summaryrefslogtreecommitdiff
path: root/usr.sbin/nsd/lookup3.c
blob: 9b47d156ca93abe5f877f9c83573a1595083cb37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
/*
  February 2013(Wouter) patch defines for BSD endianness, from Brad Smith.
  January 2012(Wouter) added randomised initial value, fallout from 28c3.
  March 2007(Wouter) adapted from lookup3.c original, add config.h include.
     added #ifdef VALGRIND to remove 298,384,660 'unused variable k8' warnings.
     added include of lookup3.h to check definitions match declarations.
     removed include of stdint - config.h takes care of platform independence.
     added fallthrough comments for new gcc warning suppression.
  url http://burtleburtle.net/bob/hash/index.html.
*/
/*
-------------------------------------------------------------------------------
lookup3.c, by Bob Jenkins, May 2006, Public Domain.

These are functions for producing 32-bit hashes for hash table lookup.
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() 
are externally useful functions.  Routines to test the hash are included 
if SELF_TEST is defined.  You can use this free for any purpose.  It's in
the public domain.  It has no warranty.

You probably want to use hashlittle().  hashlittle() and hashbig()
hash byte arrays.  hashlittle() is is faster than hashbig() on
little-endian machines.  Intel and AMD are little-endian machines.
On second thought, you probably want hashlittle2(), which is identical to
hashlittle() except it returns two 32-bit hashes for the price of one.  
You could implement hashbig2() if you wanted but I haven't bothered here.

If you want to find a hash of, say, exactly 7 integers, do
  a = i1;  b = i2;  c = i3;
  mix(a,b,c);
  a += i4; b += i5; c += i6;
  mix(a,b,c);
  a += i7;
  final(a,b,c);
then use c as the hash value.  If you have a variable length array of
4-byte integers to hash, use hashword().  If you have a byte array (like
a character string), use hashlittle().  If you have several byte arrays, or
a mix of things, see the comments above hashlittle().  

Why is this so big?  I read 12 bytes at a time into 3 4-byte integers, 
then mix those integers.  This is fast (you can do a lot more thorough
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
-------------------------------------------------------------------------------
*/
/*#define SELF_TEST 1*/

#include "config.h"
#include "lookup3.h"
#include <stdio.h>      /* defines printf for tests */
#include <time.h>       /* defines time_t for timings in the test */
/*#include <stdint.h>     defines uint32_t etc  (from config.h) */
#include <sys/param.h>  /* attempt to define endianness */
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h> /* attempt to define endianness (solaris) */
#endif
#if defined(linux) || defined(__OpenBSD__)
#  ifdef HAVE_ENDIAN_H
#    include <endian.h>    /* attempt to define endianness */
#  else
#    include <machine/endian.h> /* on older OpenBSD */
#  endif
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
#include <sys/endian.h> /* attempt to define endianness */
#endif

/* random initial value */
static uint32_t raninit = 0xdeadbeef;

void
hash_set_raninit(uint32_t v)
{
	raninit = v;
}

/*
 * My best guess at if you are big-endian or little-endian.  This may
 * need adjustment.
 */
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
     __BYTE_ORDER == __LITTLE_ENDIAN) || \
    (defined(i386) || defined(__i386__) || defined(__i486__) || \
     defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL) || defined(__x86))
# define HASH_LITTLE_ENDIAN 1
# define HASH_BIG_ENDIAN 0
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
       __BYTE_ORDER == __BIG_ENDIAN) || \
      (defined(sparc) || defined(__sparc) || defined(__sparc__) || defined(POWERPC) || defined(mc68000) || defined(sel))
# define HASH_LITTLE_ENDIAN 0
# define HASH_BIG_ENDIAN 1
#elif defined(_MACHINE_ENDIAN_H_)
/* test for machine_endian_h protects failure if some are empty strings */
# if defined(_BYTE_ORDER) && defined(_BIG_ENDIAN) && _BYTE_ORDER == _BIG_ENDIAN
#  define HASH_LITTLE_ENDIAN 0
#  define HASH_BIG_ENDIAN 1
# endif
# if defined(_BYTE_ORDER) && defined(_LITTLE_ENDIAN) && _BYTE_ORDER == _LITTLE_ENDIAN
#  define HASH_LITTLE_ENDIAN 1
#  define HASH_BIG_ENDIAN 0
# endif /* _MACHINE_ENDIAN_H_ */
#else
# define HASH_LITTLE_ENDIAN 0
# define HASH_BIG_ENDIAN 0
#endif

#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))

/*
-------------------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.

