
				n = go;
				o++;
				if (o > max)
					max = o;
			/* Part of the current path: check cycle length.  */
			} else if (go->mark > min) {
				if (DEBUG_TRAVERSE)
					printf("%d\n", o - go->mark + 1);
				if (o - go->mark + 1 > c->entries) {
					struct node *t;
					unsigned int i;

					c->entries = o - go->mark + 1;
					i = 0;
					c->t[i++] = go;
					for (t = n; t != go; t = t->from)
						c->t[i++] = t;
				}
			}

		/* No arc left: backtrack.  */
		} else {
			n->mark = min;
			n = n->from;
			if (!n)
				return max;
			o--;	
		}
	}
}

static void
print_cycle(struct array *c)
{
	unsigned int 	i;

	/* Printing in reverse order, since cycle discoveries finds reverse
	 * edges.  */
	for (i = c->entries; i != 0;) {
		i--;
		warnx("%s", c->t[i]->k);
	}
}

static struct node *
find_longest_cycle(struct array *h, struct array *c)
{
	unsigned int 	i;
	unsigned int 	o;
	unsigned int 	best;
	struct node 	*n;
	static int 	notfirst = 0;

	assert(h->entries != 0);

	/* No cycle found yet.  */
	c->entries = 0;

	/* Reset the set of marks, except the first time around.  */
	if (notfirst) {
		for (i = 0; i < h->entries; i++)
			h->t[i]->mark = 0;
	} else
		notfirst = 1;

	o = 0;

	/* Traverse the array.  Each unmarked, live node heralds a
	 * new set of strongly connected components.  */
	for (i = 0; i < h->entries; i++) {
		n = h->t[i];
		if (n->refs != 0 && n->mark == 0) {
			/* Each call to traverse_node uses a separate
			 * interval of numbers to mark nodes.  */
			o++;
			o = traverse_node(n, o, c);
		}
	}
	
	assert(c->entries != 0);
	n = c->t[0];
	best = n->refs;
	for (i = 0; i < c->entries; i++) {
		if (c->t[i]->refs < best) {
			n = c->t[i];
			best = n->refs;
		}
	}
	return n;
}


#define plural(n) ((n) > 1 ? "s" : "")

int
main(int argc, char *argv[])
{
	struct ohash 	pairs;
	int 		reverse_flag, quiet_flag, long_flag,
			    warn_flag, hints_flag, verbose_flag;
	unsigned int	order;

	order = 0;

	reverse_flag = quiet_flag = long_flag =
		warn_flag = hints_flag = verbose_flag = 0;
	nodes_init(&pairs);

	{
	    int c;

	    while ((c = getopt(argc, argv, "h:flqrvw")) != -1) {
		    switch(c) {
		    case 'h': {
			    FILE *f;

			    f = fopen(optarg, "r");
			    if (f == NULL)
				    err(EX_NOINPUT, "Can't open hint file %s",
					optarg);
			    order = read_hints(f, &pairs, quiet_flag,
				optarg, order);
			    fclose(f);
		    }
			    hints_flag = 1;
			    break;
			    /*FALLTHRU*/
		    case 'f':
			    hints_flag = 2;
			    break;
		    case 'l':
			    long_flag = 1;
			    break;
		    case 'q':
			    quiet_flag = 1;
			    break;
		    case 'r':
			    reverse_flag = 1;
			    break;
		    case 'v':
			    verbose_flag = 1;
			    break;
		    case 'w':
			    warn_flag = 1;
			    break;
		    default:
			    usage();
		    }
	    }

	    argc -= optind;
	    argv += optind;
	}

	switch(argc) {
	case 1: {
		FILE *f;

		f = fopen(argv[0], "r");
		if (f == NULL)
			err(EX_NOINPUT, "Can't open file %s", argv[1]);
		order = read_pairs(f, &pairs, reverse_flag, argv[1], order,
		    hints_flag == 2);
		fclose(f);
		break;
	}
	case 0:
		order = read_pairs(stdin, &pairs, reverse_flag, "stdin",
		    order, hints_flag == 2);
		break;
	default:
		usage();
	}

	{
	    struct array 	aux;	/* Unrefed nodes/cycle reporting.  */
	    struct array	remaining;
	    unsigned int	broken_arcs, broken_cycles;
	    unsigned int	left;

	    broken_arcs = 0;
	    broken_cycles = 0;

	    if (hints_flag)
	    	make_transparent(&pairs);
	    split_nodes(&pairs, &aux, &remaining);
	    ohash_delete(&pairs);

	    if (hints_flag)
		    heapify(&aux, verbose_flag);

	    left = remaining.entries + aux.entries;
	    while (left != 0) {

		    /* Standard topological sort.  */
		    while (aux.entries) {
			    struct link *l;
			    struct node *n;

			    n = DEQUEUE(&aux);
			    printf("%s\n", n->k);
			    left--;
			    /* We can't free nodes, as we don't know which
			     * entry we can remove in the hash table.  We
			     * rely on refs == 0 to recognize live nodes.
			     * Decrease ref count of live nodes, enter new
			     * candidates into the unrefed list.  */
			    for (l = n->arcs; l != NULL; l = l->next)
				    if (l->node->refs != 0 &&
					--l->node->refs == 0) {
					    ENQUEUE(&aux, l->node);
				    }
		    }
		    /* There are still cycles to break.  */
		    if (left != 0) {
			    struct node *n;

			    broken_cycles++;
			    /* XXX Simple cycle detection and long cycle
			     * detection are mutually exclusive.  */

			    if (long_flag) {
				    n = find_longest_cycle(&remaining, &aux);
			    } else {
				    struct node *b;

				    if (hints_flag)
					    n = find_smallest_node(&remaining);
				    else
					    n = find_good_cycle_break(&remaining);
				    while ((b = find_cycle_from(n, &aux)) == NULL)
					    n = find_predecessor(&remaining, n);
				    n = b;
			    }

			    if (!quiet_flag) {
				    warnx("cycle in data");
				    print_cycle(&aux);
			    }

			    if (verbose_flag)
				    warnx("%u edge%s broken", n->refs,
					plural(n->refs));
			    broken_arcs += n->refs;
			    n->refs = 0;
			    /* Reinitialization, cycle reporting uses aux.  */
			    aux.t[0] = n;
			    aux.entries = 1;
		    }
	    }
	    if (verbose_flag && broken_cycles != 0)
		    warnx("%u cycle%s broken, for a total of %u edge%s",
			broken_cycles, plural(broken_cycles),
			broken_arcs, plural(broken_arcs));
	    if (warn_flag)
		    exit(broken_cycles < 256 ? broken_cycles : 255);
	    else
		    exit(EX_OK);
	}
}


extern char *__progname;

static void
usage(void)
{
	fprintf(stderr, "Usage: %s [-flqrvw] [-h file] [file]\n", __progname);
	exit(EX_USAGE);
}