diff options
author | Matthieu Herrb <matthieu@cvs.openbsd.org> | 2006-11-26 18:19:47 +0000 |
---|---|---|
committer | Matthieu Herrb <matthieu@cvs.openbsd.org> | 2006-11-26 18:19:47 +0000 |
commit | 04f51aaa1f5b0cac419d2891812446c790b9c581 (patch) | |
tree | 7d104a653aff8d7488bc039ba435118115c18807 /xserver/exa/exa.h | |
parent | 4a168ba45f33263ee86fc398ff32f108cffb1330 (diff) |
Importing xserver from X.Org 7.2RC2
Diffstat (limited to 'xserver/exa/exa.h')
-rw-r--r-- | xserver/exa/exa.h | 727 |
1 files changed, 727 insertions, 0 deletions
diff --git a/xserver/exa/exa.h b/xserver/exa/exa.h new file mode 100644 index 000000000..96465a775 --- /dev/null +++ b/xserver/exa/exa.h @@ -0,0 +1,727 @@ +/* + * + * Copyright (C) 2000 Keith Packard + * 2004 Eric Anholt + * 2005 Zack Rusin + * + * Permission to use, copy, modify, distribute, and sell this software and its + * documentation for any purpose is hereby granted without fee, provided that + * the above copyright notice appear in all copies and that both that + * copyright notice and this permission notice appear in supporting + * documentation, and that the name of copyright holders not be used in + * advertising or publicity pertaining to distribution of the software without + * specific, written prior permission. Copyright holders make no + * representations about the suitability of this software for any purpose. It + * is provided "as is" without express or implied warranty. + * + * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS + * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY + * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN + * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING + * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS + * SOFTWARE. + */ + +/** @file + * This is the header containing the public API of EXA for exa drivers. + */ + +#ifndef EXA_H +#define EXA_H + +#include "scrnintstr.h" +#include "pixmapstr.h" +#include "windowstr.h" +#include "gcstruct.h" +#include "picturestr.h" +#include "fb.h" + +#define EXA_VERSION_MAJOR 2 +#define EXA_VERSION_MINOR 0 +#define EXA_VERSION_RELEASE 0 + +typedef struct _ExaOffscreenArea ExaOffscreenArea; + +typedef void (*ExaOffscreenSaveProc) (ScreenPtr pScreen, ExaOffscreenArea *area); + +typedef enum _ExaOffscreenState { + ExaOffscreenAvail, + ExaOffscreenRemovable, + ExaOffscreenLocked +} ExaOffscreenState; + +struct _ExaOffscreenArea { + int base_offset; /* allocation base */ + int offset; /* aligned offset */ + int size; /* total allocation size */ + int score; + pointer privData; + + ExaOffscreenSaveProc save; + + ExaOffscreenState state; + + ExaOffscreenArea *next; +}; + +/** + * The ExaDriver structure is allocated through exaDriverAlloc(), and then + * fllled in by drivers. + */ +typedef struct _ExaDriver { + /** + * exa_major and exa_minor should be set by the driver to the version of + * EXA which the driver was compiled for (or configures itself at runtime to + * support). This allows EXA to extend the structure for new features + * without breaking ABI for drivers compiled against older versions. + */ + int exa_major, exa_minor; + + /** + * memoryBase is the address of the beginning of framebuffer memory. + * The visible screen should be within memoryBase to memoryBase + + * memorySize. + */ + CARD8 *memoryBase; + + /** + * offScreenBase is the offset from memoryBase of the beginning of the area + * to be managed by EXA's linear offscreen memory manager. + * + * In XFree86 DDX drivers, this is probably: + * (pScrn->displayWidth * cpp * pScrn->virtualY) + */ + unsigned long offScreenBase; + + /** + * memorySize is the length (in bytes) of framebuffer memory beginning + * from memoryBase. + * + * The offscreen memory manager will manage the area beginning at + * (memoryBase + offScreenBase), with a length of (memorySize - + * offScreenBase) + * + * In XFree86 DDX drivers, this is probably (pScrn->videoRam * 1024) + */ + unsigned long memorySize; + + /** + * pixmapOffsetAlign is the byte alignment necessary for pixmap offsets + * within framebuffer. + * + * Hardware typically has a required alignment of offsets, which may or may + * not be a power of two. EXA will ensure that pixmaps managed by the + * offscreen memory manager meet this alignment requirement. + */ + int pixmapOffsetAlign; + + /** + * pixmapPitchAlign is the byte alignment necessary for pixmap pitches + * within the framebuffer. + * + * Hardware typically has a required alignment of pitches for acceleration. + * For 3D hardware, Composite acceleration often