This is reversible, so any information in (a,b,c) before mix() is
still in (a,b,c) after mix().

If four pairs of (a,b,c) inputs are run through mix(), or through
mix() in reverse, there are at least 32 bits of the output that
are sometimes the same for one pair and different for another pair.
This was tested for:
* pairs that differed by one bit, by two bits, in any combination
  of top bits of (a,b,c), or in any combination of bottom bits of
  (a,b,c).
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
  is commonly produced by subtraction) look like a single 1-bit
  difference.
* the base values were pseudorandom, all zero but one bit set, or 
  all zero plus a counter that starts at zero.

Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
satisfy this are
    4  6  8 16 19  4
    9 15  3 18 27 15
   14  9  3  7 17  3
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
for "differ" defined as + with a one-bit base and a two-bit delta.  I
used http://burtleburtle.net/bob/hash/avalanche.html to choose 
the operations, constants, and arrangements of the variables.

This does not achieve avalanche.  There are input bits of (a,b,c)
that fail to affect some output bits of (a,b,c), especially of a.  The
most thoroughly mixed value is c, but it doesn't really even achieve
avalanche in c.

This allows some parallelism.  Read-after-writes are good at doubling
the number of bits affected, so the goal of mixing pulls in the opposite
direction as the goal of parallelism.  I did what I could.  Rotates
seem to cost as much as shifts on every machine I could lay my hands
on, and rotates are much kinder to the top and bottom bits, so I used
rotates.
-------------------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
  a -= c;  a ^= rot(c, 4);  c += b; \
  b -= a;  b ^= rot(a, 6);  a += c; \
  c -= b;  c ^= rot(b, 8);  b += a; \
  a -= c;  a ^= rot(c,16);  c += b; \
  b -= a;  b ^= rot(a,19);  a += c; \
  c -= b;  c ^= rot(b, 4);  b += a; \
}

/*
-------------------------------------------------------------------------------
final -- final mixing of 3 32-bit values (a,b,c) into c

Pairs of (a,b,c) values differing in only a few bits will usually
produce values of c that look totally different.  This was tested for
* pairs that differed by one bit, by two bits, in any combination
  of top bits of (a,b,c), or in any combination of bottom bits of
  (a,b,c).
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
  is commonly produced by subtraction) look like a single 1-bit
  difference.
* the base values were pseudorandom, all zero but one bit set, or 
  all zero plus a counter that starts at zero.

These constants passed:
 14 11 25 16 4 14 24
 12 14 25 16 4 14 24
and these came close:
  4  8 15 26 3 22 24
 10  8 15 26 3 22 24
 11  8 15 26 3 22 24
-------------------------------------------------------------------------------
*/
#define final(a,b,c) \
{ \
  c ^= b; c -= rot(b,14); \
  a ^= c; a -= rot(c,11); \
  b ^= a; b -= rot(a,25); \
  c ^= b; c -= rot(b,16); \
  a ^= c; a -= rot(c,4);  \
  b ^= a; b -= rot(a,14); \
  c ^= b; c -= rot(b,24); \
}

/*
--------------------------------------------------------------------
 This works on all machines.  To be useful, it requires
 -- that the key be an array of uint32_t's, and
 -- that the length be the number of uint32_t's in the key

