summaryrefslogtreecommitdiff
path: root/usr.sbin/nsd/radtree.c
blob: fd003795a4a034c847201e8afb287fd7889d2527 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
/*
 * radtree -- generic radix tree for binary strings.
 *
 * Copyright (c) 2010, NLnet Labs.  See LICENSE for license.
 */
#include "config.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include "radtree.h"
#include "util.h"
#include "region-allocator.h"

#include <stdio.h>
#include <ctype.h>

struct radtree* radix_tree_create(struct region* region)
{
	struct radtree* rt = (struct radtree*)region_alloc(region, sizeof(*rt));
	if(!rt) return NULL;
	rt->region = region;
	radix_tree_init(rt);
	return rt;
}

void radix_tree_init(struct radtree* rt)
{
	rt->root = NULL;
	rt->count = 0;
}

/** delete radnodes in postorder recursion */
static void radnode_del_postorder(struct region* region, struct radnode* n)
{
	unsigned i;
	if(!n) return;
	for(i=0; i<n->len; i++) {
		radnode_del_postorder(region, n->array[i].node);
		region_recycle(region, n->array[i].str, n->array[i].len);
	}
	region_recycle(region, n->array, n->capacity*sizeof(struct radsel));
	region_recycle(region, n, sizeof(*n));
}

void radix_tree_clear(struct radtree* rt)
{
	radnode_del_postorder(rt->region, rt->root);
	rt->root = NULL;
	rt->count = 0;
}

void radix_tree_delete(struct radtree* rt)
{
	if(!rt) return;
	radix_tree_clear(rt);
	region_recycle(rt->region, rt, sizeof(*rt));
}

/** return last elem-containing node in this subtree (excl self) */
static struct radnode*
radnode_last_in_subtree(struct radnode* n)
{
	int idx;
	/* try last entry in array first */
	for(idx=((int)n->len)-1; idx >= 0; idx--) {
		if(n->array[idx].node) {
			/* does it have entries in its subtrees? */
			if(n->array[idx].node->len > 0) {
				struct radnode* s = radnode_last_in_subtree(
					n->array[idx].node);
				if(s) return s;
			}
			/* no, does it have an entry itself? */
			if(n->array[idx].node->elem)
				return n->array[idx].node;
		}
	}
	return NULL;
}

/** last in subtree, incl self */
static struct radnode*
radnode_last_in_subtree_incl_self(struct radnode* n)
{
	struct radnode* s = radnode_last_in_subtree(n);
	if(s) return s;
	if(n->elem) return n;
	return NULL;
}

/** return first elem-containing node in this subtree (excl self) */
static struct radnode*
radnode_first_in_subtree(struct radnode* n)
{
	unsigned idx;
	struct radnode* s;
	/* try every subnode */
	for(idx=0; idx<n->len; idx++) {
		if(n->array[idx].node) {
			/* does it have elem itself? */
			if(n->array[idx].node->elem)
				return n->array[idx].node;
			/* try its subtrees */
			if((s=radnode_first_in_subtree(n->array[idx].node))!=0)
				return s;
		}
	}
	return NULL;
}

/** Find an entry in arrays from idx-1 to 0 */
static struct radnode*
radnode_find_prev_from_idx(struct radnode* n, unsigned from)
{
	unsigned idx = from;
	while(idx > 0) {
		idx --;
		if(n->array[idx].node) {
			struct radnode* s = radnode_last_in_subtree_incl_self(
				n->array[idx].node);
			if(s) return s;
		}
	}
	return NULL;
}

/** 
 * Find a prefix of the key, in whole-nodes.
 * Finds the longest prefix that corresponds to a whole radnode entry.
 * There may be a slightly longer prefix in one of the array elements.
 * @param result: the longest prefix, the entry itself if *respos==len,
 * 	otherwise an array entry, residx.
 * @param respos: pos in string where next unmatched byte is, if == len an
 * 	exact match has been found.  If == 0 then a "" match was found.
 * @return false if no prefix found, not even the root "" prefix.
 */
static int radix_find_prefix_node(struct radtree* rt, uint8_t* k,
	radstrlen_t len, struct radnode** result, radstrlen_t* respos)
{
	struct radnode* n = rt->root;
	radstrlen_t pos = 0;
	uint8_t byte;
	*respos = 0;
	*result = n;
	if(!n) return 0;
	while(n) {
		if(pos == len) {
			return 1;
		}
		byte = k[pos];
		if(byte < n->offset) {
			return 1;
		}
		byte -= n->offset;
		if(byte >= n->len) {
			return 1;
		}
		pos++;
		if(n->array[byte].len != 0) {
			/* must match additional string */
			if(pos+n->array[byte].len > len) {
				return 1;
			}
			if(memcmp(&k[pos], n->array[byte].str,
				n->array[byte].len) != 0) {
				return 1;
			}
			pos += n->array[byte].len;
		}
		n = n->array[byte].node;
		if(!n) return 1;
		*respos = pos;
		*result = n;
	}
	return 1;
}

/** grow array to at least the given size, offset unchanged */
static int
radnode_array_grow(struct region* region, struct radnode* n, unsigned want)
{
	unsigned ns = ((unsigned)n->capacity)*2;
	struct radsel* a;
	assert(want <= 256); /* cannot be more, range of uint8 */
	if(want > ns)
		ns = want;
	if(ns > 256) ns = 256;
	/* we do not use realloc, because we want to keep the old array
	 * in case alloc fails, so that the tree is still usable */
	a = (struct radsel*)region_alloc_array(region, ns, sizeof(struct radsel));
	if(!a) return 0;
	assert(n->len <= n->capacity);
	assert(n->capacity < ns);
	memcpy(&a[0], &n->array[0], n->len*sizeof(struct radsel));
	region_recycle(region, n->array, n->capacity*sizeof(struct radsel));
	n->array = a;
	n->capacity = ns;
	return 1;
}

