summaryrefslogtreecommitdiff
path: root/xserver/mi/mipoly.c
diff options
context:
space:
mode:
authorMatthieu Herrb <matthieu@cvs.openbsd.org>2015-09-16 19:10:27 +0000
committerMatthieu Herrb <matthieu@cvs.openbsd.org>2015-09-16 19:10:27 +0000
commit4f2941d7bdfb60a6b2ca49d7e2ee50dd5eb11ddd (patch)
tree5f7f0cf3d5aeb655a950fae516224a3d61a820cf /xserver/mi/mipoly.c
parentc84734bf28ef1ec0ce3cc7d1c45dfb920484e68e (diff)
Update to xserver 1.17.2. tested by dcoppa@, jsg@, jasper@ & naddy@
Diffstat (limited to 'xserver/mi/mipoly.c')
-rw-r--r--xserver/mi/mipoly.c627
1 files changed, 618 insertions, 9 deletions
diff --git a/xserver/mi/mipoly.c b/xserver/mi/mipoly.c
index 07d981845..a332376d1 100644
--- a/xserver/mi/mipoly.c
+++ b/xserver/mi/mipoly.c
@@ -26,13 +26,13 @@ Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
All Rights Reserved
-Permission to use, copy, modify, and distribute this software and its
-documentation for any purpose and without fee is hereby granted,
+Permission to use, copy, modify, and distribute this software and its
+documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
-both that copyright notice and this permission notice appear in
+both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Digital not be
used in advertising or publicity pertaining to distribution of the
-software without specific, written prior permission.
+software without specific, written prior permission.
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
@@ -47,11 +47,6 @@ SOFTWARE.
* mipoly.c
*
* Written by Brian Kelleher; June 1986
- *
- * Draw polygons. This routine translates the point by the
- * origin if pGC->miTranslate is non-zero, and calls
- * to the appropriate routine to actually scan convert the
- * polygon.
*/
#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
@@ -62,8 +57,622 @@ SOFTWARE.
#include "gcstruct.h"
#include "pixmapstr.h"
#include "mi.h"
+#include "miscanfill.h"
+#include "mipoly.h"
#include "regionstr.h"
+/*
+ * Insert the given edge into the edge table. First we must find the correct
+ * bucket in the Edge table, then find the right slot in the bucket. Finally,
+ * we can insert it.
+ */
+static Bool
+miInsertEdgeInET(EdgeTable * ET, EdgeTableEntry * ETE, int scanline,
+ ScanLineListBlock ** SLLBlock, int *iSLLBlock)
+{
+ EdgeTableEntry *start, *prev;
+ ScanLineList *pSLL, *pPrevSLL;
+ ScanLineListBlock *tmpSLLBlock;
+
+ /*
+ * find the right bucket to put the edge into
+ */
+ pPrevSLL = &ET->scanlines;
+ pSLL = pPrevSLL->next;
+ while (pSLL && (pSLL->scanline < scanline)) {
+ pPrevSLL = pSLL;
+ pSLL = pSLL->next;
+ }
+
+ /*
+ * reassign pSLL (pointer to ScanLineList) if necessary
+ */
+ if ((!pSLL) || (pSLL->scanline > scanline)) {
+ if (*iSLLBlock > SLLSPERBLOCK - 1) {
+ tmpSLLBlock = malloc(sizeof(ScanLineListBlock));
+ if (!tmpSLLBlock)
+ return FALSE;
+ (*SLLBlock)->next = tmpSLLBlock;
+ tmpSLLBlock->next = NULL;
+ *SLLBlock = tmpSLLBlock;
+ *iSLLBlock = 0;
+ }
+ pSLL = &((*SLLBlock)->SLLs[(*iSLLBlock)++]);
+
+ pSLL->next = pPrevSLL->next;
+ pSLL->edgelist = NULL;
+ pPrevSLL->next = pSLL;
+ }
+ pSLL->scanline = scanline;
+
+ /*
+ * now insert the edge in the right bucket
+ */
+ prev = NULL;
+ start = pSLL->edgelist;
+ while (start && (start->bres.minor < ETE->bres.minor)) {
+ prev = start;
+ start = start->next;
+ }
+ ETE->next = start;
+
+ if (prev)
+ prev->next = ETE;
+ else
+ pSLL->edgelist = ETE;
+ return TRUE;
+}
+
+static void
+miFreeStorage(ScanLineListBlock * pSLLBlock)
+{
+ ScanLineListBlock *tmpSLLBlock;
+
+ while (pSLLBlock) {
+ tmpSLLBlock = pSLLBlock->next;
+ free(pSLLBlock);
+ pSLLBlock = tmpSLLBlock;
+ }
+}
+
+/*
+ * CreateEdgeTable
+ *
+ * This routine creates the edge table for scan converting polygons.
