/* * Copyright © 2001 Keith Packard, member of The XFree86 Project, Inc. * Copyright © 2002 Hewlett Packard Company, Inc. * Copyright © 2006 Intel Corporation * Copyright © 2013 NVIDIA Corporation * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. * * Thanks to Jim Gettys who wrote most of the client side code, * and part of the server code for randr. */ #include #include #include #include #include #include #include /* we share subpixel information */ #include #include #include #include #include #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif static char *program_name; static Display *dpy; static Window root; static int screen = -1; static Bool verbose = False; static Bool automatic = False; static Bool properties = False; static Bool grab_server = True; static Bool no_primary = False; static int filter_type = -1; static const char *filter_names[2] = { "bilinear", "nearest"}; static const char *direction[5] = { "normal", "left", "inverted", "right", "\n"}; static const char *reflections[5] = { "normal", "x", "y", "xy", "\n"}; /* subpixel order */ static const char *order[6] = { "unknown", "horizontal rgb", "horizontal bgr", "vertical rgb", "vertical bgr", "no subpixels"}; static const struct { const char *string; unsigned long flag; } mode_flags[] = { { "+HSync", RR_HSyncPositive }, { "-HSync", RR_HSyncNegative }, { "+VSync", RR_VSyncPositive }, { "-VSync", RR_VSyncNegative }, { "Interlace", RR_Interlace }, { "DoubleScan", RR_DoubleScan }, { "CSync", RR_CSync }, { "+CSync", RR_CSyncPositive }, { "-CSync", RR_CSyncNegative }, { NULL, 0 } }; static void usage(void) { printf("usage: %s [options]\n%s", program_name, " where options are:\n" " --display or -d \n" " --help\n" " -o \n" " or --orientation \n" " -q or --query\n" " -s /x or --size /x\n" " -r or --rate or --refresh \n" " -v or --version\n" " -x (reflect in x)\n" " -y (reflect in y)\n" " --screen \n" " --verbose\n" " --current\n" " --dryrun\n" " --nograb\n" " --prop or --properties\n" " --fb x\n" " --fbmm x\n" " --dpi /\n" " --output \n" " --auto\n" " --mode \n" " --preferred\n" " --pos x\n" " --rate or --refresh \n" " --reflect normal,x,y,xy\n" " --rotate normal,inverted,left,right\n" " --left-of \n" " --right-of \n" " --above \n" " --below \n" " --same-as \n" " --set \n" " --scale [x]\n" " --scale-from x\n" " --transform ,,,,,,,,\n" " --filter nearest,bilinear\n" " --off\n" " --crtc \n" " --panning x[++[/x++[////]]]\n" " --gamma [::]\n" " --brightness \n" " --primary\n" " --noprimary\n" " --newmode \n" " \n" " \n" " [flags...]\n" " Valid flags: +HSync -HSync +VSync -VSync\n" " +CSync -CSync CSync Interlace DoubleScan\n" " --rmmode \n" " --addmode \n" " --delmode \n" " --listproviders\n" " --setprovideroutputsource \n" " --setprovideroffloadsink \n" " --listmonitors\n" " --listactivemonitors\n" " --setmonitor {auto|/x/++} {none|,,...}\n" " --delmonitor \n"); } static void _X_NORETURN _X_ATTRIBUTE_PRINTF(1,2) fatal (const char *format, ...) { va_list ap; va_start (ap, format); fprintf (stderr, "%s: ", program_name); vfprintf (stderr, format, ap); va_end (ap); exit (1); /*NOTREACHED*/ } static void _X_ATTRIBUTE_PRINTF(1,2) warning (const char *format, ...) { va_list ap; va_start (ap, format); fprintf (stderr, "%s: ", program_name); vfprintf (stderr, format, ap); va_end (ap); } static void _X_NORETURN _X_ATTRIBUTE_PRINTF(1,2) argerr (const char *format, ...) { va_list ap; va_start (ap, format); fprintf (stderr, "%s: ", program_name); vfprintf (stderr, format, ap); fprintf (stderr, "Try '%s --help' for more information.\n", program_name); va_end (ap); exit (1); /*NOTREACHED*/ } /* Because fmin requires C99 support */ static inline double dmin (double x, double y) { return x < y ? x : y; } static const char * rotation_name (Rotation rotation) { if ((rotation & 0xf) == 0) return "normal"; for (int i = 0; i < 4; i++) if (rotation & (1 << i)) return direction[i]; return "invalid rotation"; } static const char * reflection_name (Rotation rotation) { rotation &= (RR_Reflect_X|RR_Reflect_Y); switch (rotation) { case 0: return "none"; case RR_Reflect_X: return "X axis"; case RR_Reflect_Y: return "Y axis"; case RR_Reflect_X|RR_Reflect_Y: return "X and Y axis"; } return "invalid reflection"; } static const char * capability_name (int cap_bit) { switch (cap_bit) { case