diff options
Diffstat (limited to 'app/xlockmore/modes/apollonian.c')
-rw-r--r-- | app/xlockmore/modes/apollonian.c | 830 |
1 files changed, 830 insertions, 0 deletions
diff --git a/app/xlockmore/modes/apollonian.c b/app/xlockmore/modes/apollonian.c new file mode 100644 index 000000000..e68846eec --- /dev/null +++ b/app/xlockmore/modes/apollonian.c @@ -0,0 +1,830 @@ +/* -*- Mode: C; tab-width: 4 -*- */ +/* apollonian --- Apollonian Circles */ + +#if !defined( lint ) && !defined( SABER ) +static const char sccsid[] = "@(#)apollonian.c 5.02 2001/07/01 xlockmore"; +#endif + +/*- + * Copyright (c) 2000, 2001 by Allan R. Wilks <allan@research.att.com>. + * + * Permission to use, copy, modify, and distribute this software and its + * documentation for any purpose and without fee is hereby granted, + * provided that the above copyright notice appear in all copies and that + * both that copyright notice and this permission notice appear in + * supporting documentation. + * + * This file is provided AS IS with no warranties of any kind. The author + * shall have no liability with respect to the infringement of copyrights, + * trade secrets or any patents by this file or any part thereof. In no + * event will the author be liable for any lost revenue or profits or + * other special, indirect and consequential damages. + * + * radius r = 1 / c (curvature) + * + * Descartes Circle Theorem: (a, b, c, d are curvatures of tangential circles) + * Let a, b, c, d be the curvatures of for mutually (externally) tangent + * circles in the plane. Then + * a^2 + b^2 + c^2 + d^2 = (a + b + c + d)^2 / 2 + * + * Complex Descartes Theorem: If the oriented curvatues and (complex) centers + * of an oriented Descrates configuration in the plane are a, b, c, d and + * w, x, y, z respectively, then + * a^2*w^2 + b^2*x^2 + c^2*y^2 + d^2*z^2 = (aw + bx + cy + dz)^2 / 2 + * In addition these quantities satisfy + * a^2*w + b^2*x + c^2*y + d^2*z = (aw + bx + cy + dz)(a + b + c + d) / 2 + * + * Enumerate root integer Descartes quadruples (a,b,c,d) satisfying the + * Descartes condition: + * 2(a^2+b^2+c^2+d^2) = (a+b+c+d)^2 + * i.e., quadruples for which no application of the "pollinate" operator + * z <- 2(a+b+c+d) - 3*z, + * where z is in {a,b,c,d}, gives a quad of strictly smaller sum. This + * is equivalent to the condition: + * sum(a,b,c,d) >= 2*max(a,b,c,d) + * which, because of the Descartes condition, is equivalent to + * sum(a^2,b^2,c^2,d^2) >= 2*max(a,b,c,d)^2 + * + * + * Todo: + * Add a small font + * + * Revision History: + * 25-Jun-2001: Converted from C and Postscript code by David Bagley + * Original code by Allan R. Wilks <allan@research.att.com>. + * + * From Circle Math Science News April 21, 2001 VOL. 254-255 + * http://www.sciencenews.org/20010421/toc.asp + * Apollonian Circle Packings Assorted papers from Ronald L Graham, + * Jeffrey Lagarias, Colin Mallows, Allan Wilks, Catherine Yan + * http://front.math.ucdavis.edu/math.NT/0009113 + * http://front.math.ucdavis.edu/math.MG/0101066 + * http://front.math.ucdavis.edu/math.MG/0010298 + * http://front.math.ucdavis.edu/math.MG/0010302 + * http://front.math.ucdavis.edu/math.MG/0010324 + */ + +#ifdef STANDALONE +#define MODE_apollonian +#define PROGCLASS "Apollonian" +#define HACK_INIT init_apollonian +#define HACK_DRAW draw_apollonian +#define apollonian_opts xlockmore_opts +#define DEFAULTS "*delay: 1000000 \n" \ + "*count: 64 \n" \ + "*cycles: 20 \n" \ + "*ncolors: 64 \n" +#include "xlockmore.h" /* in xscreensaver distribution */ +#else /* STANDALONE */ +#include "xlock.h" /* in xlockmore distribution */ +#endif /* STANDALONE */ + +#ifdef MODE_apollonian + +#define DEF_ALTGEOM "True" +#define DEF_LABEL "True" + +static Bool altgeom; +static Bool label; + +static XrmOptionDescRec opts[] = +{ + {(char *) "-altgeom", (char *) ".apollonian.altgeom", XrmoptionNoArg, (caddr_t) "on"}, + {(char *) "+altgeom", (char *) ".apollonian.altgeom", XrmoptionNoArg, (caddr_t) "off"}, + {(char *) "-label", (char *) ".apollonian.label", XrmoptionNoArg, (caddr_t) "on"}, + {(char *) "+label", (char *) ".apollonian.label", XrmoptionNoArg, (caddr_t) "off"}, +}; +static argtype vars[] = +{ + {(void *) & altgeom, (char *) "altgeom", (char *) "AltGeom", (char *) DEF_ALTGEOM, t_Bool}, + {(void *) & label, (char *) "label", (char *) "Label", (char *) DEF_LABEL, t_Bool}, +}; +static OptionStruct desc[] = +{ + {(char *) "-/+altgeom", (char *) "turn on/off alternate geometries (off euclidean space, on includes spherical and hyperbolic)"}, + {(char *) "-/+label", (char *) "turn on/off alternate space and number labeling"}, +}; + +ModeSpecOpt apollonian_opts = +{sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, desc}; + +#ifdef DOFONT +extern XFontStruct *getFont(Display * display); +#endif + +#ifdef USE_MODULES +ModStruct apollonian_description = +{"apollonian", "init_apollonian", "draw_apollonian", "release_apollonian", + "init_apollonian", "init_apollonian", (char *) NULL, &apollonian_opts, + 1000000, 64, 20, 1, 64, 1.0, "", + "Shows Apollonian circles", 0, NULL}; + +#endif + +typedef struct { + int a, b, c, d; +} apollonian_quadruple; + +typedef struct { + double e; /* euclidean bend */ + double s; /* spherical bend */ + double h; /* hyperbolic bend */ + double x, y; /* euclidean bend times euclidean position */ +} circle; + +typedef enum {euclidean = 0, spherical = 1, hyperbolic = 2} Space; + +static const char * space_string[] = { + "euclidean", + "spherical", + "hyperbolic" +}; + +/* +Generate Apollonian packing starting with a quadruple of circles. +The four input lines each