+ * The Edge Table (ET) looks like:
+ *
+ * EdgeTable
+ * --------
+ * | ymax | ScanLineLists
+ * |scanline|-->------------>-------------->...
+ * -------- |scanline| |scanline|
+ * |edgelist| |edgelist|
+ * --------- ---------
+ * | |
+ * | |
+ * V V
+ * list of ETEs list of ETEs
+ *
+ * where ETE is an EdgeTableEntry data structure, and there is one ScanLineList
+ * per scanline at which an edge is initially entered.
+ */
+
+static Bool
+miCreateETandAET(int count, DDXPointPtr pts, EdgeTable * ET,
+ EdgeTableEntry * AET, EdgeTableEntry * pETEs,
+ ScanLineListBlock * pSLLBlock)
+{
+ DDXPointPtr top, bottom;
+ DDXPointPtr PrevPt, CurrPt;
+ int iSLLBlock = 0;
+
+ int dy;
+
+ if (count < 2)
+ return TRUE;
+
+ /*
+ * initialize the Active Edge Table
+ */
+ AET->next = NULL;
+ AET->back = NULL;
+ AET->nextWETE = NULL;
+ AET->bres.minor = MININT;
+
+ /*
+ * initialize the Edge Table.
+ */
+ ET->scanlines.next = NULL;
+ ET->ymax = MININT;
+ ET->ymin = MAXINT;
+ pSLLBlock->next = NULL;
+
+ PrevPt = &pts[count - 1];
+
+ /*
+ * for each vertex in the array of points.
+ * In this loop we are dealing with two vertices at
+ * a time -- these make up one edge of the polygon.
+ */
+ while (count--) {
+ CurrPt = pts++;
+
+ /*
+ * find out which point is above and which is below.
+ */
+ if (PrevPt->y > CurrPt->y) {
+ bottom = PrevPt, top = CurrPt;
+ pETEs->ClockWise = 0;
+ }
+ else {
+ bottom = CurrPt, top = PrevPt;
+ pETEs->ClockWise = 1;
+ }
+
+ /*
+ * don't add horizontal edges to the Edge table.
+ */
+ if (bottom->y != top->y) {
+ pETEs->ymax = bottom->y - 1; /* -1 so we don't get last scanline */
+
+ /*
+ * initialize integer edge algorithm
+ */
+ dy = bottom->y - top->y;
+ BRESINITPGONSTRUCT(dy, top->x, bottom->x, pETEs->bres);
+
+ if (!miInsertEdgeInET(ET, pETEs, top->y, &pSLLBlock, &iSLLBlock)) {
+ miFreeStorage(pSLLBlock->next);
+ return FALSE;
+ }
+
+ ET->ymax = max(ET->ymax, PrevPt->y);
+ ET->ymin = min(ET->ymin, PrevPt->y);
+ pETEs++;
+ }
+
+ PrevPt = CurrPt;
+ }
+ return TRUE;
+}
+
+/*
+ * This routine moves EdgeTableEntries from the EdgeTable into the Active Edge
+ * Table, leaving them sorted by smaller x coordinate.
+ */
+
+static void
+miloadAET(EdgeTableEntry * AET, EdgeTableEntry * ETEs)
+{
+ EdgeTableEntry *pPrevAET;
+ EdgeTableEntry *tmp;
+
+ pPrevAET = AET;
+ AET = AET->next;
+ while (ETEs) {
+ while (AET && (AET->bres.minor < ETEs->bres.minor)) {
+ pPrevAET = AET;
+ AET = AET->next;
+ }
+ tmp = ETEs->next;
+ ETEs->next = AET;
+ if (AET)
+ AET->back = ETEs;
+ ETEs->back = pPrevAET;
+ pPrevAET->next = ETEs;
+ pPrevAET = ETEs;
+
+ ETEs = tmp;
+ }
+}
+
+/*
+ * computeWAET
+ *
+ * This routine links the AET by the nextWETE (winding EdgeTableEntry) link for
+ * use by the winding number rule. The final Active Edge Table (AET) might
+ * look something like:
+ *
+ * AET
+ * ---------- --------- ---------
+ * |ymax | |ymax | |ymax |
+ * | ... | |... | |... |
+ * |next |->|next |->|next |->...