requires that source and + * mask pixmaps (textures) have a power-of-two pitch, which can be demanded + * using EXA_OFFSCREEN_ALIGN_POT. These pitch requirements only apply to + * pixmaps managed by the offscreen memory manager. Thus, it is up to the + * driver to ensure that the visible screen has an appropriate pitch for + * acceleration. + */ + int pixmapPitchAlign; + + /** + * The flags field is bitfield of boolean values controlling EXA's behavior. + * + * The flags in clude EXA_OFFSCREEN_PIXMAPS, EXA_OFFSCREEN_ALIGN_POT, and + * EXA_TWO_BITBLT_DIRECTIONS. + */ + int flags; + + /** @{ */ + /** + * maxX controls the X coordinate limitation for rendering from the card. + * The driver should never receive a request for rendering beyond maxX + * in the X direction from the origin of a pixmap. + */ + int maxX; + + /** + * maxY controls the Y coordinate limitation for rendering from the card. + * The driver should never receive a request for rendering beyond maxY + * in the Y direction from the origin of a pixmap. + */ + int maxY; + /** @} */ + + /* private */ + ExaOffscreenArea *offScreenAreas; + Bool needsSync; + int lastMarker; + + /** @name Solid + * @{ + */ + /** + * PrepareSolid() sets up the driver for doing a solid fill. + * @param pPixmap Destination pixmap + * @param alu raster operation + * @param planemask write mask for the fill + * @param fg "foreground" color for the fill + * + * This call should set up the driver for doing a series of solid fills + * through the Solid() call. The alu raster op is one of the GX* + * graphics functions listed in X.h, and typically maps to a similar + * single-byte "ROP" setting in all hardware. The planemask controls + * which bits of the destination should be affected, and will only represent + * the bits up to the depth of pPixmap. The fg is the pixel value of the + * foreground color referred to in ROP descriptions. + * + * Note that many drivers will need to store some of the data in the driver + * private record, for sending to the hardware with each drawing command. + * + * The PrepareSolid() call is required of all drivers, but it may fail for any + * reason. Failure results in a fallback to software rendering. + */ + Bool (*PrepareSolid) (PixmapPtr pPixmap, + int alu, + Pixel planemask, + Pixel fg); + + /** + * Solid() performs a solid fill set up in the last PrepareSolid() call. + * + * @param pPixmap destination pixmap + * @param x1 left coordinate + * @param y1 top coordinate + * @param x2 right coordinate + * @param y2 bottom coordinate + * + * Performs the fill set up by the last PrepareSolid() call, covering the + * area from (x1,y1) to (x2,y2) in pPixmap. Note that the coordinates are + * in the coordinate space of the destination pixmap, so the driver will + * need to set up the hardware's offset and pitch for the destination + * coordinates according to the pixmap's offset and pitch within + * framebuffer. This likely means using exaGetPixmapOffset() and + * exaGetPixmapPitch(). + * + * This call is required if PrepareSolid() ever succeeds. + */ + void (*Solid) (PixmapPtr pPixmap, int x1, int y1, int x2, int y2); + + /** + * DoneSolid() finishes a set of solid fills. + * + * @param pPixmap destination pixmap. + * + * The DoneSolid() call is called at the end of a series of consecutive + * Solid() calls following a successful PrepareSolid(). This allows drivers + * to finish up emitting drawing commands that were buffered, or clean up + * state from PrepareSolid(). + * + * This call is required if PrepareSolid() ever succeeds. + */ + void (*DoneSolid) (PixmapPtr pPixmap); + /** @} */ + + /** @name Copy + * @{ + */ + /** + * PrepareCopy() sets up the driver for doing a copy within offscreen + * memory. + * + * @param pSrcPixmap source pixmap + * @param pDstPixmap destination pixmap + * @param dx X copy direction + * @param dy Y copy direction + * @param alu raster operation + * @param planemask write mask for the fill + * + * This call should set up the driver for doing a series of copies from the + * the pSrcPixmap to the pDstPixmap. The dx flag will be positive if the + * hardware should do the copy from the left to the right, and dy will be + * positive if the copy should be done from the top to the bottom. This + * is to deal with self-overlapping copies when pSrcPixmap == pDstPixmap. + * If your hardware can only support blits that are (left to right, top to + * bottom) or (right to left, bottom to top), then you should set + * #EXA_TWO_BITBLT_DIRECTIONS, and EXA will break down Copy operations to + * ones