/** make space in radnode array for another byte */
static int
radnode_array_space(struct region* region, struct radnode* n, uint8_t byte)
{
	/* is there an array? */
	if(!n->array || n->capacity == 0) {
		n->array = (struct radsel*)region_alloc(region,
			sizeof(struct radsel));
		if(!n->array) return 0;
		memset(&n->array[0], 0, sizeof(struct radsel));
		n->len = 1;
		n->capacity = 1;
		n->offset = byte;
	/* is the array unused? */
	} else if(n->len == 0 && n->capacity != 0) {
		n->len = 1;
		n->offset = byte;
		memset(&n->array[0], 0, sizeof(struct radsel));
	/* is it below the offset? */
	} else if(byte < n->offset) {
		/* is capacity enough? */
		unsigned idx;
		unsigned need = n->offset-byte;
		if(n->len+need > n->capacity) {
			/* grow array */
			if(!radnode_array_grow(region, n, n->len+need))
				return 0;
		}
		/* reshuffle items to end */
		memmove(&n->array[need], &n->array[0],
				n->len*sizeof(struct radsel));
		/* fixup pidx */
		for(idx = 0; idx < n->len; idx++) {
			if(n->array[idx+need].node)
				n->array[idx+need].node->pidx = idx+need;
		}
		/* zero the first */
		memset(&n->array[0], 0, need*sizeof(struct radsel));
		n->len += need;
		n->offset = byte;
	/* is it above the max? */
	} else if(byte-n->offset >= n->len) {
		/* is capacity enough? */
		unsigned need = (byte-n->offset) - n->len + 1;
		/* grow array */
		if(n->len + need > n->capacity) {
			if(!radnode_array_grow(region, n, n->len+need))
				return 0;
		}
		/* zero added entries */
		memset(&n->array[n->len], 0, need*sizeof(struct radsel));
		/* grow length */
		n->len += need;
	}
	return 1;
}

/** create a prefix in the array strs */
static int
radsel_str_create(struct region* region, struct radsel* r, uint8_t* k,
	radstrlen_t pos, radstrlen_t len)
{
	r->str = (uint8_t*)region_alloc(region, sizeof(uint8_t)*(len-pos));
	if(!r->str)
		return 0; /* out of memory */
	memmove(r->str, k+pos, len-pos);
	r->len = len-pos;
	return 1;
}

/** see if one byte string p is a prefix of another x (equality is true) */
static int
bstr_is_prefix(uint8_t* p, radstrlen_t plen, uint8_t* x, radstrlen_t xlen)
{
	/* if plen is zero, it is an (empty) prefix */
	if(plen == 0)
		return 1;
	/* if so, p must be shorter */
	if(plen > xlen)
		return 0;
	return (memcmp(p, x, plen) == 0);
}

/** number of bytes in common for the two strings */
static radstrlen_t
bstr_common(uint8_t* x, radstrlen_t xlen, uint8_t* y, radstrlen_t ylen)
{
	unsigned i, max = ((xlen<ylen)?xlen:ylen);
	for(i=0; i<max; i++) {
		if(x[i] != y[i])
			return i;
	}
	return max;
}


int
bstr_is_prefix_ext(uint8_t* p, radstrlen_t plen, uint8_t* x, radstrlen_t xlen)
{
	return bstr_is_prefix(p, plen, x, xlen);
}

radstrlen_t
bstr_common_ext(uint8_t* x, radstrlen_t xlen, uint8_t* y, radstrlen_t ylen)
{
	return bstr_common(x, xlen, y, ylen);
}

/** allocate remainder from prefixes for a split:
 * plen: len prefix, l: longer bstring, llen: length of l. */
static int
radsel_prefix_remainder(struct region* region, radstrlen_t plen,
	uint8_t* l, radstrlen_t llen,
	uint8_t** s, radstrlen_t* slen)
{
	*slen = llen - plen;
	*s = (uint8_t*)region_alloc(region, (*slen)*sizeof(uint8_t));
	if(!*s)
		return 0;
	memmove(*s, l+plen, llen-plen);
	return 1;
}

/** radsel create a split when two nodes have shared prefix.
 * @param r: radsel that gets changed, it contains a node.
 * @param k: key byte string
 * @param pos: position where the string enters the radsel (e.g. r.str)
 * @param len: length of k.
 * @param add: additional node for the string k.
 * 	removed by called on failure.
 * @return false on alloc failure, no changes made.
 */
static int
radsel_split(struct region* region, struct radsel* r, uint8_t* k,
	radstrlen_t pos, radstrlen_t len, struct radnode* add)
{
	uint8_t* addstr = k+pos;
	radstrlen_t addlen = len-pos;
	if(bstr_is_prefix(addstr, addlen, r->str, r->len)) {
		uint8_t* split_str=NULL, *dupstr=NULL;
		radstrlen_t split_len=0;
		/* 'add' is a prefix of r.node */
		/* also for empty addstr */
		/* set it up so that the 'add' node has r.node as child */
		/* so, r.node gets moved below the 'add' node, but we do
		 * this so that the r.node stays the same pointer for its
		 * key name */
		assert(addlen != r->len);
		assert(addlen < r->len);
		if(r->len-addlen > 1) {
			/* shift one because a char is in the lookup array */
			if(!radsel_prefix_remainder(region, addlen+1, r->str,
				r->len, &split_str, &split_len))
				return 0;
		}
		if(addlen != 0) {
			dupstr = (uint8_t*)region_alloc(region,
				addlen*sizeof(uint8_t));
			if(!dupstr) {
				region_recycle(region, split_str, split_len);
				return 0;
			}
			memcpy(dupstr, addstr, addlen);
		}
		if(!radnode_array_space(region, add, r->str[addlen])) {
			region_recycle(region, split_str, split_len);
			region_recycle(region, dupstr, addlen);
			return 0;
		}
		/* alloc succeeded, now link it in */
		add->parent = r->node->parent;
		add->pidx = r->node->pidx;
		add->array[0].node = r->node;
		add->array[0].str = split_str;
		add->array[0].len = split_len;
		r->node->parent = add;
		r->node->pidx = 0;