+ * |nextWETE| |nextWETE| |nextWETE|
+ * --------- --------- ^--------
+ * | | |
+ * V-------------------> V---> ...
+ *
+ */
+static void
+micomputeWAET(EdgeTableEntry * AET)
+{
+ EdgeTableEntry *pWETE;
+ int inside = 1;
+ int isInside = 0;
+
+ AET->nextWETE = NULL;
+ pWETE = AET;
+ AET = AET->next;
+ while (AET) {
+ if (AET->ClockWise)
+ isInside++;
+ else
+ isInside--;
+
+ if ((!inside && !isInside) || (inside && isInside)) {
+ pWETE->nextWETE = AET;
+ pWETE = AET;
+ inside = !inside;
+ }
+ AET = AET->next;
+ }
+ pWETE->nextWETE = NULL;
+}
+
+/*
+ * Just a simple insertion sort using pointers and back pointers to sort the
+ * Active Edge Table.
+ */
+
+static int
+miInsertionSort(EdgeTableEntry * AET)
+{
+ EdgeTableEntry *pETEchase;
+ EdgeTableEntry *pETEinsert;
+ EdgeTableEntry *pETEchaseBackTMP;
+ int changed = 0;
+
+ AET = AET->next;
+ while (AET) {
+ pETEinsert = AET;
+ pETEchase = AET;
+ while (pETEchase->back->bres.minor > AET->bres.minor)
+ pETEchase = pETEchase->back;
+
+ AET = AET->next;
+ if (pETEchase != pETEinsert) {
+ pETEchaseBackTMP = pETEchase->back;
+ pETEinsert->back->next = AET;
+ if (AET)
+ AET->back = pETEinsert->back;
+ pETEinsert->next = pETEchase;
+ pETEchase->back->next = pETEinsert;
+ pETEchase->back = pETEinsert;
+ pETEinsert->back = pETEchaseBackTMP;
+ changed = 1;
+ }
+ }
+ return changed;
+}
+
+/* Find the index of the point with the smallest y */
+static int
+getPolyYBounds(DDXPointPtr pts, int n, int *by, int *ty)
+{
+ DDXPointPtr ptMin;
+ int ymin, ymax;
+ DDXPointPtr ptsStart = pts;
+
+ ptMin = pts;
+ ymin = ymax = (pts++)->y;
+
+ while (--n > 0) {
+ if (pts->y < ymin) {
+ ptMin = pts;
+ ymin = pts->y;
+ }
+ if (pts->y > ymax)
+ ymax = pts->y;
+
+ pts++;
+ }
+
+ *by = ymin;
+ *ty = ymax;
+ return ptMin - ptsStart;
+}
+
+/*
+ * Written by Brian Kelleher; Dec. 1985.
+ *
+ * Fill a convex polygon. If the given polygon is not convex, then the result
+ * is undefined. The algorithm is to order the edges from smallest y to
+ * largest by partitioning the array into a left edge list and a right edge
+ * list. The algorithm used to traverse each edge is an extension of
+ * Bresenham's line algorithm with y as the major axis. For a derivation of
+ * the algorithm, see the author of this code.
+ */
+static Bool
+miFillConvexPoly(DrawablePtr dst, GCPtr pgc, int count, DDXPointPtr ptsIn)
+{
+ int xl = 0, xr = 0; /* x vals of left and right edges */
+ int dl = 0, dr = 0; /* decision variables */
+ int ml = 0, m1l = 0; /* left edge slope and slope+1 */
+ int mr = 0, m1r = 0; /* right edge slope and slope+1 */
+ int incr1l = 0, incr2l = 0; /* left edge error increments */
+ int incr1r = 0, incr2r = 0; /* right edge error increments */
+ int dy; /* delta y */
+ int y; /* current scanline */
+ int left, right; /* indices to first endpoints */
+ int i; /* loop counter */
+ int nextleft, nextright; /* indices to second endpoints */
+ DDXPointPtr ptsOut, FirstPoint; /* output buffer */
+ int *width, *FirstWidth; /* output buffer */
+ int imin; /* index of smallest vertex (in y) */
+ int ymin; /* y-extents of polygon */
+ int ymax;
+
+ /*
+ * find leftx, bottomy, rightx, topy, and the index
+ * of bottomy. Also translate the points.