RR_Capability_SourceOutput: return "Source Output"; case RR_Capability_SinkOutput: return "Sink Output"; case RR_Capability_SourceOffload: return "Source Offload"; case RR_Capability_SinkOffload: return "Sink Offload"; } return "invalid capability"; } typedef enum _relation { relation_left_of, relation_right_of, relation_above, relation_below, relation_same_as, } relation_t; typedef struct { int x1, y1, x2, y2; } box_t; typedef struct { int x, y; } point_t; typedef enum _changes { changes_none = 0, changes_crtc = (1 << 0), changes_mode = (1 << 1), changes_relation = (1 << 2), changes_position = (1 << 3), changes_rotation = (1 << 4), changes_reflection = (1 << 5), changes_automatic = (1 << 6), changes_refresh = (1 << 7), changes_property = (1 << 8), changes_transform = (1 << 9), changes_panning = (1 << 10), changes_gamma = (1 << 11), changes_primary = (1 << 12), changes_filter = (1 << 13), } changes_t; typedef enum _name_kind { name_none = 0, name_string = (1 << 0), name_xid = (1 << 1), name_index = (1 << 2), name_preferred = (1 << 3), } name_kind_t; typedef struct { name_kind_t kind; char *string; XID xid; int index; } name_t; typedef struct _crtc crtc_t; typedef struct _output output_t; typedef struct _transform transform_t; typedef struct _umode umode_t; typedef struct _output_prop output_prop_t; typedef struct _provider provider_t; typedef struct _monitors monitors_t; typedef struct _umonitor umonitor_t; struct _transform { XTransform transform; const char *filter; int nparams; XFixed *params; }; struct _crtc { name_t crtc; Bool changing; XRRCrtcInfo *crtc_info; XRRModeInfo *mode_info; XRRPanning *panning_info; int x; int y; Rotation rotation; output_t **outputs; int noutput; transform_t current_transform, pending_transform; }; struct _output_prop { struct _output_prop *next; char *name; char *value; }; struct _output { struct _output *next; changes_t changes; output_prop_t *props; name_t output; XRROutputInfo *output_info; name_t crtc; crtc_t *crtc_info; crtc_t *current_crtc_info; name_t mode; double refresh; XRRModeInfo *mode_info; name_t addmode; relation_t relation; char *relative_to; int x, y; Rotation rotation; XRRPanning panning; Bool automatic; int scale_from_w, scale_from_h; transform_t transform; struct { float red; float green; float blue; } gamma; float brightness; Bool primary; Bool found; }; typedef enum _umode_action { umode_create, umode_destroy, umode_add, umode_delete } umode_action_t; struct _umode { struct _umode *next; umode_action_t action; XRRModeInfo mode; name_t output; name_t name; }; struct _provider { name_t provider; XRRProviderInfo *info; }; struct _monitors { int n; XRRMonitorInfo *monitors; }; struct _umonitor { struct _umonitor *next; char *name; Bool set; Bool primary; int x, y, width, height; int mmwidth, mmheight; int noutput; name_t *outputs; }; static const char *connection[3] = { "connected", "disconnected", "unknown connection"}; static output_t *all_outputs = NULL; static output_t **all_outputs_tail = &all_outputs; static crtc_t *crtcs; static provider_t *providers; static umode_t *umodes; static int num_crtcs, num_providers; static XRRScreenResources *res; static int fb_width = 0, fb_height = 0; static int fb_width_mm = 0, fb_height_mm = 0; static double dpi = 0; static char *dpi_output_name = NULL; static Bool dryrun = False; static int minWidth, maxWidth, minHeight, maxHeight; static Bool has_1_2 = False; static Bool has_1_3 = False; static Bool has_1_4 = False; static Bool has_1_5 = False; static name_t provider_name, output_source_provider_name, offload_sink_provider_name; static monitors_t *monitors; static umonitor_t *umonitors; static int mode_height (XRRModeInfo *mode_info, Rotation rotation) { switch (rotation & 0xf) { case RR_Rotate_0: case RR_Rotate_180: return mode_info->height; case RR_Rotate_90: case RR_Rotate_270: return mode_info->width; default: return 0; } } static int mode_width (XRRModeInfo *mode_info, Rotation rotation) { switch (rotation & 0xf) { case RR_Rotate_0: case RR_Rotate_180: return mode_info->width; case RR_Rotate_90: case RR_Rotate_270: return mode_info->height; default: return 0; } } static Bool transform_point (XTransform *transform, double *xp, double *yp) { double vector[3]; double result[3]; vector[0] = *xp; vector[1] = *yp; vector[2] = 1; for (int j = 0; j < 3; j++) { double v = 0; for (int i = 0; i < 3; i++) v += (XFixedToDouble (transform->matrix[j][i]) * vector[i]); result[j] = v; } if (!result[2]) return False; for (int j = 0; j < 2; j++) { vector[j] = result[j] / result[2]; if (vector[j] > 32767 || vector[j] < -32767) return False; } *xp = vector[0]; *yp = vector[1]; return True; } static void path_bounds (XTransform *transform, point_t *points, int npoints, box_t *box) { for (int i = 0; i < npoints; i++) { double x, y; box_t point; x = points[i].x; y = points[i].y; transform_point (transform, &x, &y); point.x1 = floor (x); point.y1 = floor (y); point.x2 = ceil (x); point.y2 = ceil (y); if (i == 0) *box = point; else { if (point.x1 < box->x1) box->x1 = point.x1; if (point.y1 < box->y1) box->y1 = point.y1; if (point.x2 > box->x2) box->x2 = point.x2; if (point.y2 > box->y2) box->y2 = point.y2; } } } static void mode_geometry (XRRModeInfo *mode_info, Rotation rotation, XTransform *transform, box_t *bounds) { point_t rect[4]; int width = mode_width (mode_info, rotation); int height = mode_height (mode_info, rotation); rect[0].x = 0; rect[0].y = 0; rect[1].x = width; rect[1].y = 0; rect[2].x = width; rect[2].y = height; rect[3].x = 0; rect[3].y = height; path_bounds (transform, rect, 4, bounds); } /* v refresh frequency in Hz */ static double mode_refresh (const XRRModeInfo *mode_info) { double rate; double vTotal = mode_info->vTotal; if (mode_info->modeFlags & RR_DoubleScan) { /* doublescan doubles the number of lines */ vTotal *= 2; } if (mode_info->modeFlags & RR_Interlace) { /* interlace splits the frame into two fields */ /* the field rate is what is typically reported by monitors */ vTotal /= 2; } if (mode_info->hTotal && vTotal) rate = ((double) mode_info->dotClock / ((double) mode_info->hTotal * (double) vTotal)); else rate = 0; return rate; } /* h sync frequency in Hz */ static double mode_hsync (const XRRModeInfo *mode_info) { double rate; if (mode_info->hTotal) rate = (double) mode_info->dotClock / (double) mode_info->hTotal; else rate = 0; return rate; } static void print_verbose_mode (const XRRModeInfo *mode, Bool current, Bool preferred) { printf (" %s (0x%x) %6.3fMHz", mode->name, (int)mode->id, (double)mode->dotClock / 1000000.0); for (int f = 0; mode_flags[f].flag; f++) if (mode->modeFlags & mode_flags[f].flag) printf (" %s", mode_flags[f].string); if (current) printf (" *current"); if (preferred) printf (" +preferred"); printf ("\n"); printf (" h: width %4d start %4d end %4d total %4d skew %4d clock %6.2fKHz\n", mode->width, mode->hSyncStart, mode->hSyncEnd, mode->hTotal, mode->hSkew, mode_hsync (mode) / 1000); printf (" v: height %4d start %4d end %4d total %4d clock %6.2fHz\n", mode->height, mode->vSyncStart, mode->vSyncEnd, mode->vTotal, mode_refresh (mode)); } static void init_name (name_t *name) { memset(name, 0, sizeof(*name)); name->kind = name_none; } static void set_name_string (name_t *name, char *string) { name->kind |= name_string; name->string = string; } static void set_name_xid (name_t *name, XID xid) { name->kind |= name_xid; name->xid = xid; } static void set_name_index (name_t *name, int idx) { name->kind |= name_index; name->index = idx; } static void set_name_preferred (name_t *name) { name->kind |= name_preferred; } static void set_name_all (name_t *name, name_t *old) { if (old->kind & name_xid) name->xid = old->xid; if (old->kind & name_string) name->string = old->string; if (old->kind & name_index) name->index = old->index; name->kind |= old->kind; } static void set_name (name_t *name, char *string, name_kind_t valid) { unsigned int xid; /* don't make it XID (which is unsigned long): scanf() takes unsigned int */ int idx; if ((valid & name_xid) && sscanf (string, "0x%x", &xid) == 1) set_name_xid (name, xid); else if ((valid & name_index) && sscanf (string, "%d", &idx) == 1) set_name_index (name, idx); else if (valid & name_string) set_name_string (name, string); else argerr ("invalid name '%s'\n", string); } static int print_name (const name_t *name) { name_kind_t kind = name->kind; if ((kind & name_xid)) return printf("XID 0x%x", (unsigned int)name->xid); else if ((kind & name_string)) return printf("name %s", name->string); else if ((kind & name_index)) return printf("index %d", name->index); else return printf("unknown name"); } static void