contain the 5-tuple (e,s,h,x,y) representing +the circle with radius 1/e and center (x/e,y/e). The s and h is propagated +like e, x and y, but can differ from e so as to represent different +geometries, spherical and hyperbolic, respectively. The "standard" picture, +for example (-1, 2, 2, 3), can be labeled for the three geometries. +Origins of circles z1, z2, z3, z4 +a * z1 = 0 +b * z2 = (a+b)/a +c * z3 = (q123 + a * i)^2/(a*(a+b)) where q123 = sqrt(a*b+a*c+b*c) +d * z4 = (q124 + a * i)^2/(a*(a+b)) where q124 = q123 - a - b +If (e,x,y) represents the Euclidean circle (1/e,x/e,y/e) (so that e is +the label in the standard picture) then the "spherical label" is +(e^2+x^2+y^2-1)/(2*e) (an integer!) and the "hyperbolic label", is +calulated by h + s = e. +*/ +static circle examples[][4] = { +{ /* double semi-bounded */ + { 0, 0, 0, 0, 1}, + { 0, 0, 0, 0, -1}, + { 1, 1, 1, -1, 0}, + { 1, 1, 1, 1, 0} +}, +#if 0 +{ /* standard */ + {-1, 0, -1, 0, 0}, + { 2, 1, 1, 1, 0}, + { 2, 1, 1, -1, 0}, + { 3, 2, 1, 0, 2} +}, +{ /* next simplest */ + {-2, -1, -1, 0.0, 0}, + { 3, 2, 1, 0.5, 0}, + { 6, 3, 3, -2.0, 0}, + { 7, 4, 3, -1.5, 2} +}, +{ /* */ + {-3, -2, -1, 0.0, 0}, + { 4, 3, 1, 1.0 / 3.0, 0}, + {12, 7, 5, -3.0, 0}, + {13, 8, 5, -8.0 / 3.0, 2} +}, +{ /* Mickey */ + {-3, -2, -1, 0.0, 0}, + { 5, 4, 1, 2.0 / 3.0, 0}, + { 8, 5, 3, -4.0 / 3.0, -1}, + { 8, 5, 3, -4.0 / 3.0, 1} +}, +{ /* */ + {-4, -3, -1, 0.00, 0}, + { 5, 4, 1, 0.25, 0}, + {20, 13, 7, -4.00, 0}, + {21, 14, 7, -3.75, 2} +}, +{ /* Mickey2 */ + {-4, -2, -2, 0.0, 0}, + { 8, 4, 4, 1.0, 0}, + { 9, 5, 4, -0.75, -1}, + { 9, 5, 4, -0.75, 1} +}, +{ /* Mickey3 */ + {-5, -4, -1, 0.0, 0}, + { 7, 6, 1, 0.4, 0}, + {18, 13, 5, -2.4, -1}, + {18, 13, 5, -2.4, 1} +}, +{ /* */ + {-6, -5, -1, 0.0, 0}, + { 7, 6, 1, 1.0 / 6.0, 0}, + {42, 31, 11, -6.0, 0}, + {43, 32, 11, -35.0 / 6.0, 2} +}, +{ /* */ + {-6, -3, -3, 0.0, 0}, + {10, 5, 5, 2.0 / 3.0, 0}, + {15, 8, 7, -1.5, 0}, + {19, 10, 9, -5.0 / 6.0, 2} +}, +{ /* asymmetric */ + {-6, -5, -1, 0.0, 0.0}, + {11, 10, 1, 5.0 / 6.0, 0.0}, + {14, 11, 3, -16.0 / 15.0, -0.8}, + {15, 12, 3, -0.9, 1.2} +}, +#endif +/* Non integer stuff */ +#define DELTA 2.154700538 /* ((3+2*sqrt(3))/3) */ +{ /* 3 fold symmetric bounded (x, y calculated later) */ + { -1, -1, -1, 0.0, 0.0}, + {DELTA, DELTA, DELTA, 1.0, 0.0}, + {DELTA, DELTA, DELTA, 1.0, -1.0}, + {DELTA, DELTA, DELTA, -1.0, 1.0} +}, +{ /* semi-bounded (x, y calculated later) */ +#define ALPHA 2.618033989 /* ((3+sqrt(5))/2) */ + { 1.0, 1.0, 1.0, 0, 0}, + { 0.0, 0.0, 0.0, 0, -1}, + {1.0/(ALPHA*ALPHA), 1.0/(ALPHA*ALPHA), 1.0/(ALPHA*ALPHA), -1, 0}, + { 1.0/ALPHA, 1.0/ALPHA, 1.0/ALPHA, -1, 0} +}, +{ /* unbounded (x, y calculated later) */ +/* #define PHI 1.618033989 *//* ((1+sqrt(5))/2) */ +#define BETA 2.890053638 /* (PHI+sqrt(PHI)) */ + { 1.0, 1.0, 1.0, 0, 0}, + {1.0/(BETA*BETA*BETA), 1.0/(BETA*BETA*BETA), 1.0/(BETA*BETA*BETA), 1, 0}, + { 1.0/(BETA*BETA), 1.0/(BETA*BETA), 1.0/(BETA*BETA), 1, 0}, + { 1.0/BETA, 1.0/BETA, 1.0/BETA, 1, 0} +} +}; + +#define PREDEF_CIRCLE_GAMES (sizeof (examples) / (4 * sizeof (circle))) + +#if 0 +Euclidean +0, 0, 1, 1 +-1, 2, 2, 3 +-2, 3, 6, 7 +-3, 5, 8, 8 +-4, 8, 9, 9 +-3, 4, 12, 13 +-6, 11, 14, 15 + -5, 7, 18, 18 + -6, 10, 15, 19 + -7, 12, 17, 20 + -4, 5, 20, 21 + -9, 18, 19, 22 + -8, 13, 21, 24 +Spherical +0, 1, 1, 2 + -1, 2, 3, 4 + -2, 4, 5, 5 + -2, 3, 7, 8 +Hyperbolic +-1, 1, 1, 1 + 0, 0, 1, 3 + -2, 3, 5, 6 + -3, 6, 6, 7 +#endif + +typedef struct { + int size; + XPoint offset; + Space geometry; + circle c1, c2, c3, c4; + int color_offset; + int count; + Bool label, altgeom; + apollonian_quadruple *quad; +#ifdef DOFONT + XFontStruct *font; +#endif + int time; + int game; +} apollonianstruct; + +static apollonianstruct *apollonians = (apollonianstruct *) NULL; + +#ifdef WIN32 +#define FONT_HEIGHT 15 +#define FONT_WIDTH 10 +#define FONT_LENGTH 16 +#else +#define FONT_HEIGHT 19 +#define FONT_WIDTH 15 +#define FONT_LENGTH 20 +#endif +#define MAX_CHAR 10 +#define K 2.15470053837925152902 /* 1+2/sqrt(3) */ +#define MAXBEND 100 /* Do not want configurable by user since it will take too + much time if increased. */ + +static int +gcd(int a, int b) +{ + int r; + + while (b) { + r = a % b; + a = b; + b = r; + } + return a; +} + +static int +isqrt(int n) +{ + int y; + + if (n < 0) + return -1; + y = (int) (sqrt((double) n) + 0.5); + return ((n == y*y) ? y : -1); +} + +static void +dquad(int n, apollonian_quadruple *quad) +{ + int a, b, c, d; + int counter = 0, B, C; + + for (a = 0; a < MAXBEND; a++) { + B = (int) (K * a); + for (b = a + 1; b <= B; b++) { + C = (int) (((a + b) * (a + b)) / (4.0 * (b - a))); + for (c = b; c <= C; c++) { + d = isqrt(b*c-a*(b+c)); + if (d >= 0 && (gcd(a,gcd(b,c)) <= 1)) { + quad[counter].a = -a; + quad[counter].b = b; + quad[counter].c = c; + quad[counter].d = -a+b+c-2*d; + if (++counter >= n) { + return; + } + } + } + } + } + (void) printf("found only %d below maximum bend of %d\n", + counter, MAXBEND); + for (; counter < n; counter++) { + quad[counter].a = -1; + quad[counter].b = 2; + quad[counter].c = 2; + quad[counter].d = 3; + } + return; +} + +/* + * Given a Descartes quadruple of bends (a,b,c,d), with a<0, find a + * quadruple of circles, represented by (bend,bend*x,bend*y), such + * that the circles have the given bends and the bends times the + * centers are integers. + * + * This just performs an exaustive search, assuming that the outer + * circle has center in the unit square. + * + * It is always sufficient to look in {(x,y):0<=y<=x<=1/2} for the + * center of the outer circle, but this may not lead to a packing + * that can be labelled with integer spherical and hyperbolic labels. + * To effect the smaller search, replace FOR(a) with + * + * for (pa = ea/2; pa <= 0; pa++) for (qa = pa; qa <= 0; qa++) + */ + +#define For(v,l,h) for (v = l; v <= h; v++) +#define FOR(z) For(p##z,lop##z,hip##z) For(q##z,loq##z,hiq##z) +#define H(z) ((e##z*e##z+p##z*p##z+q##z*q##z)%2) +#define UNIT(z) ((abs(e##z)-1)*(abs(e##z)-1) >= p##z*p##z+q##z*q##z) +#define T(z,w) is_tangent(e##z,p##z,q##z,e##w,p##w,q##w) +#define LO(r,z) lo##r##z = iceil(e##z*(r##a+1),ea)-1 +#define HI(r,z) hi##r##z = iflor(e##z*(r##a-1),ea)-1 +#define B(z) LO(p,z); HI(p,z); LO(q,z); HI(q,z) + +static int +is_quad(int a, int b, int c, int d) +{ + int s; + + s = a+b+c+d; + return 2*(a*a+b*b+c*c+d*d) == s*s; +} + +static Bool +is_tangent(int e1, int p1, int q1, int e2, int p2, int q2) +{ + int dx, dy, s; + + dx = p1*e2 - p2*e1; + dy = q1*e2 - q2*e1; + s = e1 + e2; + return dx*dx + dy*dy == s*s; +} + +static int +iflor(int a, int b) +{ + int q; + + if (b == 0) { + (void) printf("iflor: b = 0\n"); + return 0; + } + if (a%b == 0) + return a/b; + q = abs(a)/abs(b); + return ((a<0)^(b<0)) ? -q-1 : q; +} + +static int +iceil(int a, int b) +{ + int q; + + if (b == 0) { + (void) printf("iceil: b = 0\n"); + return 0; + } + if (a%b == 0) + return a/b; + q = abs(a)/abs(b); + return ((a<0)^(b<0)) ? -q : 1+q; +} + +static double +geom(Space geometry, int e, int p, int q) +{ + int g = (geometry == spherical) ? -1 : + (geometry == hyperbolic) ? 1 : 0; + + if (g) + return (e*e + (1.0 - p*p - q*q) * g) / (2.0*e); + (void) printf("geom: g = 0\n"); + return ((double) e); +} + +static void +cquad(circle *c1, circle *c2, circle *c3, circle *c4) +{ + int ea, eb, ec, ed; + int pa, pb, pc, pd; + int qa, qb, qc, qd; + int lopa, lopb, lopc, lopd; + int hipa, hipb, hipc, hipd; + int loqa, loqb, loqc, loqd; + int hiqa, hiqb, hiqc, hiqd; + + ea = (int) c1->e; + eb = (int) c2->e; + ec = (int) c3->e; + ed = (int) c4->e; + if (ea >= 0) + (void) printf("ea = %d\n", ea); + if (!is_quad(ea,eb,ec,ed)) + (void) printf("Error not quad %d %d %d %d\n", ea, eb, ec, ed); + lopa = loqa = ea; + hipa = hiqa = 0; + FOR(a) { + B(b); B(c); B(d); + if (H(a) && UNIT(a)) FOR(b) { + if (H(b) && T(a,b)) FOR(c) { + if (H(c) && T(a,c) && T(b,c)) FOR(d) { + if (H(d) && T(a,d) && T(b,d) && T(c,d)) { + c1->s = geom(spherical, ea, pa, qa); + c1->h = geom(hyperbolic, ea, pa, qa); + c2->s = geom(spherical, eb, pb, qb); + c2->h = geom(hyperbolic, eb, pb, qb); + c3->s = geom(spherical, ec, pc, qc); + c3->h = geom(hyperbolic, ec, pc, qc); + c4->s = geom(spherical, ed, pd, qd); + c4->h = geom(hyperbolic, ed, pd, qd); + } + } + } + } + } +} + +static void +p(ModeInfo *mi, circle c) +{ + apollonianstruct *cp = &apollonians[MI_SCREEN(mi)]; + char string[10]; + double