+ */
+ imin = getPolyYBounds(ptsIn, count, &ymin, &ymax);
+
+ dy = ymax - ymin + 1;
+ if ((count < 3) || (dy < 0))
+ return TRUE;
+ ptsOut = FirstPoint = malloc(sizeof(DDXPointRec) * dy);
+ width = FirstWidth = malloc(sizeof(int) * dy);
+ if (!FirstPoint || !FirstWidth) {
+ free(FirstWidth);
+ free(FirstPoint);
+ return FALSE;
+ }
+
+ nextleft = nextright = imin;
+ y = ptsIn[nextleft].y;
+
+ /*
+ * loop through all edges of the polygon
+ */
+ do {
+ /*
+ * add a left edge if we need to
+ */
+ if (ptsIn[nextleft].y == y) {
+ left = nextleft;
+
+ /*
+ * find the next edge, considering the end
+ * conditions of the array.
+ */
+ nextleft++;
+ if (nextleft >= count)
+ nextleft = 0;
+
+ /*
+ * now compute all of the random information
+ * needed to run the iterative algorithm.
+ */
+ BRESINITPGON(ptsIn[nextleft].y - ptsIn[left].y,
+ ptsIn[left].x, ptsIn[nextleft].x,
+ xl, dl, ml, m1l, incr1l, incr2l);
+ }
+
+ /*
+ * add a right edge if we need to
+ */
+ if (ptsIn[nextright].y == y) {
+ right = nextright;
+
+ /*
+ * find the next edge, considering the end
+ * conditions of the array.
+ */
+ nextright--;
+ if (nextright < 0)
+ nextright = count - 1;
+
+ /*
+ * now compute all of the random information
+ * needed to run the iterative algorithm.
+ */
+ BRESINITPGON(ptsIn[nextright].y - ptsIn[right].y,
+ ptsIn[right].x, ptsIn[nextright].x,
+ xr, dr, mr, m1r, incr1r, incr2r);
+ }
+
+ /*
+ * generate scans to fill while we still have
+ * a right edge as well as a left edge.
+ */
+ i = min(ptsIn[nextleft].y, ptsIn[nextright].y) - y;
+ /* in case we're called with non-convex polygon */
+ if (i < 0) {
+ free(FirstWidth);
+ free(FirstPoint);
+ return TRUE;
+ }
+ while (i-- > 0) {
+ ptsOut->y = y;
+
+ /*
+ * reverse the edges if necessary
+ */
+ if (xl < xr) {
+ *(width++) = xr - xl;
+ (ptsOut++)->x = xl;
+ }
+ else {
+ *(width++) = xl - xr;
+ (ptsOut++)->x = xr;
+ }
+ y++;
+
+ /* increment down the edges */
+ BRESINCRPGON(dl, xl, ml, m1l, incr1l, incr2l);
+ BRESINCRPGON(dr, xr, mr, m1r, incr1r, incr2r);
+ }
+ } while (y != ymax);
+
+ /*
+ * Finally, fill the <remaining> spans
+ */
+ (*pgc->ops->FillSpans) (dst, pgc,
+ ptsOut - FirstPoint, FirstPoint, FirstWidth, 1);
+ free(FirstWidth);
+ free(FirstPoint);
+ return TRUE;
+}
+
+/*
+ * Written by Brian Kelleher; Oct. 1985
+ *
+ * Routine to fill a polygon. Two fill rules are supported: frWINDING and
+ * frEVENODD.