that meet those requirements. The alu raster op is one of the GX* + * graphics functions listed in X.h, and typically maps to a similar + * single-byte "ROP" setting in all hardware. The planemask controls which + * bits of the destination should be affected, and will only represent the + * bits up to the depth of pPixmap. + * + * Note that many drivers will need to store some of the data in the driver + * private record, for sending to the hardware with each drawing command. + * + * The PrepareCopy() call is required of all drivers, but it may fail for any + * reason. Failure results in a fallback to software rendering. + */ + Bool (*PrepareCopy) (PixmapPtr pSrcPixmap, + PixmapPtr pDstPixmap, + int dx, + int dy, + int alu, + Pixel planemask); + + /** + * Copy() performs a copy set up in the last PrepareCopy call. + * + * @param pDstPixmap destination pixmap + * @param srcX source X coordinate + * @param srcY source Y coordinate + * @param dstX destination X coordinate + * @param dstY destination Y coordinate + * @param width width of the rectangle to be copied + * @param height height of the rectangle to be copied. + * + * Performs the copy set up by the last PrepareCopy() call, copying the + * rectangle from (srcX, srcY) to (srcX + width, srcY + width) in the source + * pixmap to the same-sized rectangle at (dstX, dstY) in the destination + * pixmap. Those rectangles may overlap in memory, if + * pSrcPixmap == pDstPixmap. Note that this call does not receive the + * pSrcPixmap as an argument -- if it's needed in this function, it should + * be stored in the driver private during PrepareCopy(). As with Solid(), + * the coordinates are in the coordinate space of each pixmap, so the driver + * will need to set up source and destination pitches and offsets from those + * pixmaps, probably using exaGetPixmapOffset() and exaGetPixmapPitch(). + * + * This call is required if PrepareCopy ever succeeds. + */ + void (*Copy) (PixmapPtr pDstPixmap, + int srcX, + int srcY, + int dstX, + int dstY, + int width, + int height); + + /** + * DoneCopy() finishes a set of copies. + * + * @param pPixmap destination pixmap. + * + * The DoneCopy() call is called at the end of a series of consecutive + * Copy() calls following a successful PrepareCopy(). This allows drivers + * to finish up emitting drawing commands that were buffered, or clean up + * state from PrepareCopy(). + * + * This call is required if PrepareCopy() ever succeeds. + */ + void (*DoneCopy) (PixmapPtr pDstPixmap); + /** @} */ + + /** @name Composite + * @{ + */ + /** + * CheckComposite() checks to see if a composite operation could be + * accelerated. + * + * @param op Render operation + * @param pSrcPicture source Picture + * @param pMaskPicture mask picture + * @param pDstPicture destination Picture + * + * The CheckComposite() call checks if the driver could handle acceleration + * of op with the given source, mask, and destination pictures. This allows + * drivers to check source and destination formats, supported operations, + * transformations, and component alpha state, and send operations it can't + * support to software rendering early on. This avoids costly pixmap + * migration to the wrong places when the driver can't accelerate + * operations. Note that because migration hasn't happened, the driver + * can't know during CheckComposite() what the offsets and pitches of the + * pixmaps are going to be. + * + * See PrepareComposite() for more details on likely issues that drivers + * will have in accelerating Composite operations. + * + * The CheckComposite() call is recommended if PrepareComposite() is + * implemented, but is not required. + */ + Bool (*CheckComposite) (int op, + PicturePtr pSrcPicture, + PicturePtr pMaskPicture, + PicturePtr pDstPicture); + + /** + * PrepareComposite() sets up the driver for doing a Composite operation + * described in the Render extension protocol spec. + * + * @param op Render operation + * @param pSrcPicture source Picture + * @param pMaskPicture mask picture + * @param pDstPicture destination Picture + * @param pSrc source pixmap + * @param pMask mask pixmap + * @param pDst destination pixmap + * + * This call should set up the driver for doing a series of Composite + * operations, as described in the Render protocol spec, with the given + * pSrcPicture, pMaskPicture, and pDstPicture. The pSrc, pMask, and + * pDst are the pixmaps containing the pixel data, and should be used for + * setting the offset and pitch used for the coordinate spaces for each of + * the