 The function hashword() is identical to hashlittle() on little-endian
 machines, and identical to hashbig() on big-endian machines,
 except that the length has to be measured in uint32_ts rather than in
 bytes.  hashlittle() is more complicated than hashword() only because
 hashlittle() has to dance around fitting the key bytes into registers.
--------------------------------------------------------------------
*/
uint32_t hashword(
const uint32_t *k,                   /* the key, an array of uint32_t values */
size_t          length,               /* the length of the key, in uint32_ts */
uint32_t        initval)         /* the previous hash, or an arbitrary value */
{
  uint32_t a,b,c;

  /* Set up the internal state */
  a = b = c = raninit + (((uint32_t)length)<<2) + initval;

  /*------------------------------------------------- handle most of the key */
  while (length > 3)
  {
    a += k[0];
    b += k[1];
    c += k[2];
    mix(a,b,c);
    length -= 3;
    k += 3;
  }

  /*------------------------------------------- handle the last 3 uint32_t's */
  switch(length)                     /* all the case statements fall through */
  { 
  case 3 : c+=k[2];
  	/* fallthrough */
  case 2 : b+=k[1];
  	/* fallthrough */
  case 1 : a+=k[0];
    final(a,b,c);
  case 0:     /* case 0: nothing left to add */
    break;
  }
  /*------------------------------------------------------ report the result */
  return c;
}


#ifdef SELF_TEST

/*
--------------------------------------------------------------------
hashword2() -- same as hashword(), but take two seeds and return two
32-bit values.  pc and pb must both be nonnull, and *pc and *pb must
both be initialized with seeds.  If you pass in (*pb)==0, the output 
(*pc) will be the same as the return value from hashword().
--------------------------------------------------------------------
*/
void hashword2 (
const uint32_t *k,                   /* the key, an array of uint32_t values */
size_t          length,               /* the length of the key, in uint32_ts */
uint32_t       *pc,                      /* IN: seed OUT: primary hash value */
uint32_t       *pb)               /* IN: more seed OUT: secondary hash value */
{
  uint32_t a,b,c;

  /* Set up the internal state */
  a = b = c = raninit + ((uint32_t)(length<<2)) + *pc;
  c += *pb;

  /*------------------------------------------------- handle most of the key */
  while (length > 3)
  {
    a += k[0];
    b += k[1];
    c += k[2];
    mix(a,b,c);
    length -= 3;
    k += 3;
  }

  /*------------------------------------------- handle the last 3 uint32_t's */
  switch(length)                     /* all the case statements fall through */
  { 
  case 3 : c+=k[2];
  case 2 : b+=k[1];
  case 1 : a+=k[0];
    final(a,b,c);
  case 0:     /* case 0: nothing left to add */
    break;
  }
  /*------------------------------------------------------ report the result */
  *pc=c; *pb=b;
}

#endif /* SELF_TEST */

/*
-------------------------------------------------------------------------------
hashlittle() -- hash a variable-length key into a 32-bit value
  k       : the key (the unaligned variable-length array of bytes)
  length  : the length of the key, counting by bytes
  initval : can be any 4-byte value
Returns a 32-bit value.  Every bit of the key affects every bit of
the return value.  Two keys differing by one or two bits will have
totally different hash values.

The best hash table sizes are powers of 2.  There is no need to do
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
use a bitmask.  For example, if you need only 10 bits, do
  h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.

If you are hashing n strings (uint8_t **)k, do it like this:
  for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);

By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
code any way you wish, private, educational, or commercial.  It's free.

Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable.  Do NOT use for cryptographic purposes.
-------------------------------------------------------------------------------
*/

uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
{
  uint32_t a,b,c;                                          /* internal state */
  union { const void *ptr; size_t i; } u;     /* needed for Mac Powerbook G4 */

  /* Set up the internal state */
  a = b = c = raninit + ((uint32_t)length) + initval;

  u.ptr = key;
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
    const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
#ifdef VALGRIND
    const uint8_t  *k8;
#endif

    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += k[0];
      b += k[1];
      c += k[2];
      mix(a,b,c);
      length -= 12;
      k += 3;
    }