		r->node = add;
		region_recycle(region, r->str, r->len);
		r->str = dupstr;
		r->len = addlen;
	} else if(bstr_is_prefix(r->str, r->len, addstr, addlen)) {
		uint8_t* split_str = NULL;
		radstrlen_t split_len = 0;
		/* r.node is a prefix of 'add' */
		/* set it up so that the 'r.node' has 'add' as child */
		/* and basically, r.node is already completely fine,
		 * we only need to create a node as its child */
		assert(addlen != r->len);
		assert(r->len < addlen);
		if(addlen-r->len > 1) {
			/* shift one because a character goes into array */
			if(!radsel_prefix_remainder(region, r->len+1, addstr,
				addlen, &split_str, &split_len))
				return 0;
		}
		if(!radnode_array_space(region, r->node, addstr[r->len])) {
			region_recycle(region, split_str, split_len);
			return 0;
		}
		/* alloc succeeded, now link it in */
		add->parent = r->node;
		add->pidx = addstr[r->len] - r->node->offset;
		r->node->array[add->pidx].node = add;
		r->node->array[add->pidx].str = split_str;
		r->node->array[add->pidx].len = split_len;
	} else {
		/* okay we need to create a new node that chooses between 
		 * the nodes 'add' and r.node
		 * We do this so that r.node stays the same pointer for its
		 * key name. */
		struct radnode* com;
		uint8_t* common_str=NULL, *s1_str=NULL, *s2_str=NULL;
		radstrlen_t common_len, s1_len=0, s2_len=0;
		common_len = bstr_common(r->str, r->len, addstr, addlen);
		assert(common_len < r->len);
		assert(common_len < addlen);

		/* create the new node for choice */
		com = (struct radnode*)region_alloc_zero(region, sizeof(*com));
		if(!com) return 0; /* out of memory */

		/* create the two substrings for subchoices */
		if(r->len-common_len > 1) {
			/* shift by one char because it goes in lookup array */
			if(!radsel_prefix_remainder(region, common_len+1,
				r->str, r->len, &s1_str, &s1_len)) {
				region_recycle(region, com, sizeof(*com));
				return 0;
			}
		}
		if(addlen-common_len > 1) {
			if(!radsel_prefix_remainder(region, common_len+1,
				addstr, addlen, &s2_str, &s2_len)) {
				region_recycle(region, com, sizeof(*com));
				region_recycle(region, s1_str, s1_len);
				return 0;
			}
		}

		/* create the shared prefix to go in r */
		if(common_len > 0) {
			common_str = (uint8_t*)region_alloc(region,
				common_len*sizeof(uint8_t));
			if(!common_str) {
				region_recycle(region, com, sizeof(*com));
				region_recycle(region, s1_str, s1_len);
				region_recycle(region, s2_str, s2_len);
				return 0;
			}
			memcpy(common_str, addstr, common_len);
		}

		/* make space in the common node array */
		if(!radnode_array_space(region, com, r->str[common_len]) ||
			!radnode_array_space(region, com, addstr[common_len])) {
			region_recycle(region, com->array, com->capacity*sizeof(struct radsel));
			region_recycle(region, com, sizeof(*com));
			region_recycle(region, common_str, common_len);
			region_recycle(region, s1_str, s1_len);
			region_recycle(region, s2_str, s2_len);
			return 0;
		}

		/* allocs succeeded, proceed to link it all up */
		com->parent = r->node->parent;
		com->pidx = r->node->pidx;
		r->node->parent = com;
		r->node->pidx = r->str[common_len]-com->offset;
		add->parent = com;
		add->pidx = addstr[common_len]-com->offset;
		com->array[r->node->pidx].node = r->node;
		com->array[r->node->pidx].str = s1_str;
		com->array[r->node->pidx].len = s1_len;
		com->array[add->pidx].node = add;
		com->array[add->pidx].str = s2_str;
		com->array[add->pidx].len = s2_len;
		region_recycle(region, r->str, r->len);
		r->str = common_str;
		r->len = common_len;
		r->node = com;
	}
	return 1;
}

struct radnode* radix_insert(struct radtree* rt, uint8_t* k, radstrlen_t len,
        void* elem)
{
	struct radnode* n;
	radstrlen_t pos = 0;
	/* create new element to add */
	struct radnode* add = (struct radnode*)region_alloc_zero(rt->region,
		sizeof(*add));
	if(!add) return NULL; /* out of memory */
	add->elem = elem;