init_transform (transform_t *transform) { memset (&transform->transform, '\0', sizeof (transform->transform)); for (int x = 0; x < 3; x++) transform->transform.matrix[x][x] = XDoubleToFixed (1.0); transform->filter = ""; transform->nparams = 0; transform->params = NULL; } static void set_transform (transform_t *dest, XTransform *transform, const char *filter, XFixed *params, int nparams) { dest->transform = *transform; /* note: this string is leaked */ dest->filter = strdup (filter); dest->nparams = nparams; dest->params = malloc (nparams * sizeof (XFixed)); memcpy (dest->params, params, nparams * sizeof (XFixed)); } static void copy_transform (transform_t *dest, transform_t *src) { set_transform (dest, &src->transform, src->filter, src->params, src->nparams); } static Bool equal_transform (transform_t *a, transform_t *b) { if (memcmp (&a->transform, &b->transform, sizeof (XTransform)) != 0) return False; if (strcmp (a->filter, b->filter) != 0) return False; if (a->nparams != b->nparams) return False; if (memcmp (a->params, b->params, a->nparams * sizeof (XFixed)) != 0) return False; return True; } static output_t * add_output (void) { output_t *output = calloc (1, sizeof (output_t)); if (!output) fatal ("out of memory\n"); output->next = NULL; output->found = False; output->brightness = 1.0; *all_outputs_tail = output; all_outputs_tail = &output->next; return output; } static output_t * find_output (name_t *name) { output_t *output; for (output = all_outputs; output; output = output->next) { name_kind_t common = name->kind & output->output.kind; if ((common & name_xid) && name->xid == output->output.xid) break; if ((common & name_string) && !strcmp (name->string, output->output.string)) break; if ((common & name_index) && name->index == output->output.index) break; } return output; } static output_t * find_output_by_xid (RROutput output) { name_t output_name; init_name (&output_name); set_name_xid (&output_name, output); return find_output (&output_name); } static output_t * find_output_by_name (char *name) { name_t output_name; init_name (&output_name); set_name_string (&output_name, name); return find_output (&output_name); } static crtc_t * find_crtc (name_t *name) { crtc_t *crtc = NULL; for (int c = 0; c < num_crtcs; c++) { name_kind_t common; crtc = &crtcs[c]; common = name->kind & crtc->crtc.kind; if ((common & name_xid) && name->xid == crtc->crtc.xid) break; if ((common & name_string) && !strcmp (name->string, crtc->crtc.string)) break; if ((common & name_index) && name->index == crtc->crtc.index) break; crtc = NULL; } return crtc; } static crtc_t * find_crtc_by_xid (RRCrtc crtc) { name_t crtc_name; init_name (&crtc_name); set_name_xid (&crtc_name, crtc); return find_crtc (&crtc_name); } static XRRModeInfo * find_mode (name_t *name, double refresh) { XRRModeInfo *best = NULL; double bestDist = 0; for (int m = 0; m < res->nmode; m++) { XRRModeInfo *mode = &res->modes[m]; if ((name->kind & name_xid) && name->xid == mode->id) { best = mode; break; } if ((name->kind & name_string) && !strcmp (name->string, mode->name)) { double dist; if (refresh) dist = fabs (mode_refresh (mode) - refresh); else dist = 0; if (!best || dist < bestDist) { bestDist = dist; best = mode; } } } return best; } static XRRModeInfo * find_mode_by_xid (RRMode mode) { name_t mode_name; init_name (&mode_name); set_name_xid (&mode_name, mode); return find_mode (&mode_name, 0); } #if 0 static XRRModeInfo * find_mode_by_name (char *name) { name_t mode_name; init_name (&mode_name); set_name_string (&mode_name, name); return find_mode (&mode_name, 0); } #endif static XRRModeInfo * find_mode_for_output (output_t *output, name_t *name) { XRROutputInfo *output_info = output->output_info; XRRModeInfo *best = NULL; double bestDist = 0; for (int m = 0; m < output_info->nmode; m++) { XRRModeInfo *mode; mode = find_mode_by_xid (output_info->modes[m]); if (!mode) continue; if ((name->kind & name_xid) && name->xid == mode->id) { best = mode; break; } if ((name->kind & name_string) && !strcmp (name->string, mode->name)) { double dist; /* Stay away from doublescan modes unless refresh rate is specified. */ if (!output->refresh && (mode->modeFlags & RR_DoubleScan)) continue; if (output->refresh) dist = fabs (mode_refresh (mode) - output->refresh); else dist = 0; if (!best || dist < bestDist) { bestDist = dist; best = mode; } } } return best; } static XRRModeInfo * preferred_mode (output_t *output) { XRROutputInfo *output_info = output->output_info; XRRModeInfo *best = NULL; int bestDist = 0; for (int m = 0; m < output_info->nmode; m++) { XRRModeInfo *mode_info = find_mode_by_xid (output_info->modes[m]); int dist; if (m < output_info->npreferred) dist = 0; else if (output_info->mm_height) dist = (1000 * DisplayHeight(dpy, screen) / DisplayHeightMM(dpy, screen) - 1000 * mode_info->height / output_info->mm_height); else dist = DisplayHeight(dpy, screen) - mode_info->height; if (dist < 0) dist = -dist; if (!best || dist < bestDist) { best = mode_info; bestDist = dist; } } return best; } static Bool output_can_use_crtc (output_t *output, crtc_t *crtc) { XRROutputInfo *output_info = output->output_info; for (int c = 0; c < output_info->ncrtc; c++) if (output_info->crtcs[c] == crtc->crtc.xid) return True; return False; } static Bool output_can_use_mode (output_t *output, XRRModeInfo *mode) { XRROutputInfo *output_info = output->output_info; for (int m = 0; m < output_info->nmode; m++) if (output_info->modes[m] == mode->id) return True; return False; } static Bool crtc_can_use_rotation (crtc_t *crtc, Rotation rotation) { Rotation rotations = crtc->crtc_info->rotations; Rotation dir = rotation & (RR_Rotate_0|RR_Rotate_90|RR_Rotate_180|RR_Rotate_270); Rotation reflect = rotation & (RR_Reflect_X|RR_Reflect_Y); if (((rotations & dir) != 0) && ((rotations & reflect) == reflect)) return True; return False; } #if 0 static Bool crtc_can_use_transform (crtc_t *crtc, XTransform *transform) { int major, minor; XRRQueryVersion (dpy, &major, &minor); if (major > 1 || (major == 1 && minor >= 3)) return True; return False; } #endif /* * Report only rotations that are supported by all crtcs */ static Rotation output_rotations (output_t *output) { Bool found = False; Rotation rotation = RR_Rotate_0; XRROutputInfo *output_info = output->output_info; for (int c = 0; c < output_info->ncrtc; c++) { crtc_t *crtc = find_crtc_by_xid (output_info->crtcs[c]); if (crtc) { if (!found) { rotation = crtc->crtc_info->rotations; found = True; } else rotation &= crtc->crtc_info->rotations; } } return rotation; } static Bool output_can_use_rotation (output_t *output, Rotation rotation) { XRROutputInfo *output_info = output->output_info; /* make sure all of the crtcs can use this rotation. * yes, this is not strictly necessary, but it is * simpler,and we expect most drivers to either * support rotation everywhere or nowhere */ for (int c = 0; c < output_info->ncrtc; c++) { crtc_t *crtc = find_crtc_by_xid (output_info->crtcs[c]); if (crtc && !crtc_can_use_rotation (crtc, rotation)) return False; } return True; } static Bool output_is_primary(output_t *output) { if (has_1_3) return XRRGetOutputPrimary(dpy, root) == output->output.xid; return False; } /* Returns the index of the last value in an array < 0xffff */ static int find_last_non_clamped(const CARD16 array[], int size) { for (int i = size - 1; i > 0; i--) { if (array[i] < 0xffff) return i; } return 0; } static void set_gamma_info(output_t *output) { XRRCrtcGamma *crtc_gamma; double i1, v1, i2, v2; int size, middle, last_best, last_red, last_green, last_blue; CARD16 *best_array; if (!output->crtc_info) return; size = XRRGetCrtcGammaSize(dpy, output->crtc_info->crtc.xid); if (!size) { warning("Failed to get size of gamma for output %s\n", output->output.string); return; } crtc_gamma = XRRGetCrtcGamma(dpy, output->crtc_info->crtc.xid); if (!crtc_gamma) { warning("Failed to get gamma for output %s\n", output->output.string); return; } /* * Here is a bit tricky because gamma is a whole curve for each * color. So, typically, we need to represent 3 * 256 values as 3 + 1 * values. Therefore, we approximate the gamma curve (v) by supposing * it always follows the way we set it: a power function (i^g) * multiplied by a brightness (b). * v = i^g * b * so g = (ln(v) - ln(b))/ln(i) * and b can be found using two points (v1,i1) and (v2, i2): * b = e^((ln(v2)*ln(i1) - ln(v1)*ln(i2))/ln(i1/i2)) * For the best resolution, we select i2 at the highest place not * clamped and i1 at i2/2. Note that if i2 = 1 (as in most normal * cases), then b = v2. */ last_red = find_last_non_clamped(crtc_gamma->red, size); last_green = find_last_non_clamped(crtc_gamma->green, size); last_blue = find_last_non_clamped(crtc_gamma->blue, size); best_array = crtc_gamma->red; last_best = last_red; if (last_green > last_best) { last_best = last_green; best_array = crtc_gamma->green; } if (last_blue > last_best) { last_best = last_blue; best_array = crtc_gamma->blue; } if (last_best == 0) last_best = 1; middle = last_best / 2; i1 = (double)(middle + 1) / size; v1 = (double)(best_array[middle]) / 65535; i2 = (double)(last_best + 1) / size; v2 = (double)(best_array[last_best]) / 65535; if (v2 < 0.0001) { /* The screen is black */ output->brightness = 0; output->gamma.red = 1; output->gamma.green = 1; output->gamma.blue = 1; } else { if ((last_best + 1) == size) output->brightness = v2; else output->brightness = exp((log(v2)*log(i1) - log(v1)*log(i2))/log(i1/i2)); output->gamma.red = log((double)(crtc_gamma->red[last_red / 2]) / output->brightness / 65535) / log((double)((last_red / 2) + 1) / size); output->gamma.green = log((double)(crtc_gamma->green[last_green / 2]) / output->brightness / 65535) / log((double)((last_green / 2) + 1) / size); output->gamma.blue = log((double)(crtc_gamma->blue[last_blue / 2]) / output->brightness / 65535) / log((double)((last_blue / 2) + 1) / size); } XRRFreeGamma(crtc_gamma); } static void set_output_info (output_t *output, RROutput xid, XRROutputInfo *output_info) { /* sanity check output info */ if (output_info->connection != RR_Disconnected && !output_info->nmode) warning ("Output %s is not disconnected but has no modes\n", output_info->name); /* set output name and info */ if (!(output->output.kind & name_xid)) set_name_xid (&output->output, xid); if (!(output->output.kind & name_string)) set_name_string (&output->output, output_info->name); output->output_info = output_info; /* set crtc name and info */ if (!(output->changes & changes_crtc)) set_name_xid (&output->crtc, output_info->crtc); if (output->crtc.kind == name_xid && output->crtc.xid == None) output->crtc_info = NULL; else { output->crtc_info = find_crtc (&output->crtc); if (!output->crtc_info) { if (output->crtc.kind & name_xid) fatal ("cannot find crtc 0x%lx\n", output->crtc.xid); if (output->crtc.kind & name_index) fatal ("cannot find crtc %d\n", output->crtc.index); } if (!output_can_use_crtc (output, output->crtc_info)) fatal ("output %s cannot use crtc 0x%lx\n", output->output.string, output->crtc_info->crtc.xid); } /* set mode name and info */ if (!(output->changes & changes_mode)) { crtc_t *crtc = NULL; if (output_info->crtc) crtc = find_crtc_by_xid(output_info->crtc); if (crtc && crtc->crtc_info) set_name_xid (&output->mode, crtc->crtc_info->mode); else if (output->crtc_info) set_name_xid (&output->mode, output->crtc_info->crtc_info->mode); else set_name_xid (&output->mode, None); if (output->mode.xid) { output->mode_info = find_mode_by_xid (output->mode.xid); if (!output->mode_info) fatal ("server did not report mode 0x%lx for output %s\n", output->mode.xid, output->output.string); } else output->mode_info = NULL; } else if (output->mode.kind == name_xid && output->mode.xid == None) output->mode_info = NULL; else { if (output->mode.kind == name_preferred) output->mode_info = preferred_mode (output); else output->mode_info = find_mode_for_output (output, &output->mode); if (!output->mode_info) { if (output->mode.kind & name_preferred) fatal ("cannot find preferred mode\n"); if (output->mode.kind & name_string) fatal ("cannot find mode %s\n", output->mode.string); if (output->mode.kind & name_xid) fatal ("cannot find mode 0x%lx\n", output->mode.xid); } if (!output_can_use_mode (output, output->mode_info)) fatal ("output %s cannot use mode %s\n", output->output.string, output->mode_info->name); } /* set position */ if (!(output->changes & changes_position)) { if (output->crtc_info) { output->x = output->crtc_info->crtc_info->x; output->y = output->crtc_info->crtc_info->y; } else { output->x = 0; output->y = 0; } } /* set rotation */ if (!(output->changes & changes_rotation)) { output->rotation &= ~0xf; if (output->crtc_info) output->rotation |= (output->crtc_info->crtc_info->rotation & 0xf); else output->rotation = RR_Rotate_0; } if (!