    /*----------------------------- handle the last (probably partial) block */
    /* 
     * "k[2]&0xffffff" actually reads beyond the end of the string, but
     * then masks off the part it's not allowed to read.  Because the
     * string is aligned, the masked-off tail is in the same word as the
     * rest of the string.  Every machine with memory protection I've seen
     * does it on word boundaries, so is OK with this.  But VALGRIND will
     * still catch it and complain.  The masking trick does make the hash
     * noticeably faster for short strings (like English words).
     */
#ifndef VALGRIND

    switch(length)
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
    case 6 : b+=k[1]&0xffff; a+=k[0]; break;
    case 5 : b+=k[1]&0xff; a+=k[0]; break;
    case 4 : a+=k[0]; break;
    case 3 : a+=k[0]&0xffffff; break;
    case 2 : a+=k[0]&0xffff; break;
    case 1 : a+=k[0]&0xff; break;
    case 0 : return c;              /* zero length strings require no mixing */
    }

#else /* make valgrind happy */

    k8 = (const uint8_t *)k;
    switch(length)
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
    case 9 : c+=k8[8];                   /* fall through */
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
    case 5 : b+=k8[4];                   /* fall through */
    case 4 : a+=k[0]; break;
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
    case 1 : a+=k8[0]; break;
    case 0 : return c;
    }

#endif /* !valgrind */

  } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
    const uint16_t *k = (const uint16_t *)key;         /* read 16-bit chunks */
    const uint8_t  *k8;

    /*--------------- all but last block: aligned reads and different mixing */
    while (length > 12)
    {
      a += k[0] + (((uint32_t)k[1])<<16);
      b += k[2] + (((uint32_t)k[3])<<16);
      c += k[4] + (((uint32_t)k[5])<<16);
      mix(a,b,c);
      length -= 12;
      k += 6;
    }

    /*----------------------------- handle the last (probably partial) block */
    k8 = (const uint8_t *)k;
    switch(length)
    {
    case 12: c+=k[4]+(((uint32_t)k[5])<<16);
             b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
    case 10: c+=k[4];
             b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 9 : c+=k8[8];                      /* fall through */
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
    case 6 : b+=k[2];
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 5 : b+=k8[4];                      /* fall through */
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
    case 2 : a+=k[0];
             break;
    case 1 : a+=k8[0];
             break;
    case 0 : return c;                     /* zero length requires no mixing */
    }

  } else {                        /* need to read the key one byte at a time */
    const uint8_t *k = (const uint8_t *)key;

    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += k[0];
      a += ((uint32_t)k[1])<<8;
      a += ((uint32_t)k[2])<<16;
      a += ((uint32_t)k[3])<<24;
      b += k[4];
      b += ((uint32_t)k[5])<<8;
      b += ((uint32_t)k[6])<<16;
      b += ((uint32_t)k[7])<<24;
      c += k[8];
      c += ((uint32_t)k[9])<<8;
      c += ((uint32_t)k[10])<<16;
      c += ((uint32_t)k[11])<<24;
      mix(a,b,c);
      length -= 12;
      k += 12;
    }

    /*-------------------------------- last block: affect all 32 bits of (c) */
    switch(length)                   /* all the case statements fall through */
    {
    case 12: c+=((uint32_t)k[11])<<24;
  	/* fallthrough */
    case 11: c+=((uint32_t)k[10])<<16;
  	/* fallthrough */
    case 10: c+=((uint32_t)k[9])<<8;
  	/* fallthrough */
    case 9 : c+=k[8];
  	/* fallthrough */
    case 8 : b+=((uint32_t)k[7])<<24;
  	/* fallthrough */
    case 7 : b+=((uint32_t)k[6])<<16;
  	/* fallthrough */
    case 6 : b+=((uint32_t)k[5])<<8;
  	/* fallthrough */
    case 5 : b+=k[4];
  	/* fallthrough */
    case 4 : a+=((uint32_t)k[3])<<24;
  	/* fallthrough */
    case 3 : a+=((uint32_t)k[2])<<16;
  	/* fallthrough */
    case 2 : a+=((uint32_t)k[1])<<8;
  	/* fallthrough */
    case 1 : a+=k[0];
             break;
    case 0 : return c;
    }
  }