	/* find out where to add it */
	if(!radix_find_prefix_node(rt, k, len, &n, &pos)) {
		/* new root */
		assert(rt->root == NULL);
		if(len == 0) {
			rt->root = add;
		} else {
			/* add a root to point to new node */
			n = (struct radnode*)region_alloc_zero(rt->region,
				sizeof(*n));
			if(!n) return NULL;
			if(!radnode_array_space(rt->region, n, k[0])) {
				region_recycle(rt->region, n->array,
					n->capacity*sizeof(struct radsel));
				region_recycle(rt->region, n, sizeof(*n));
				region_recycle(rt->region, add, sizeof(*add));
				return NULL;
			}
			add->parent = n;
			add->pidx = 0;
			n->array[0].node = add;
			if(len > 1) {
				if(!radsel_prefix_remainder(rt->region, 1, k, len,
					&n->array[0].str, &n->array[0].len)) {
					region_recycle(rt->region, n->array,
						n->capacity*sizeof(struct radsel));
					region_recycle(rt->region, n, sizeof(*n));
					region_recycle(rt->region, add, sizeof(*add));
					return NULL;
				}
			}
			rt->root = n;
		}
	} else if(pos == len) {
		/* found an exact match */
		if(n->elem) {
			/* already exists, failure */
			region_recycle(rt->region, add, sizeof(*add));
			return NULL;
		}
		n->elem = elem;
		region_recycle(rt->region, add, sizeof(*add));
		add = n;
	} else {
		/* n is a node which can accomodate */
		uint8_t byte;
		assert(pos < len);
		byte = k[pos];

		/* see if it falls outside of array */
		if(byte < n->offset || byte-n->offset >= n->len) {
			/* make space in the array for it; adjusts offset */
			if(!radnode_array_space(rt->region, n, byte)) {
				region_recycle(rt->region, add, sizeof(*add));
				return NULL;
			}
			assert(byte>=n->offset && byte-n->offset<n->len);
			byte -= n->offset;
			/* see if more prefix needs to be split off */
			if(pos+1 < len) {
				if(!radsel_str_create(rt->region, &n->array[byte],
					k, pos+1, len)) {
					region_recycle(rt->region, add, sizeof(*add));
					return NULL;
				}
			}
			/* insert the new node in the new bucket */
			add->parent = n;
			add->pidx = byte;
			n->array[byte].node = add;
		/* so a bucket exists and byte falls in it */
		} else if(n->array[byte-n->offset].node == NULL) {
			/* use existing bucket */
			byte -= n->offset;
			if(pos+1 < len) {
				/* split off more prefix */
				if(!radsel_str_create(rt->region, &n->array[byte],
					k, pos+1, len)) {
					region_recycle(rt->region, add, sizeof(*add));
					return NULL;
				}
			}
			/* insert the new node in the new bucket */
			add->parent = n;
			add->pidx = byte;
			n->array[byte].node = add;
		} else {
			/* use bucket but it has a shared prefix,
			 * split that out and create a new intermediate
			 * node to split out between the two.
			 * One of the two might exactmatch the new 
			 * intermediate node */
			if(!radsel_split(rt->region, &n->array[byte-n->offset],
				k, pos+1, len, add)) {
				region_recycle(rt->region, add, sizeof(*add));
				return NULL;
			}
		}
	}

	rt->count ++;
	return add;
}

/** Delete a radnode */
static void radnode_delete(struct region* region, struct radnode* n)
{
	unsigned i;
	if(!n) return;
	for(i=0; i<n->len; i++) {
		/* safe to free NULL str */
		region_recycle(region, n->array[i].str, n->array[i].len);
	}
	region_recycle(region, n->array, n->capacity*sizeof(struct radsel));
	region_recycle(region, n, sizeof(*n));
}

/** Cleanup node with one child, it is removed and joined into parent[x] str */
static int
radnode_cleanup_onechild(struct region* region, struct radnode* n,
	struct radnode* par)
{
	uint8_t* join;
	radstrlen_t joinlen;
	uint8_t pidx = n->pidx;
	struct radnode* child = n->array[0].node;
	/* node had one child, merge them into the parent. */
	/* keep the child node, so its pointers stay valid. */

	/* at parent, append child->str to array str */
	assert(pidx < par->len);
	joinlen = par->array[pidx].len + n->array[0].len + 1;
	join = (uint8_t*)region_alloc(region, joinlen*sizeof(uint8_t));
	if(!join) {
		/* cleanup failed due to out of memory */
		/* the tree is inefficient, with node n still existing */
		return 0;
	}
	/* we know that .str and join are malloced, thus aligned */
	if(par->array[pidx].str)
	    memcpy(join, par->array[pidx].str, par->array[pidx].len);
	/* the array lookup is gone, put its character in the lookup string*/
	join[par->array[pidx].len] = child->pidx + n->offset;
	/* but join+len may not be aligned */
	if(n->array[0].str)
	    memmove(join+par->array[pidx].len+1, n->array[0].str, n->array[0].len);
	region_recycle(region, par->array[pidx].str, par->array[pidx].len);
	par->array[pidx].str = join;
	par->array[pidx].len = joinlen;
	/* and set the node to our child. */
	par->array[pidx].node = child;
	child->parent = par;
	child->pidx = pidx;
	/* we are unlinked, delete our node */
	radnode_delete(region, n);
	return 1;
}

/** remove array of nodes */
static void
radnode_array_clean_all(struct region* region, struct radnode* n)
{
	n->offset = 0;
	n->len = 0;
	/* shrink capacity */
	region_recycle(region, n->array, n->capacity*sizeof(struct radsel));
	n->array = NULL;
	n->capacity = 0;
}