(output->changes & changes_reflection)) { output->rotation &= ~(RR_Reflect_X|RR_Reflect_Y); if (output->crtc_info) output->rotation |= (output->crtc_info->crtc_info->rotation & (RR_Reflect_X|RR_Reflect_Y)); } if (!output_can_use_rotation (output, output->rotation)) fatal ("output %s cannot use rotation \"%s\" reflection \"%s\"\n", output->output.string, rotation_name (output->rotation), reflection_name (output->rotation)); /* set gamma */ if (!(output->changes & changes_gamma)) set_gamma_info(output); /* set transformation */ if (!(output->changes & changes_transform)) { if (output->crtc_info) copy_transform (&output->transform, &output->crtc_info->current_transform); else init_transform (&output->transform); } else { /* transform was already set for --scale or --transform */ /* for --scale-from, figure out the mode size and compute the transform * for the target framebuffer area */ if (output->scale_from_w > 0 && output->mode_info) { double sx = (double)output->scale_from_w / output->mode_info->width; double sy = (double)output->scale_from_h / output->mode_info->height; if (verbose) printf("scaling %s by %lfx%lf\n", output->output.string, sx, sy); init_transform (&output->transform); output->transform.transform.matrix[0][0] = XDoubleToFixed (sx); output->transform.transform.matrix[1][1] = XDoubleToFixed (sy); output->transform.transform.matrix[2][2] = XDoubleToFixed (1.0); if (sx != 1 || sy != 1) output->transform.filter = "bilinear"; else output->transform.filter = "nearest"; output->transform.nparams = 0; output->transform.params = NULL; } } if (output->changes & changes_filter) { output->transform.filter = filter_names[filter_type]; } /* set primary */ if (!(output->changes & changes_primary)) output->primary = output_is_primary(output); } static void get_screen (Bool current) { if (!has_1_2) fatal ("Server RandR version before 1.2\n"); if (res) return; XRRGetScreenSizeRange (dpy, root, &minWidth, &minHeight, &maxWidth, &maxHeight); if (current) res = XRRGetScreenResourcesCurrent (dpy, root); else res = XRRGetScreenResources (dpy, root); if (!res) fatal ("could not get screen resources"); } static void get_crtcs (void) { num_crtcs = res->ncrtc; crtcs = calloc (num_crtcs, sizeof (crtc_t)); if (!crtcs) fatal ("out of memory\n"); for (int c = 0; c < res->ncrtc; c++) { XRRCrtcInfo *crtc_info = XRRGetCrtcInfo (dpy, res, res->crtcs[c]); XRRCrtcTransformAttributes *attr; XRRPanning *panning_info = NULL; if (has_1_3) { XRRPanning zero; memset(&zero, 0, sizeof(zero)); panning_info = XRRGetPanning (dpy, res, res->crtcs[c]); zero.timestamp = panning_info->timestamp; if (!memcmp(panning_info, &zero, sizeof(zero))) { Xfree(panning_info); panning_info = NULL; } } set_name_xid (&crtcs[c].crtc, res->crtcs[c]); set_name_index (&crtcs[c].crtc, c); if (!crtc_info) fatal ("could not get crtc 0x%lx information\n", res->crtcs[c]); crtcs[c].crtc_info = crtc_info; crtcs[c].panning_info = panning_info; if (crtc_info->mode == None) { crtcs[c].mode_info = NULL; crtcs[c].x = 0; crtcs[c].y = 0; crtcs[c].rotation = RR_Rotate_0; } if (XRRGetCrtcTransform (dpy, res->crtcs[c], &attr) && attr) { set_transform (&crtcs[c].current_transform, &attr->currentTransform, attr->currentFilter, attr->currentParams, attr->currentNparams); XFree (attr); } else { init_transform (&crtcs[c].current_transform); } copy_transform (&crtcs[c].pending_transform, &crtcs[c].current_transform); } } static void crtc_add_output (crtc_t *crtc, output_t *output) { if (crtc->outputs) crtc->outputs = realloc (crtc->outputs, (crtc->noutput + 1) * sizeof (output_t *)); else { crtc->outputs = malloc (sizeof (output_t *)); crtc->x = output->x; crtc->y = output->y; crtc->rotation = output->rotation; crtc->mode_info = output->mode_info; copy_transform (&crtc->pending_transform, &output->transform); } if (!crtc->outputs) fatal ("out of memory\n"); crtc->outputs[crtc->noutput++] = output; } static void set_crtcs (void) { output_t *output; for (output = all_outputs; output; output = output->next) { if (!output->mode_info) continue; crtc_add_output (output->crtc_info, output); } } static void set_panning (void) { output_t *output; for (output = all_outputs; output; output = output->next) { if (! output->crtc_info) continue; if (! (output->changes & changes_panning)) continue; if (! output->crtc_info->panning_info) output->crtc_info->panning_info = malloc (sizeof(XRRPanning)); memcpy (output->crtc_info->panning_info, &output->panning, sizeof(XRRPanning)); output->crtc_info->changing = 1; } } static void set_gamma(void) { for (output_t *output = all_outputs; output; output = output->next) { int i, size; crtc_t *crtc; XRRCrtcGamma *crtc_gamma; float gammaRed; float gammaGreen; float gammaBlue; if (!