Pictures. + * + * Notes on interpreting Picture structures: + * - The Picture structures will always have a valid pDrawable. + * - The Picture structures will never have alphaMap set. + * - The mask Picture (and therefore pMask) may be NULL, in which case the + * operation is simply src OP dst instead of src IN mask OP dst, and + * mask coordinates should be ignored. + * - pMarkPicture may have componentAlpha set, which greatly changes + * the behavior of the Composite operation. componentAlpha has no effect + * when set on pSrcPicture or pDstPicture. + * - The source and mask Pictures may have a transformation set + * (Picture->transform != NULL), which means that the source coordinates + * should be transformed by that transformation, resulting in scaling, + * rotation, etc. The PictureTransformPoint() call can transform + * coordinates for you. Transforms have no effect on Pictures when used + * as a destination. + * - The source and mask pictures may have a filter set. PictFilterNearest + * and PictFilterBilinear are defined in the Render protocol, but others + * may be encountered, and must be handled correctly (usually by + * PrepareComposite failing, and falling back to software). Filters have + * no effect on Pictures when used as a destination. + * - The source and mask Pictures may have repeating set, which must be + * respected. Many chipsets will be unable to support repeating on + * pixmaps that have a width or height that is not a power of two. + * + * If your hardware can't support source pictures (textures) with + * non-power-of-two pitches, you should set #EXA_OFFSCREEN_ALIGN_POT. + * + * Note that many drivers will need to store some of the data in the driver + * private record, for sending to the hardware with each drawing command. + * + * The PrepareComposite() call is not required. However, it is highly + * recommended for performance of antialiased font rendering and performance + * of cairo applications. Failure results in a fallback to software + * rendering. + */ + Bool (*PrepareComposite) (int op, + PicturePtr pSrcPicture, + PicturePtr pMaskPicture, + PicturePtr pDstPicture, + PixmapPtr pSrc, + PixmapPtr pMask, + PixmapPtr pDst); + + /** + * Composite() performs a Composite operation set up in the last + * PrepareComposite() call. + * + * @param pDstPixmap destination pixmap + * @param srcX source X coordinate + * @param srcY source Y coordinate + * @param maskX source X coordinate + * @param maskY source Y coordinate + * @param dstX destination X coordinate + * @param dstY destination Y coordinate + * @param width destination rectangle width + * @param height destination rectangle height + * + * Performs the Composite operation set up by the last PrepareComposite() + * call, to the rectangle from (dstX, dstY) to (dstX + width, dstY + height) + * in the destination Pixmap. Note that if a transformation was set on + * the source or mask Pictures, the source rectangles may not be the same + * size as the destination rectangles and filtering. Getting the coordinate + * transformation right at the subpixel level can be tricky, and rendercheck + * can test this for you. + * + * This call is required if PrepareComposite() ever succeeds. + */ + void (*Composite) (PixmapPtr pDst, + int srcX, + int srcY, + int maskX, + int maskY, + int dstX, + int dstY, + int width, + int height); + + /** + * DoneComposite() finishes a set of Composite operations. + * + * @param pPixmap destination pixmap. + * + * The DoneComposite() call is called at the end of a series of consecutive + * Composite() calls following a successful PrepareComposite(). This allows + * drivers to finish up emitting drawing commands that were buffered, or + * clean up state from PrepareComposite(). + * + * This call is required if PrepareComposite() ever succeeds. + */ + void (*DoneComposite) (PixmapPtr pDst); + /** @} */ + + /** + * UploadToScreen() loads a rectangle of data from src into pDst. + * + * @param pDst destination pixmap + * @param x destination X coordinate. + * @param y destination Y coordinate + * @param width width of the rectangle to be copied + * @param height height of the rectangle to be copied + * @param src pointer to the beginning of the source data + * @param src_pitch pitch (in bytes) of the lines of source data. + * + * UploadToScreen() copies data in system memory beginning at src (with + * pitch src_pitch) into the destination pixmap from (x, y) to + * (x + width, y + height). This is typically done with hostdata uploads, + * where the CPU sets up a blit command on the