/** see if capacity can be reduced for the given node array */
static void
radnode_array_reduce_if_needed(struct region* region, struct radnode* n)
{
	if(n->len <= n->capacity/2 && n->len != n->capacity) {
		struct radsel* a = (struct radsel*)region_alloc_array(region,
			sizeof(*a), n->len);
		if(!a) return;
		memcpy(a, n->array, sizeof(*a)*n->len);
		region_recycle(region, n->array, n->capacity*sizeof(*a));
		n->array = a;
		n->capacity = n->len;
	}
}

/** remove NULL nodes from front of array */
static void
radnode_array_clean_front(struct region* region, struct radnode* n)
{
	/* move them up and adjust offset */
	unsigned idx, shuf = 0;
	/* remove until a nonNULL entry */
	while(shuf < n->len && n->array[shuf].node == NULL)
		shuf++;
	if(shuf == 0)
		return;
	if(shuf == n->len) {
		/* the array is empty, the tree is inefficient */
		radnode_array_clean_all(region, n);
		return;
	}
	assert(shuf < n->len);
	assert((int)shuf <= 255-(int)n->offset);
	memmove(&n->array[0], &n->array[shuf],
		(n->len - shuf)*sizeof(struct radsel));
	n->offset += shuf;
	n->len -= shuf;
	for(idx=0; idx<n->len; idx++)
		if(n->array[idx].node)
			n->array[idx].node->pidx = idx;
	/* see if capacity can be reduced */
	radnode_array_reduce_if_needed(region, n);
}

/** remove NULL nodes from end of array */
static void
radnode_array_clean_end(struct region* region, struct radnode* n)
{
	/* shorten it */
	unsigned shuf = 0;
	/* remove until a nonNULL entry */
	while(shuf < n->len && n->array[n->len-1-shuf].node == NULL)
		shuf++;
	if(shuf == 0)
		return;
	if(shuf == n->len) {
		/* the array is empty, the tree is inefficient */
		radnode_array_clean_all(region, n);
		return;
	}
	assert(shuf < n->len);
	n->len -= shuf;
	/* array elements can stay where they are */
	/* see if capacity can be reduced */
	radnode_array_reduce_if_needed(region, n);
}

/** clean up radnode leaf, where we know it has a parent */
static void
radnode_cleanup_leaf(struct region* region, struct radnode* n,
	struct radnode* par)
{
	uint8_t pidx;
	/* node was a leaf */
	/* delete leaf node, but store parent+idx */
	pidx = n->pidx;
	radnode_delete(region, n);

	/* set parent+idx entry to NULL str and node.*/
	assert(pidx < par->len);
	region_recycle(region, par->array[pidx].str, par->array[pidx].len);
	par->array[pidx].str = NULL;
	par->array[pidx].len = 0;
	par->array[pidx].node = NULL;

	/* see if par offset or len must be adjusted */
	if(par->len == 1) {
		/* removed final element from array */
		radnode_array_clean_all(region, par);
	} else if(pidx == 0) {
		/* removed first element from array */
		radnode_array_clean_front(region, par);
	} else if(pidx == par->len-1) {
		/* removed last element from array */
		radnode_array_clean_end(region, par);
	}
}

/** 
 * Cleanup a radix node that was made smaller, see if it can 
 * be merged with others.
 * @param rt: tree to remove root if needed.
 * @param n: node to cleanup
 * @return false on alloc failure.
 */
static int
radnode_cleanup(struct radtree* rt, struct radnode* n)
{
	while(n) {
		if(n->elem) {
			/* cannot delete node with a data element */
			return 1;
		} else if(n->len == 1 && n->parent) {
			return radnode_cleanup_onechild(rt->region, n, n->parent);
		} else if(n->len == 0) {
			struct radnode* par = n->parent;
			if(!par) {
				/* root deleted */
				radnode_delete(rt->region, n);
				rt->root = NULL;
				return 1;
			}
			/* remove and delete the leaf node */
			radnode_cleanup_leaf(rt->region, n, par);
			/* see if parent can now be cleaned up */
			n = par;
		} else {
			/* node cannot be cleaned up */
			return 1;
		}
	}
	/* ENOTREACH */
	return 1;
}

void radix_delete(struct radtree* rt, struct radnode* n)
{
	if(!n) return;
	n->elem = NULL;
	rt->count --;
	if(!radnode_cleanup(rt, n)) {
		/* out of memory in cleanup.  the elem ptr is NULL, but
		 * the radix tree could be inefficient. */
	}
}

struct radnode* radix_search(struct radtree* rt, uint8_t* k, radstrlen_t len)
{
	struct radnode* n = rt->root;
	radstrlen_t pos = 0;
	uint8_t byte;
	while(n) {
		if(pos == len)
			return n->elem?n:NULL;
		byte = k[pos];
		if(byte < n->offset)
			return NULL;
		byte -= n->offset;
		if(byte >= n->len)
			return NULL;
		pos++;
		if(n->array[byte].len != 0) {
			/* must match additional string */
			if(pos+n->array[byte].len > len)
				return NULL; /* no match */
			if(memcmp(&k[pos], n->array[byte].str,
				n->array[byte].len) != 0)
				return NULL; /* no match */
			pos += n->array[byte].len;
		}
		n = n->array[byte].node;
	}
	return NULL;
}