  final(a,b,c);
  return c;
}

#ifdef SELF_TEST

/*
 * hashlittle2: return 2 32-bit hash values
 *
 * This is identical to hashlittle(), except it returns two 32-bit hash
 * values instead of just one.  This is good enough for hash table
 * lookup with 2^^64 buckets, or if you want a second hash if you're not
 * happy with the first, or if you want a probably-unique 64-bit ID for
 * the key.  *pc is better mixed than *pb, so use *pc first.  If you want
 * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
 */
void hashlittle2( 
  const void *key,       /* the key to hash */
  size_t      length,    /* length of the key */
  uint32_t   *pc,        /* IN: primary initval, OUT: primary hash */
  uint32_t   *pb)        /* IN: secondary initval, OUT: secondary hash */
{
  uint32_t a,b,c;                                          /* internal state */
  union { const void *ptr; size_t i; } u;     /* needed for Mac Powerbook G4 */

  /* Set up the internal state */
  a = b = c = raninit + ((uint32_t)length) + *pc;
  c += *pb;

  u.ptr = key;
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
    const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
#ifdef VALGRIND
    const uint8_t  *k8;
#endif

    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += k[0];
      b += k[1];
      c += k[2];
      mix(a,b,c);
      length -= 12;
      k += 3;
    }

    /*----------------------------- handle the last (probably partial) block */
    /* 
     * "k[2]&0xffffff" actually reads beyond the end of the string, but
     * then masks off the part it's not allowed to read.  Because the
     * string is aligned, the masked-off tail is in the same word as the
     * rest of the string.  Every machine with memory protection I've seen
     * does it on word boundaries, so is OK with this.  But VALGRIND will
     * still catch it and complain.  The masking trick does make the hash
     * noticeably faster for short strings (like English words).
     */
#ifndef VALGRIND

    switch(length)
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
    case 6 : b+=k[1]&0xffff; a+=k[0]; break;
    case 5 : b+=k[1]&0xff; a+=k[0]; break;
    case 4 : a+=k[0]; break;
    case 3 : a+=k[0]&0xffffff; break;
    case 2 : a+=k[0]&0xffff; break;
    case 1 : a+=k[0]&0xff; break;
    case 0 : *pc=c; *pb=b; return;  /* zero length strings require no mixing */
    }

#else /* make valgrind happy */

    k8 = (const uint8_t *)k;
    switch(length)
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
    case 9 : c+=k8[8];                   /* fall through */
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
    case 5 : b+=k8[4];                   /* fall through */
    case 4 : a+=k[0]; break;
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
    case 1 : a+=k8[0]; break;
    case 0 : *pc=c; *pb=b; return;  /* zero length strings require no mixing */
    }

#endif /* !valgrind */

  } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
    const uint16_t *k = (const uint16_t *)key;         /* read 16-bit chunks */
    const uint8_t  *k8;

    /*--------------- all but last block: aligned reads and different mixing */
    while (length > 12)
    {
      a += k[0] + (((uint32_t)k[1])<<16);
      b += k[2] + (((uint32_t)k[3])<<16);
      c += k[4] + (((uint32_t)k[5])<<16);
      mix(a,b,c);
      length -= 12;
      k += 6;
    }

    /*----------------------------- handle the last (probably partial) block */
    k8 = (const uint8_t *)k;
    switch(length)
    {
    case 12: c+=k[4]+(((uint32_t)k[5])<<16);
             b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
    case 10: c+=k[4];
             b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 9 : c+=k8[8];                      /* fall through */
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
    case 6 : b+=k[2];
             a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 5 : b+=k8[4];                      /* fall through */
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
             break;
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
    case 2 : a+=k[0];
             break;
    case 1 : a+=k8[0];
             break;
    case 0 : *pc=c; *pb=b; return;  /* zero length strings require no mixing */
    }