hardware with instructions + * that the blit data will be fed through some sort of aperture on the card. + * + * If UploadToScreen() is performed asynchronously, it is up to the driver + * to call exaMarkSync(). This is in contrast to most other acceleration + * calls in EXA. + * + * UploadToScreen() can aid in pixmap migration, but is most important for + * the performance of exaGlyphs() (antialiased font drawing) by allowing + * pipelining of data uploads, avoiding a sync of the card after each glyph. + * + * @return TRUE if the driver successfully uploaded the data. FALSE + * indicates that EXA should fall back to doing the upload in software. + * + * UploadToScreen() is not required, but is recommended if Composite + * acceleration is supported. + */ + Bool (*UploadToScreen) (PixmapPtr pDst, + int x, + int y, + int w, + int h, + char *src, + int src_pitch); + + /** + * UploadToScratch() is used to upload a pixmap to a scratch area for + * acceleration. + * + * @param pSrc source pixmap in host memory + * @param pDst fake, scratch pixmap to be set up in offscreen memory. + * + * The UploadToScratch() call was added to support Xati before Xati had + * support for hostdata uploads and before exaGlyphs() was written. It + * behaves incorrectly (uses an invalid pixmap as pDst), + * and UploadToScreen() should be implemented instead. + * + * Drivers implementing UploadToScratch() had to set up space (likely in a + * statically allocated area) in offscreen memory, copy pSrc to that + * scratch area, and adust pDst->devKind for the pitch and + * pDst->devPrivate.ptr for the pointer to that scratch area. The driver + * was responsible for syncing (as it was implemented using memcpy() in + * Xati), and only the data from the last UploadToScratch() was guaranteed + * to be valid at any given time. + * + * UploadToScratch() should not be implemented by drivers, and will likely + * be removed in a future version of EXA. + */ + Bool (*UploadToScratch) (PixmapPtr pSrc, + PixmapPtr pDst); + + /** + * DownloadFromScreen() loads a rectangle of data from pSrc into dst + * + * @param pSrc source pixmap + * @param x source X coordinate. + * @param y source Y coordinate + * @param width width of the rectangle to be copied + * @param height height of the rectangle to be copied + * @param dst pointer to the beginning of the destination data + * @param dst_pitch pitch (in bytes) of the lines of destination data. + * + * DownloadFromScreen() copies data from offscreen memory in pSrc from + * (x, y) to (x + width, y + height), to system memory starting at + * dst (with pitch dst_pitch). This would usually be done + * using scatter-gather DMA, supported by a DRM call, or by blitting to AGP + * and then synchronously reading from AGP. Because the implementation + * might be synchronous, EXA leaves it up to the driver to call + * exaMarkSync() if DownloadFromScreen() was asynchronous. This is in + * contrast to most other acceleration calls in EXA. + * + * DownloadFromScreen() can aid in the largest bottleneck in pixmap + * migration, which is the read from framebuffer when evicting pixmaps from + * framebuffer memory. Thus, it is highly recommended, even though + * implementations are typically complicated. + * + * @return TRUE if the driver successfully downloaded the data. FALSE + * indicates that EXA should fall back to doing the download in software. + * + * DownloadFromScreen() is not required, but is highly recommended. + */ + Bool (*DownloadFromScreen)(PixmapPtr pSrc, + int x, int y, + int w, int h, + char *dst, int dst_pitch); + + /** + * MarkSync() requests that the driver mark a synchronization point, + * returning an driver-defined integer marker which could be requested for + * synchronization to later in WaitMarker(). This might be used in the + * future to avoid waiting for full hardware stalls before accessing pixmap + * data with the CPU, but is not important in the current incarnation of + * EXA. + * + * Note that drivers should call exaMarkSync() when they have done some + * acceleration, rather than their own MarkSync() handler, as otherwise EXA + * will be unaware of the driver's acceleration and not sync to it during + * fallbacks. + * + * MarkSync() is optional. + */ + int (*MarkSync) (ScreenPtr pScreen); + + /** + * WaitMarker() waits for all rendering before the given marker to have + * completed. If the driver does not implement MarkSync(), marker is + * meaningless, and all rendering by the hardware should be completed before + * WaitMarker() returns. + * + * Note