/** return self or a previous element */
static int ret_self_or_prev(struct radnode* n, struct radnode** result)
{
	if(n->elem)
		*result = n;
	else	*result = radix_prev(n);
	return 0;
}

int radix_find_less_equal(struct radtree* rt, uint8_t* k, radstrlen_t len,
        struct radnode** result)
{
	struct radnode* n = rt->root;
	radstrlen_t pos = 0;
	uint8_t byte;
	int r;
	if(!n) {
		/* empty tree */
		*result = NULL;
		return 0;
	}
	while(pos < len) {
		byte = k[pos];
		if(byte < n->offset) {
			/* so the previous is the element itself */
			/* or something before this element */
			return ret_self_or_prev(n, result);
		}
		byte -= n->offset;
		if(byte >= n->len) {
			/* so, the previous is the last of array, or itself */
			/* or something before this element */
			if((*result=radnode_last_in_subtree_incl_self(n))==0)
				*result = radix_prev(n);
			return 0;
		}
		pos++;
		if(!n->array[byte].node) {
			/* no match */
			/* Find an entry in arrays from byte-1 to 0 */
			*result = radnode_find_prev_from_idx(n, byte);
			if(*result)
				return 0;
			/* this entry or something before it */
			return ret_self_or_prev(n, result);
		}
		if(n->array[byte].len != 0) {
			/* must match additional string */
			if(pos+n->array[byte].len > len) {
				/* the additional string is longer than key*/
				if( (memcmp(&k[pos], n->array[byte].str,
					len-pos)) <= 0) {
				  /* and the key is before this node */
				  *result = radix_prev(n->array[byte].node);
				} else {
					/* the key is after the additional
					 * string, thus everything in that
					 * subtree is smaller. */
				  	*result=radnode_last_in_subtree_incl_self(n->array[byte].node);
					/* if somehow that is NULL,
					 * then we have an inefficient tree:
					 * byte+1 is larger than us, so find
					 * something in byte-1 and before */
					if(!*result)
						*result = radix_prev(n->array[byte].node);
				}
				return 0; /* no match */
			}
			if( (r=memcmp(&k[pos], n->array[byte].str,
				n->array[byte].len)) < 0) {
				*result = radix_prev(n->array[byte].node);
				return 0; /* no match */
			} else if(r > 0) {
				/* the key is larger than the additional
				 * string, thus everything in that subtree
				 * is smaller */
				*result=radnode_last_in_subtree_incl_self(n->array[byte].node);
				/* if we have an inefficient tree */
				if(!*result) *result = radix_prev(n->array[byte].node);
				return 0; /* no match */
			}
			pos += n->array[byte].len;
		}
		n = n->array[byte].node;
	}
	if(n->elem) {
		/* exact match */
		*result = n;
		return 1;
	}
	/* there is a node which is an exact match, but it has no element */
	*result = radix_prev(n);
	return 0;
}


struct radnode* radix_first(struct radtree* rt)
{
	struct radnode* n;
	if(!rt || !rt->root) return NULL;
	n = rt->root;
	if(n->elem) return n;
	return radix_next(n);
}

struct radnode* radix_last(struct radtree* rt)
{
	if(!rt || !rt->root) return NULL;
	return radnode_last_in_subtree_incl_self(rt->root);
}

struct radnode* radix_next(struct radnode* n)
{
	if(!n) return NULL;
	if(n->len) {
		/* go down */
		struct radnode* s = radnode_first_in_subtree(n);
		if(s) return s;
	}
	/* go up - the parent->elem is not useful, because it is before us */
	while(n->parent) {
		unsigned idx = n->pidx;
		n = n->parent;
		idx++;
		for(; idx < n->len; idx++) {
			/* go down the next branch */
			if(n->array[idx].node) {
				struct radnode* s;
				/* node itself */
				if(n->array[idx].node->elem)
					return n->array[idx].node;
				/* or subtree */
				s = radnode_first_in_subtree(
					n->array[idx].node);
				if(s) return s;
			}
		}
	}
	return NULL;
}

struct radnode* radix_prev(struct radnode* n)
{
	if(!n) return NULL;
	/* must go up, since all array nodes are after this node */
	while(n->parent) {
		uint8_t idx = n->pidx;
		struct radnode* s;
		n = n->parent;
		assert(n->len > 0); /* since we are a child */
		/* see if there are elements in previous branches there */
		s = radnode_find_prev_from_idx(n, idx);
		if(s) return s;
		/* the current node is before the array */
		if(n->elem)
			return n;
	}
	return NULL;
}

/** convert one character from domain-name to radname */
static uint8_t char_d2r(uint8_t c)
{
	if(c < 'A') return c+1; /* make space for 00 */
	else if(c <= 'Z') return c-'A'+'a'; /* lowercase */
	else return c;
}

/** convert one character from radname to domain-name (still lowercased) */
static uint8_t char_r2d(uint8_t c)
{
	assert(c != 0); /* end of label */
	if(c <= 'A') return c-1;
	else return c;
}

/** copy and convert a range of characters */
static void cpy_d2r(uint8_t* to, const uint8_t* from, int len)
{
	int i;
	for(i=0; i<len; i++)
		to[i] = char_d2r(from[i]);
}

/** copy and convert a range of characters */
static void cpy_r2d(uint8_t* to, uint8_t* from, uint8_t len)
{
	uint8_t i;
	for(i=0; i<len; i++)
		to[i] = char_r2d(from[i]);
}