  } else {                        /* need to read the key one byte at a time */
    const uint8_t *k = (const uint8_t *)key;

    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += k[0];
      a += ((uint32_t)k[1])<<8;
      a += ((uint32_t)k[2])<<16;
      a += ((uint32_t)k[3])<<24;
      b += k[4];
      b += ((uint32_t)k[5])<<8;
      b += ((uint32_t)k[6])<<16;
      b += ((uint32_t)k[7])<<24;
      c += k[8];
      c += ((uint32_t)k[9])<<8;
      c += ((uint32_t)k[10])<<16;
      c += ((uint32_t)k[11])<<24;
      mix(a,b,c);
      length -= 12;
      k += 12;
    }

    /*-------------------------------- last block: affect all 32 bits of (c) */
    switch(length)                   /* all the case statements fall through */
    {
    case 12: c+=((uint32_t)k[11])<<24;
    case 11: c+=((uint32_t)k[10])<<16;
    case 10: c+=((uint32_t)k[9])<<8;
    case 9 : c+=k[8];
    case 8 : b+=((uint32_t)k[7])<<24;
    case 7 : b+=((uint32_t)k[6])<<16;
    case 6 : b+=((uint32_t)k[5])<<8;
    case 5 : b+=k[4];
    case 4 : a+=((uint32_t)k[3])<<24;
    case 3 : a+=((uint32_t)k[2])<<16;
    case 2 : a+=((uint32_t)k[1])<<8;
    case 1 : a+=k[0];
             break;
    case 0 : *pc=c; *pb=b; return;  /* zero length strings require no mixing */
    }
  }

  final(a,b,c);
  *pc=c; *pb=b;
}

#endif /* SELF_TEST */

#if 0	/* currently not used */

/*
 * hashbig():
 * This is the same as hashword() on big-endian machines.  It is different
 * from hashlittle() on all machines.  hashbig() takes advantage of
 * big-endian byte ordering. 
 */
uint32_t hashbig( const void *key, size_t length, uint32_t initval)
{
  uint32_t a,b,c;
  union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */

  /* Set up the internal state */
  a = b = c = raninit + ((uint32_t)length) + initval;

  u.ptr = key;
  if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
    const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
#ifdef VALGRIND
    const uint8_t  *k8;
#endif

    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += k[0];
      b += k[1];
      c += k[2];
      mix(a,b,c);
      length -= 12;
      k += 3;
    }

    /*----------------------------- handle the last (probably partial) block */
    /* 
     * "k[2]<<8" actually reads beyond the end of the string, but
     * then shifts out the part it's not allowed to read.  Because the
     * string is aligned, the illegal read is in the same word as the
     * rest of the string.  Every machine with memory protection I've seen
     * does it on word boundaries, so is OK with this.  But VALGRIND will
     * still catch it and complain.  The masking trick does make the hash
     * noticeably faster for short strings (like English words).
     */
#ifndef VALGRIND

    switch(length)
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
    case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
    case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
    case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
    case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
    case 4 : a+=k[0]; break;
    case 3 : a+=k[0]&0xffffff00; break;
    case 2 : a+=k[0]&0xffff0000; break;
    case 1 : a+=k[0]&0xff000000; break;
    case 0 : return c;              /* zero length strings require no mixing */
    }

#else  /* make valgrind happy */

    k8 = (const uint8_t *)k;
    switch(length)                   /* all the case statements fall through */
    {
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
    case 11: c+=((uint32_t)k8[10])<<8;  /* fall through */
    case 10: c+=((uint32_t)k8[9])<<16;  /* fall through */
    case 9 : c+=((uint32_t)k8[8])<<24;  /* fall through */
    case 8 : b+=k[1]; a+=k[0]; break;
    case 7 : b+=((uint32_t)k8[6])<<8;   /* fall through */
    case 6 : b+=((uint32_t)k8[5])<<16;  /* fall through */
    case 5 : b+=((uint32_t)k8[4])<<24;  /* fall through */
    case 4 : a+=k[0]; break;
    case 3 : a+=((uint32_t)k8[2])<<8;   /* fall through */
    case 2 : a+=((uint32_t)k8[1])<<16;  /* fall through */
    case 1 : a+=((uint32_t)k8[0])<<24; break;
    case 0 : return c;
    }