g, e; + int g_width; + +#ifdef DEBUG + (void) printf("c.e=%g c.s=%g c.h=%g c.x=%g c.y=%g\n", + c.e, c.s, c.h, c.x, c.y); +#endif + g = (cp->geometry == spherical) ? c.s : (cp->geometry == hyperbolic) ? + c.h : c.e; + if (c.e < 0.0) { + if (g < 0.0) + g = -g; + if (MI_NPIXELS(mi) <= 2) + XSetForeground(MI_DISPLAY(mi), MI_GC(mi), + MI_WHITE_PIXEL(mi)); + else + XSetForeground(MI_DISPLAY(mi), MI_GC(mi), + MI_PIXEL(mi, ((int) ((g + cp->color_offset) * + g)) % MI_NPIXELS(mi))); + XDrawArc(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi), + ((int) (cp->size * (-cp->c1.e) * (c.x - 1.0) / + (-2.0 * c.e) + cp->size / 2.0 + cp->offset.x)), + ((int) (cp->size * (-cp->c1.e) * (c.y - 1.0) / + (-2.0 * c.e) + cp->size / 2.0 + cp->offset.y)), + (int) (cp->c1.e * cp->size / c.e), + (int) (cp->c1.e * cp->size / c.e), 0, 23040); + if (!cp->label) { +#ifdef DEBUG + (void) printf("%g\n", -g); +#endif + return; + } + (void) sprintf(string, "%g", (g == 0.0) ? 0 : -g); + if (cp->size >= 10 * FONT_WIDTH) { + /* hard code these to corners */ + XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi), + ((int) (cp->size * c.x / (2.0 * c.e))) + cp->offset.x, + ((int) (cp->size * c.y / (2.0 * c.e))) + FONT_HEIGHT, + string, (g == 0.0) ? 1 : ((g < 10.0) ? 2 : + ((g < 100.0) ? 3 : 4))); + } + if (cp->altgeom && MI_HEIGHT(mi) >= 30 * FONT_WIDTH) { + XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi), + ((int) (cp->size * c.x / (2.0 * c.e) + cp->offset.x)), + ((int) (cp->size * c.y / (2.0 * c.e) + MI_HEIGHT(mi) - + FONT_HEIGHT / 2)), (char *) space_string[(int) cp->geometry], + strlen(space_string[(int) cp->geometry])); + } + return; + } + if (MI_NPIXELS(mi) <= 2) + XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_WHITE_PIXEL(mi)); + else + XSetForeground(MI_DISPLAY(mi), MI_GC(mi), + MI_PIXEL(mi, ((int) ((g + cp->color_offset) * g)) % + MI_NPIXELS(mi))); + if (c.e == 0.0) { + if (c.x == 0.0 && c.y != 0.0) { + XDrawLine(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi), + 0, (int) ((c.y + 1.0) * cp->size / 2.0 + cp->offset.y), + MI_WIDTH(mi), + (int) ((c.y + 1.0) * cp->size / 2.0 + cp->offset.y)); + } else if (c.y == 0.0 && c.x != 0.0) { + XDrawLine(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi), + (int) ((c.x + 1.0) * cp->size / 2.0 + cp->offset.x), 0, + (int) ((c.x + 1.0) * cp->size / 2.0 + cp->offset.x), + MI_HEIGHT(mi)); + } + return; + } + e = (cp->c1.e >= 0.0) ? 1.0 : -cp->c1.e; + XFillArc(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi), + ((int) (cp->size * e * (c.x - 1.0) / (2.0 * c.e) + + cp->size / 2.0 + cp->offset.x)), + ((int) (cp->size * e * (c.y - 1.0) / (2.0 * c.e) + + cp->size / 2.0 + cp->offset.y)), + (int) (e * cp->size / c.e), (int) (e * cp->size / c.e), + 0, 23040); + if (!cp->label) { +#ifdef DEBUG + (void) printf("%g\n", g); +#endif + return; + } + if (MI_NPIXELS(mi) <= 2) + XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_BLACK_PIXEL(mi)); + else + XSetForeground(MI_DISPLAY(mi), MI_GC(mi), + MI_PIXEL(mi, ((int) ((g + cp->color_offset) * g) + + MI_NPIXELS(mi) / 2) % MI_NPIXELS(mi))); + g_width = (g < 10.0) ? 