/* radname code: domain to radix-bstring */
void radname_d2r(uint8_t* k, radstrlen_t* len, const uint8_t* dname,
	size_t dlen)
{
	/* the domain name is converted as follows,
	 * to preserve the normal (NSEC) ordering of domain names.
	 * lowercased, and 'end-of-label' is a '00' byte,
	 * bytes 00-'A' are +1 moved to make space for 00 byte.
	 * final root label is not appended (string ends).
	 * because the only allowed empty label is the final root label,
	 * we can also remove the last 00 label-end.
	 * The total result length is one-or-two less than the dname.
	 * 
	 * examples (numbers are bytes, letters are ascii):
	 * - root: dname: 0, radname: ''
	 * - nl.:  dname: 3nl0, radname: 'nl'
	 * - labs.nl: dname 4labs3nl0, radname: 'nl0labs'
	 * - x.labs.nl: dname 1x4labs3nl0, radname: 'nl0labs0x'
	 */

	/* conversion by putting the label starts on a stack */
	const uint8_t* labstart[130];
	unsigned int lab = 0, kpos, dpos = 0;
	/* sufficient space */
	assert(k && dname);
	assert(dlen <= 256); /* and therefore not more than 128 labels */
	assert(*len >= dlen);
	assert(dlen > 0); /* even root label has dlen=1 */

	/* root */
	if(dlen == 1) {
		assert(dname[0] == 0);
		*len = 0;
		return;
	}
	
	/* walk through domain name and remember label positions */
	do {
		/* compression pointers not allowed */
		if((dname[dpos] & 0xc0)) {
			*len = 0;
			return; /* format error */
		}
		labstart[lab++] = &dname[dpos];
		if(dpos + dname[dpos] + 1 >= dlen) {
			*len = 0;
			return; /* format error */
		}
		/* skip the label contents */
		dpos += dname[dpos];
		dpos ++;
	} while(dname[dpos] != 0);
	/* exit condition makes root label not in labelstart stack */
	/* because the root was handled before, we know there is some text */
	assert(lab > 0);
	lab-=1;
	kpos = *labstart[lab];
	cpy_d2r(k, labstart[lab]+1, kpos);
	/* if there are more labels, copy them over */
	while(lab) {
		/* put 'end-of-label' 00 to end previous label */
		k[kpos++]=0;
		/* append the label */
		lab--;
		cpy_d2r(k+kpos, labstart[lab]+1, *labstart[lab]);
		kpos += *labstart[lab];
	}
	/* done */
	assert(kpos == dlen-2); /* no rootlabel, one less label-marker */
	*len = kpos;
}

/* radname code: radix-bstring to domain */
void radname_r2d(uint8_t* k, radstrlen_t len, uint8_t* dname, size_t* dlen)
{
	/* find labels and push on stack */
	uint8_t* labstart[130];
	uint8_t lablen[130];
	unsigned int lab = 0, dpos, kpos = 0;
	/* sufficient space */
	assert(k && dname);
	assert((size_t)*dlen >= (size_t)len+2);
	assert(len <= 256);
	/* root label */
	if(len == 0) {
		assert(*dlen > 0);
		dname[0]=0;
		*dlen=1;
		return;
	}
	/* find labels */
	while(kpos < len) {
		lablen[lab]=0;
			labstart[lab]=&k[kpos];
		/* skip to next label */
		while(kpos < len && k[kpos] != 0) {
			lablen[lab]++;
			kpos++;
		}
		lab++;
		/* skip 00 byte for label-end */
		if(kpos < len) {
			assert(k[kpos] == 0);
			kpos++;
		}
	}
	/* copy the labels over to the domain name */
	dpos = 0;
	while(lab) {
		lab--;
		/* label length */
		dname[dpos++] = lablen[lab];
		/* label content */
		cpy_r2d(dname+dpos, labstart[lab], lablen[lab]);
		dpos += lablen[lab];
	}
	/* append root label */
	dname[dpos++] = 0;
	/* assert the domain name is wellformed */
	assert((int)dpos == (int)len+2);
	assert(dname[dpos-1] == 0); /* ends with root label */
	*dlen = dpos;
}

/** insert by domain name */
struct radnode*
radname_insert(struct radtree* rt, const uint8_t* d, size_t max, void* elem)
{
	/* convert and insert */
	uint8_t radname[300];
	radstrlen_t len = (radstrlen_t)sizeof(radname);
	if(max > sizeof(radname))
		return NULL; /* too long */
	radname_d2r(radname, &len, d, max);
	return radix_insert(rt, radname, len, elem);
}

/** delete by domain name */
void
radname_delete(struct radtree* rt, const uint8_t* d, size_t max)
{
	/* search and remove */
	struct radnode* n = radname_search(rt, d, max);
	if(n) radix_delete(rt, n);
}

/* search for exact match of domain name, converted to radname in tree */
struct radnode* radname_search(struct radtree* rt, const uint8_t* d,
	size_t max)
{
	/* stack of labels in the domain name */
	const uint8_t* labstart[130];
	unsigned int lab, dpos, lpos;
	struct radnode* n = rt->root;
	uint8_t byte;
	radstrlen_t i;
	uint8_t b;

	/* search for root? it is '' */
	if(max < 1)
		return NULL;
	if(d[0] == 0) {
		if(!n) return NULL;
		return n->elem?n:NULL;
	}

	/* find labels stack in domain name */
	lab = 0;
	dpos = 0;
	/* must have one label, since root is specialcased */
	do {
		if((d[dpos] & 0xc0))
			return NULL; /* compression ptrs not allowed error */
		labstart[lab++] = &d[dpos];
		if(dpos + d[dpos] + 1 >= max)
			return NULL; /* format error: outside of bounds */
		/* skip the label contents */
		dpos += d[dpos];
		dpos ++;
	} while(d[dpos] != 0);
	/* exit condition makes that root label is not in the labstarts */
	/* now: dpos+1 is length of domain name. lab is number of labels-1 */