#endif /* !VALGRIND */

  } else {                        /* need to read the key one byte at a time */
    const uint8_t *k = (const uint8_t *)key;

    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
    while (length > 12)
    {
      a += ((uint32_t)k[0])<<24;
      a += ((uint32_t)k[1])<<16;
      a += ((uint32_t)k[2])<<8;
      a += ((uint32_t)k[3]);
      b += ((uint32_t)k[4])<<24;
      b += ((uint32_t)k[5])<<16;
      b += ((uint32_t)k[6])<<8;
      b += ((uint32_t)k[7]);
      c += ((uint32_t)k[8])<<24;
      c += ((uint32_t)k[9])<<16;
      c += ((uint32_t)k[10])<<8;
      c += ((uint32_t)k[11]);
      mix(a,b,c);
      length -= 12;
      k += 12;
    }

    /*-------------------------------- last block: affect all 32 bits of (c) */
    switch(length)                   /* all the case statements fall through */
    {
    case 12: c+=k[11];
    case 11: c+=((uint32_t)k[10])<<8;
    case 10: c+=((uint32_t)k[9])<<16;
    case 9 : c+=((uint32_t)k[8])<<24;
    case 8 : b+=k[7];
    case 7 : b+=((uint32_t)k[6])<<8;
    case 6 : b+=((uint32_t)k[5])<<16;
    case 5 : b+=((uint32_t)k[4])<<24;
    case 4 : a+=k[3];
    case 3 : a+=((uint32_t)k[2])<<8;
    case 2 : a+=((uint32_t)k[1])<<16;
    case 1 : a+=((uint32_t)k[0])<<24;
             break;
    case 0 : return c;
    }
  }

  final(a,b,c);
  return c;
}

#endif /* 0 == currently not used */

#ifdef SELF_TEST

/* used for timings */
void driver1()
{
  uint8_t buf[256];
  uint32_t i;
  uint32_t h=0;
  time_t a,z;

  time(&a);
  for (i=0; i<256; ++i) buf[i] = 'x';
  for (i=0; i<1; ++i) 
  {
    h = hashlittle(&buf[0],1,h);
  }
  time(&z);
  if (z-a > 0) printf("time %lld %.8x\n", (long long) z-a, h);
}

/* check that every input bit changes every output bit half the time */
#define HASHSTATE 1
#define HASHLEN   1
#define MAXPAIR 60
#define MAXLEN  70
void driver2()
{
  uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
  uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
  uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
  uint32_t x[HASHSTATE],y[HASHSTATE];
  uint32_t hlen;

  printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
  for (hlen=0; hlen < MAXLEN; ++hlen)
  {
    z=0;
    for (i=0; i<hlen; ++i)  /*----------------------- for each input byte, */
    {
      for (j=0; j<8; ++j)   /*------------------------ for each input bit, */
      {
	for (m=1; m<8; ++m) /*------------ for several possible initvals, */
	{
	  for (l=0; l<HASHSTATE; ++l)
	    e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);