that drivers should call exaWaitSync() to wait for all acceleration + * to finish, as otherwise EXA will be unaware of the driver having + * synchronized, resulting in excessive WaitMarker() calls. + * + * WaitMarker() is required of all drivers. + */ + void (*WaitMarker) (ScreenPtr pScreen, int marker); + + /** @{ */ + /** + * PrepareAccess() is called before CPU access to an offscreen pixmap. + * + * @param pPix the pixmap being accessed + * @param index the index of the pixmap being accessed. + * + * PrepareAccess() will be called before CPU access to an offscreen pixmap. + * This can be used to set up hardware surfaces for byteswapping or + * untiling, or to adjust the pixmap's devPrivate.ptr for the purpose of + * making CPU access use a different aperture. + * + * The index is one of #EXA_PREPARE_DEST, #EXA_PREPARE_SRC, or + * #EXA_PREPARE_MASK, indicating which pixmap is in question. Since only up + * to three pixmaps will have PrepareAccess() called on them per operation, + * drivers can have a small, statically-allocated space to maintain state + * for PrepareAccess() and FinishAccess() in. Note that the same pixmap may + * have PrepareAccess() called on it more than once, for example when doing + * a copy within the same pixmap (so it gets PrepareAccess as() + * #EXA_PREPARE_DEST and then as #EXA_PREPARE_SRC). + * + * PrepareAccess() may fail. An example might be the case of hardware that + * can set up 1 or 2 surfaces for CPU access, but not 3. If PrepareAccess() + * fails, EXA will migrate the pixmap to system memory. + * DownloadFromScreen() must be implemented and must not fail if a driver + * wishes to fail in PrepareAccess(). PrepareAccess() must not fail when + * pPix is the visible screen, because the visible screen can not be + * migrated. + * + * @return TRUE if PrepareAccess() successfully prepared the pixmap for CPU + * drawing. + * @return FALSE if PrepareAccess() is unsuccessful and EXA should use + * DownloadFromScreen() to migate the pixmap out. + */ + Bool (*PrepareAccess)(PixmapPtr pPix, int index); + + /** + * FinishAccess() is called after CPU access to an offscreen pixmap. + * + * @param pPix the pixmap being accessed + * @param index the index of the pixmap being accessed. + * + * FinishAccess() will be called after finishing CPU access of an offscreen + * pixmap set up by PrepareAccess(). Note that the FinishAccess() will not be + * called if PrepareAccess() failed and the pixmap was migrated out. + */ + void (*FinishAccess)(PixmapPtr pPix, int index); + + /** @name PrepareAccess() and FinishAccess() indices + * @{ + */ + /** + * EXA_PREPARE_DEST is the index for a pixmap that may be drawn to or + * read from. + */ + #define EXA_PREPARE_DEST 0 + /** + * EXA_PREPARE_SRC is the index for a pixmap that may be read from + */ + #define EXA_PREPARE_SRC 1 + /** + * EXA_PREPARE_SRC is the index for a second pixmap that may be read + * from. + */ + #define EXA_PREPARE_MASK 2 + /** @} */ + /** @} */ +} ExaDriverRec, *ExaDriverPtr; + +/** @name EXA driver flags + * @{ + */ +/** + * EXA_OFFSCREEN_PIXMAPS indicates to EXA that the driver can support + * offscreen pixmaps. + */ +#define EXA_OFFSCREEN_PIXMAPS (1 << 0) + +/** + * EXA_OFFSCREEN_ALIGN_POT indicates to EXA that the driver needs pixmaps + * to have a power-of-two pitch. + */ +#define EXA_OFFSCREEN_ALIGN_POT (1 << 1) + +/** + * EXA_TWO_BITBLT_DIRECTIONS indicates to EXA that the driver can only + * support copies that are (left-to-right, top-to-bottom) or + * (right-to-left, bottom-to-top). + */ +#define EXA_TWO_BITBLT_DIRECTIONS (1 << 2) +/** @} */ + +ExaDriverPtr +exaDriverAlloc(void); + +Bool +exaDriverInit(ScreenPtr pScreen, + ExaDriverPtr pScreenInfo); + +void +exaDriverFini(ScreenPtr pScreen); + +void +exaMarkSync(ScreenPtr pScreen); +void +exaWaitSync(ScreenPtr pScreen); + +ExaOffscreenArea * +exaOffscreenAlloc(ScreenPtr pScreen, int size, int align, + Bool locked, + ExaOffscreenSaveProc save, + pointer privData); + +ExaOffscreenArea * +exaOffscreenFree(ScreenPtr pScreen, ExaOffscreenArea *area); + +unsigned long +exaGetPixmapOffset(PixmapPtr pPix); + +unsigned long +exaGetPixmapPitch(PixmapPtr pPix); + +unsigned long +exaGetPixmapSize(PixmapPtr pPix); + +void +exaEnableDisableFBAccess (int index, Bool enable); + +/** + * Returns TRUE if the given planemask covers all the significant bits in the + * pixel values for pDrawable. + */ +#define EXA_PM_IS_SOLID(_pDrawable, _pm) \ + (((_pm) & FbFullMask((_pDrawable)->depth)) == \ + FbFullMask((_pDrawable)->depth)) + +#endif /* EXA_H */ |