	/* start processing at the last label */
	lab-=1;
	lpos = 0;
	while(n) {
		/* fetch next byte this label */
		if(lpos < *labstart[lab])
			/* lpos+1 to skip labelstart, lpos++ to move forward */
			byte = char_d2r(labstart[lab][++lpos]);
		else {
			if(lab == 0) /* last label - we're done */
				return n->elem?n:NULL;
			/* next label, search for byte 00 */
			lpos = 0;
			lab--;
			byte = 0;
		}
		/* find that byte in the array */
		if(byte < n->offset)
			return NULL;
		byte -= n->offset;
		if(byte >= n->len)
			return NULL;
		if(n->array[byte].len != 0) {
			/* must match additional string */
			/* see how many bytes we need and start matching them*/
			for(i=0; i<n->array[byte].len; i++) {
				/* next byte to match */
				if(lpos < *labstart[lab])
					b = char_d2r(labstart[lab][++lpos]);
				else {
					/* if last label, no match since
					 * we are in the additional string */
					if(lab == 0)
						return NULL; 
					/* next label, search for byte 00 */
					lpos = 0;
					lab--;
					b = 0;
				}
				if(n->array[byte].str[i] != b)
					return NULL; /* not matched */
			}
		}
		n = n->array[byte].node;
	}
	return NULL;
}

/* find domain name or smaller or equal domain name in radix tree */
int radname_find_less_equal(struct radtree* rt, const uint8_t* d, size_t max,
        struct radnode** result)
{
	/* stack of labels in the domain name */
	const uint8_t* labstart[130];
	unsigned int lab, dpos, lpos;
	struct radnode* n = rt->root;
	uint8_t byte;
	radstrlen_t i;
	uint8_t b;

	/* empty tree */
	if(!n) {
		*result = NULL;
		return 0;
	}

	/* search for root? it is '' */
	if(max < 1) {
		*result = NULL;
		return 0; /* parse error, out of bounds */
	}
	if(d[0] == 0) {
		if(n->elem) {
			*result = n;
			return 1;
		}
		/* no smaller element than the root */
		*result = NULL;
		return 0;
	}

	/* find labels stack in domain name */
	lab = 0;
	dpos = 0;
	/* must have one label, since root is specialcased */
	do {
		if((d[dpos] & 0xc0)) {
			*result = NULL;
			return 0; /* compression ptrs not allowed error */
		}
		labstart[lab++] = &d[dpos];
		if(dpos + d[dpos] + 1 >= max) {
			*result = NULL; /* format error: outside of bounds */
			return 0;
		}
		/* skip the label contents */
		dpos += d[dpos];
		dpos ++;
	} while(d[dpos] != 0);
	/* exit condition makes that root label is not in the labstarts */
	/* now: dpos+1 is length of domain name. lab is number of labels-1 */

	/* start processing at the last label */
	lab-=1;
	lpos = 0;
	while(1) {
		/* fetch next byte this label */
		if(lpos < *labstart[lab])
			/* lpos+1 to skip labelstart, lpos++ to move forward */
			byte = char_d2r(labstart[lab][++lpos]);
		else {
			if(lab == 0) {
				/* last label - we're done */
				/* exact match */
				if(n->elem) {
					*result = n;
					return 1;
				}
				/* there is a node which is an exact match,
				 * but there no element in it */
				*result = radix_prev(n);
				return 0;
			}
			/* next label, search for byte 0 the label separator */
			lpos = 0;
			lab--;
			byte = 0;
		}
		/* find that byte in the array */
		if(byte < n->offset)
			/* so the previous is the element itself */
			/* or something before this element */
			return ret_self_or_prev(n, result);
		byte -= n->offset;
		if(byte >= n->len) {
			/* so, the previous is the last of array, or itself */
			/* or something before this element */
			*result = radnode_last_in_subtree_incl_self(n);
			if(!*result)
				*result = radix_prev(n);
			return 0;
		}
		if(!n->array[byte].node) {
			/* no match */
			/* Find an entry in arrays from byte-1 to 0 */
			*result = radnode_find_prev_from_idx(n, byte);
			if(*result)
				return 0;
			/* this entry or something before it */
			return ret_self_or_prev(n, result);
		}
		if(n->array[byte].len != 0) {
			/* must match additional string */
			/* see how many bytes we need and start matching them*/
			for(i=0; i<n->array[byte].len; i++) {
				/* next byte to match */
				if(lpos < *labstart[lab])
					b = char_d2r(labstart[lab][++lpos]);
				else {
					/* if last label, no match since
					 * we are in the additional string */
					if(lab == 0) {
						/* dname ended, thus before
						 * this array element */
						*result =radix_prev(
							n->array[byte].node);
						return 0; 
					}
					/* next label, search for byte 00 */
					lpos = 0;
					lab--;
					b = 0;
				}
				if(b < n->array[byte].str[i]) {
					*result =radix_prev(
						n->array[byte].node);
					return 0; 
				} else if(b > n->array[byte].str[i]) {
					/* the key is after the additional,
					 * so everything in its subtree is
					 * smaller */
					*result = radnode_last_in_subtree_incl_self(n->array[byte].node);
					/* if that is NULL, we have an
					 * inefficient tree, find in byte-1*/
					if(!*result)
						*result = radix_prev(n->array[byte].node);
					return 0;
				}
			}
		}
		n = n->array[byte].node;
	}
	/* ENOTREACH */
	return 0;
}