      	  /*---- check that every output bit is affected by that input bit */
	  for (k=0; k<MAXPAIR; k+=2)
	  { 
	    uint32_t finished=1;
	    /* keys have one bit different */
	    for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
	    /* have a and b be two keys differing in only one bit */
	    a[i] ^= (k<<j);
	    a[i] ^= (k>>(8-j));
	     c[0] = hashlittle(a, hlen, m);
	    b[i] ^= ((k+1)<<j);
	    b[i] ^= ((k+1)>>(8-j));
	     d[0] = hashlittle(b, hlen, m);
	    /* check every bit is 1, 0, set, and not set at least once */
	    for (l=0; l<HASHSTATE; ++l)
	    {
	      e[l] &= (c[l]^d[l]);
	      f[l] &= ~(c[l]^d[l]);
	      g[l] &= c[l];
	      h[l] &= ~c[l];
	      x[l] &= d[l];
	      y[l] &= ~d[l];
	      if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
	    }
	    if (finished) break;
	  }
	  if (k>z) z=k;
	  if (k==MAXPAIR) 
	  {
	     printf("Some bit didn't change: ");
	     printf("%.8x %.8x %.8x %.8x %.8x %.8x  ",
	            e[0],f[0],g[0],h[0],x[0],y[0]);
	     printf("i %d j %d m %d len %d\n", i, j, m, hlen);
	  }
	  if (z==MAXPAIR) goto done;
	}
      }
    }
   done:
    if (z < MAXPAIR)
    {
      printf("Mix success  %2d bytes  %2d initvals  ",i,m);
      printf("required  %d  trials\n", z/2);
    }
  }
  printf("\n");
}

/* Check for reading beyond the end of the buffer and alignment problems */
void driver3()
{
  uint8_t buf[MAXLEN+20], *b;
  uint32_t len;
  uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
  uint32_t h;
  uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
  uint32_t i;
  uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
  uint32_t j;
  uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
  uint32_t ref,x,y;
  uint8_t *p;

  printf("Endianness.  These lines should all be the same (for values filled in):\n");
  printf("%.8x                            %.8x                            %.8x\n",
         hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13),
         hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13),
         hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13));
  p = q;
  printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
         hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
         hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
         hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
         hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
         hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
         hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
  p = &qq[1];
  printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
         hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
         hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
         hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
         hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
         hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
         hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
  p = &qqq[2];
  printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
         hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
         hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
         hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
         hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
         hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
         hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
  p = &qqqq[3];
  printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
         hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
         hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
         hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
         hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
         hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
         hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
  printf("\n");

  /* check that hashlittle2 and hashlittle produce the same results */
  i=47; j=0;
  hashlittle2(q, sizeof(q), &i, &j);
  if (hashlittle(q, sizeof(q), 47) != i)
    printf("hashlittle2 and hashlittle mismatch\n");

  /* check that hashword2 and hashword produce the same results */
  len = raninit;
  i=47, j=0;
  hashword2(&len, 1, &i, &j);
  if (hashword(&len, 1, 47) != i)
    printf("hashword2 and hashword mismatch %x %x\n", 
	   i, hashword(&len, 1, 47));

  /* check hashlittle doesn't read before or after the ends of the string */
  for (h=0, b=buf+1; h<8; ++h, ++b)
  {
    for (i=0; i<MAXLEN; ++i)
    {
      len = i;
      for (j=0; j<i; ++j) *(b+j)=0;

      /* these should all be equal */
      ref = hashlittle(b, len, (uint32_t)1);
      *(b+i)=(uint8_t)~0;
      *(b-1)=(uint8_t)~0;
      x = hashlittle(b, len, (uint32_t)1);
      y = hashlittle(b, len, (uint32_t)1);
      if ((ref != x) || (ref != y)) 
      {
	printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
               h, i);
      }
    }
  }
}

/* check for problems with nulls */
 void driver4()
{
  uint8_t buf[1];
  uint32_t h,i,state[HASHSTATE];


  buf[0] = ~0;
  for (i=0; i<HASHSTATE; ++i) state[i] = 1;
  printf("These should all be different\n");
  for (i=0, h=0; i<8; ++i)
  {
    h = hashlittle(buf, 0, h);
    printf("%2ld  0-byte strings, hash is  %.8x\n", i, h);
  }
}


int main()
{
  driver1();   /* test that the key is hashed: used for timings */
  driver2();   /* test that whole key is hashed thoroughly */
  driver3();   /* test that nothing but the key is hashed */
  driver4();   /* test hashing multiple buffers (all buffers are null) */
  return 1;
}

#endif  /* SELF_TEST */