+ */
+static Bool
+miFillGeneralPoly(DrawablePtr dst, GCPtr pgc, int count, DDXPointPtr ptsIn)
+{
+ EdgeTableEntry *pAET; /* the Active Edge Table */
+ int y; /* the current scanline */
+ int nPts = 0; /* number of pts in buffer */
+ EdgeTableEntry *pWETE; /* Winding Edge Table */
+ ScanLineList *pSLL; /* Current ScanLineList */
+ DDXPointPtr ptsOut; /* ptr to output buffers */
+ int *width;
+ DDXPointRec FirstPoint[NUMPTSTOBUFFER]; /* the output buffers */
+ int FirstWidth[NUMPTSTOBUFFER];
+ EdgeTableEntry *pPrevAET; /* previous AET entry */
+ EdgeTable ET; /* Edge Table header node */
+ EdgeTableEntry AET; /* Active ET header node */
+ EdgeTableEntry *pETEs; /* Edge Table Entries buff */
+ ScanLineListBlock SLLBlock; /* header for ScanLineList */
+ int fixWAET = 0;
+
+ if (count < 3)
+ return TRUE;
+
+ if (!(pETEs = malloc(sizeof(EdgeTableEntry) * count)))
+ return FALSE;
+ ptsOut = FirstPoint;
+ width = FirstWidth;
+ if (!miCreateETandAET(count, ptsIn, &ET, &AET, pETEs, &SLLBlock)) {
+ free(pETEs);
+ return FALSE;
+ }
+ pSLL = ET.scanlines.next;
+
+ if (pgc->fillRule == EvenOddRule) {
+ /*
+ * for each scanline
+ */
+ for (y = ET.ymin; y < ET.ymax; y++) {
+ /*
+ * Add a new edge to the active edge table when we
+ * get to the next edge.
+ */
+ if (pSLL && y == pSLL->scanline) {
+ miloadAET(&AET, pSLL->edgelist);
+ pSLL = pSLL->next;
+ }
+ pPrevAET = &AET;
+ pAET = AET.next;
+
+ /*
+ * for each active edge
+ */
+ while (pAET) {
+ ptsOut->x = pAET->bres.minor;
+ ptsOut++->y = y;
+ *width++ = pAET->next->bres.minor - pAET->bres.minor;
+ nPts++;
+
+ /*
+ * send out the buffer when its full
+ */
+ if (nPts == NUMPTSTOBUFFER) {
+ (*pgc->ops->FillSpans) (dst, pgc,
+ nPts, FirstPoint, FirstWidth, 1);
+ ptsOut = FirstPoint;
+ width = FirstWidth;
+ nPts = 0;
+ }
+ EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
+ EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
+ }
+ miInsertionSort(&AET);
+ }
+ }
+ else { /* default to WindingNumber */
+
+ /*
+ * for each scanline
+ */
+ for (y = ET.ymin; y < ET.ymax; y++) {
+ /*
+ * Add a new edge to the active edge table when we
+ * get to the next edge.
+ */
+ if (pSLL && y == pSLL->scanline) {
+ miloadAET(&AET, pSLL->edgelist);
+ micomputeWAET(&AET);
+ pSLL = pSLL->next;
+ }
+ pPrevAET = &AET;
+ pAET = AET.next;
+ pWETE = pAET;
+
+ /*
+ * for each active edge
+ */
+ while (pAET) {
+ /*
+ * if the next edge in the active edge table is
+ * also the next edge in the winding active edge
+ * table.
+ */
+ if (pWETE == pAET) {
+ ptsOut->x = pAET->bres.minor;
+ ptsOut++->y = y;
+ *width++ = pAET->nextWETE->bres.minor - pAET->bres.minor;
+ nPts++;
+
+ /*
+ * send out the buffer
+ */
+ if (nPts == NUMPTSTOBUFFER) {
+ (*pgc->ops->FillSpans) (dst, pgc, nPts, FirstPoint,
+ FirstWidth, 1);
+ ptsOut = FirstPoint;
+ width = FirstWidth;
+ nPts = 0;
+ }
+
+ pWETE = pWETE->nextWETE;
+ while (pWETE != pAET)
+ EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
+ pWETE = pWETE->nextWETE;
+ }
+ EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
+ }
+
+ /*
+ * reevaluate the Winding active edge table if we
+ * just had to resort it or if we just exited an edge.
+ */
+ if (miInsertionSort(&AET) || fixWAET) {
+ micomputeWAET(&AET);
+ fixWAET = 0;
+ }
+ }
+ }
+
+ /*
+ * Get any spans that we missed by buffering
+ */
+ (*pgc->ops->FillSpans) (dst, pgc, nPts, FirstPoint, FirstWidth, 1);
+ free(pETEs);
+ miFreeStorage(SLLBlock.next);
+ return TRUE;
+}
+
+/*
+ * Draw polygons. This routine translates the point by the origin if
+ * pGC->miTranslate is non-zero, and calls to the appropriate routine to
+ * actually scan convert the polygon.
+ */
void
miFillPolygon(DrawablePtr dst, GCPtr pgc,
int shape, int mode, int count, DDXPointPtr pPts)