1: ((g < 100.0) ? 2 : 3); + if (c.e < e * cp->size / (FONT_LENGTH + 5 * g_width) && g < 1000.0) { + (void) sprintf(string, "%g", g); + XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi), + ((int) (cp->size * e * c.x / (2.0 * c.e) + + cp->size / 2.0 + cp->offset.x)) - + g_width * FONT_WIDTH / 2, + ((int) (cp->size * e * c.y / (2.0 * c.e) + + cp->size / 2.0 + cp->offset.y)) + + FONT_HEIGHT / 2, + string, g_width); + } +} + +#define BIG 7 +static void +f(ModeInfo *mi, circle c1, circle c2, circle c3, circle c4) +{ + apollonianstruct *cp = &apollonians[MI_SCREEN(mi)]; + int e = (int) ((cp->c1.e >= 0.0) ? 1.0 : -cp->c1.e); + circle c; + + c.e = 2*(c1.e+c2.e+c3.e) - c4.e; + c.s = 2*(c1.s+c2.s+c3.s) - c4.s; + c.h = 2*(c1.h+c2.h+c3.h) - c4.h; + c.x = 2*(c1.x+c2.x+c3.x) - c4.x; + c.y = 2*(c1.y+c2.y+c3.y) - c4.y; + if (c.e > cp->size * e || c.x / c.e > BIG || c.y / c.e > BIG || + c.x / c.e < -BIG || c.y / c.e < -BIG) + return; + p(mi, c); + f(mi, c2, c3, c, c1); + f(mi, c1, c3, c, c2); + f(mi, c1, c2, c, c3); +} + +static void +free_apollonian( +#ifdef DOFONT + Display *display, +#endif + apollonianstruct *cp) +{ + if (cp->quad != NULL) { + free(cp->quad); + cp->quad = (apollonian_quadruple *) NULL; + } +#ifdef DOFONT + if (cp->gc != None) { + XFreeGC(display, cp->gc); + cp->gc = None; + } + if (cp->font != None) { + XFreeFont(display, cp->font); + cp->font = None; + } +#endif +} + +#ifndef DEBUG +static void +randomize_c(int randomize, circle * c) +{ + if (randomize / 2) { + double temp; + + temp = c->x; + c->x = c->y; + c->y = temp; + } + if (randomize % 2) { + c->x = -c->x; + c->y = -c->y; + } +} +#endif + +void +init_apollonian(ModeInfo * mi) +{ + apollonianstruct *cp; + int i; + + if (apollonians == NULL) { + if ((apollonians = (apollonianstruct *) calloc(MI_NUM_SCREENS(mi), + sizeof (apollonianstruct))) == NULL) + return; + } + cp = &apollonians[MI_SCREEN(mi)]; + + cp->size = MAX(MIN(MI_WIDTH(mi), MI_HEIGHT(mi)) - 1, 1); + cp->offset.x = (MI_WIDTH(mi) - cp->size) / 2; + cp->offset.y = (MI_HEIGHT(mi) - cp->size) / 2; + cp->color_offset = NRAND(MI_NPIXELS(mi)); + +#ifdef DOFONT + if (cp->font == None) { + if ((cp->font = getFont(MI_DISPLAY(mi))) == None) + return False; + } +#endif + cp->label = label; + cp->altgeom = cp->label && altgeom; + + if (cp->quad == NULL) { + if (MI_COUNT(mi)) + cp->count = ABS(MI_COUNT(mi)); + else + cp->count = 1; + if ((cp->quad = (apollonian_quadruple *) malloc(cp->count * + sizeof (apollonian_quadruple))) == NULL) { + return; + } + dquad(cp->count, cp->quad); + } + cp->game = NRAND(PREDEF_CIRCLE_GAMES + cp->count); + cp->geometry = (Space) ((cp->game && cp->altgeom) ? NRAND(3) : 0); + + if (cp->game < (int) PREDEF_CIRCLE_GAMES) { + cp->c1 = examples[cp->game][0]; + cp->c2 = examples[cp->game][1]; + cp->c3 = examples[cp->game][2]; + cp->c4 = examples[cp->game][3]; + /* do not label non int */ + cp->label = cp->label && (cp->c4.e == (int) cp->c4.e); + } else { /* uses results of dquad, all int */ + i = cp->game - PREDEF_CIRCLE_GAMES; + cp->c1.e = cp->quad[i].a; + cp->c2.e = cp->quad[i].b; + cp->c3.e = cp->quad[i].c; + cp->c4.e = cp->quad[i].d; + if (cp->geometry != euclidean) + cquad(&(cp->c1), &(cp->c2), &(cp->c3), &(cp->c4)); + } + cp->time = 0; + MI_CLEARWINDOW(mi); + if (cp->game != 0) { + double q123; + + if (cp->c1.e == 0.0 || cp->c1.e == -cp->c2.e) + return; + cp->c1.x = 0.0; + cp->c1.y = 0.0; + cp->c2.x = -(cp->c1.e + cp->c2.e) / cp->c1.e; + cp->c2.y = 0; + q123 = sqrt(cp->c1.e * cp->c2.e + cp->c1.e * cp->c3.e + + cp->c2.e * cp->c3.e); +#ifdef DEBUG + (void) printf("q123 = %g, ", q123); +#endif + cp->c3.x = (cp->c1.e * cp->c1.e - q123 * q123) / (cp->c1.e * + (cp->c1.e + cp->c2.e)); + cp->c3.y = -2.0 * q123 / (cp->c1.e + cp->c2.e); + q123 = -cp->c1.e - cp->c2.e + q123; + cp->c4.x = (cp->c1.e * cp->c1.e - q123 * q123) / (cp->c1.e * + (cp->c1.e + cp->c2.e)); + cp->c4.y = -2.0 * q123 / (cp->c1.e + cp->c2.e); +#ifdef DEBUG + (void) printf("q124 = %g\n", q123); + (void) printf("%g %g %g %g %g %g %g %g\n", + cp->c1.x, cp->c1.y, cp->c2.x, cp->c2.y, + cp->c3.x, cp->c3.y, cp->c4.x, cp->c4.y); +#endif + } +#ifndef DEBUG + if (LRAND() & 1) { + cp->c3.y = -cp->c3.y; + cp->c4.y = -cp->c4.y; + } + i = NRAND(4); + randomize_c(i, &(cp->c1)); + randomize_c(i, &(cp->c2)); + randomize_c(i, &(cp->c3)); + randomize_c(i, &(cp->c4)); +#endif +} + +void +draw_apollonian(ModeInfo * mi) +{ + apollonianstruct *cp; + + if (apollonians == NULL) + return; + cp = &apollonians[MI_SCREEN(mi)]; + + + MI_IS_DRAWN(mi) = True; + + if (cp->time < 5) { + switch (cp->time) { + case 0: + p(mi, cp->c1); + p(mi, cp->c2); + p(mi, cp->c3); + p(mi, cp->c4); + break; + case 1: + f(mi, cp->c1, cp->c2, cp->c3, cp->c4); + break; + case 2: + f(mi, cp->c1, cp->c2, cp->c4, cp->c3); + break; + case 3: + f(mi, cp->c1, cp->c3, cp->c4, cp->c2); + break; + case 4: + f(mi, cp->c2, cp->c3, cp->c4, cp->c1); + } + } + if (++cp->time > MI_CYCLES(mi)) + init_apollonian(mi); +} + +void +release_apollonian(ModeInfo * mi) +{ + if (apollonians != NULL) { + int screen; + + for (screen = 0; screen < MI_NUM_SCREENS(mi); screen++) + free_apollonian( +#ifdef DOFONT + MI_DISPLAY(mi), +#endif + &apollonians[screen]); + free(apollonians); + apollonians = (apollonianstruct *) NULL; + } +} + +#endif /* MODE_apollonian */ |