(output->changes & changes_gamma)) continue; if (!output->crtc_info) { fatal("Need crtc to set gamma on.\n"); continue; } crtc = output->crtc_info; size = XRRGetCrtcGammaSize(dpy, crtc->crtc.xid); if (!size) { fatal("Gamma size is 0.\n"); continue; } /* * The gamma-correction lookup table managed through XRR[GS]etCrtcGamma * is 2^n in size, where 'n' is the number of significant bits in * the X Color. Because an X Color is 16 bits, size cannot be larger * than 2^16. */ if (size > 65536) { fatal("Gamma correction table is impossibly large.\n"); continue; } crtc_gamma = XRRAllocGamma(size); if (!crtc_gamma) { fatal("Gamma allocation failed.\n"); continue; } if (output->gamma.red == 0.0) output->gamma.red = 1.0; if (output->gamma.green == 0.0) output->gamma.green = 1.0; if (output->gamma.blue == 0.0) output->gamma.blue = 1.0; gammaRed = 1.0 / output->gamma.red; gammaGreen = 1.0 / output->gamma.green; gammaBlue = 1.0 / output->gamma.blue; for (i = 0; i < size; i++) { if (gammaRed == 1.0 && output->brightness == 1.0) crtc_gamma->red[i] = (double)i / (double)(size - 1) * 65535.0; else crtc_gamma->red[i] = dmin(pow((double)i/(double)(size - 1), gammaRed) * output->brightness, 1.0) * 65535.0; if (gammaGreen == 1.0 && output->brightness == 1.0) crtc_gamma->green[i] = (double)i / (double)(size - 1) * 65535.0; else crtc_gamma->green[i] = dmin(pow((double)i/(double)(size - 1), gammaGreen) * output->brightness, 1.0) * 65535.0; if (gammaBlue == 1.0 && output->brightness == 1.0) crtc_gamma->blue[i] = (double)i / (double)(size - 1) * 65535.0; else crtc_gamma->blue[i] = dmin(pow((double)i/(double)(size - 1), gammaBlue) * output->brightness, 1.0) * 65535.0; } XRRSetCrtcGamma(dpy, crtc->crtc.xid, crtc_gamma); free(crtc_gamma); } } static void set_primary(void) { if (no_primary) { XRRSetOutputPrimary(dpy, root, None); } else { for (output_t *output = all_outputs; output; output = output->next) { if (!(output->changes & changes_primary)) continue; if (output->primary) XRRSetOutputPrimary(dpy, root, output->output.xid); } } } static Status crtc_disable (crtc_t *crtc) { if (verbose) printf ("crtc %d: disable\n", crtc->crtc.index); if (dryrun) return RRSetConfigSuccess; return XRRSetCrtcConfig (dpy, res, crtc->crtc.xid, CurrentTime, 0, 0, None, RR_Rotate_0, NULL, 0); } static void crtc_set_transform (crtc_t *crtc, transform_t *transform) { int major, minor; XRRQueryVersion (dpy, &major, &minor); if (major > 1 || (major == 1 && minor >= 3)) XRRSetCrtcTransform (dpy, crtc->crtc.xid, &transform->transform, transform->filter, transform->params, transform->nparams); } static Status crtc_revert (crtc_t *crtc) { XRRCrtcInfo *crtc_info = crtc->crtc_info; if (verbose) printf ("crtc %d: revert\n", crtc->crtc.index); if (dryrun) return RRSetConfigSuccess; if (!equal_transform (&crtc->current_transform, &crtc->pending_transform)) crtc_set_transform (crtc, &crtc->current_transform); return XRRSetCrtcConfig (dpy, res, crtc->crtc.xid, CurrentTime, crtc_info->x, crtc_info->y, crtc_info->mode, crtc_info->rotation, crtc_info->outputs, crtc_info->noutput); } static Status crtc_apply (crtc_t *crtc) { RROutput *rr_outputs; Status s; RRMode mode = None; if (!crtc->changing || !crtc->mode_info) return RRSetConfigSuccess; rr_outputs = calloc (crtc->noutput, sizeof (RROutput)); if (!rr_outputs) return BadAlloc; for (int o = 0; o < crtc->noutput; o++) rr_outputs[o] = crtc->outputs[o]->output.xid; mode = crtc->mode_info->id; if (verbose) { printf ("crtc %d: %12s %6.2f +%d+%d", crtc->crtc.index, crtc->mode_info->name, mode_refresh (crtc->mode_info), crtc->x, crtc->y); for (int o = 0; o < crtc->noutput; o++) printf (" \"%s\"", crtc->outputs[o]->output.string); printf ("\n"); } if (dryrun) s = RRSetConfigSuccess; else { if (!equal_transform (&crtc->current_transform, &crtc->pending_transform)) crtc_set_transform (crtc, &crtc->pending_transform); s = XRRSetCrtcConfig (dpy, res, crtc->crtc.xid, CurrentTime, crtc->x, crtc->y, mode, crtc->rotation, rr_outputs, crtc->noutput); if (s == RRSetConfigSuccess && crtc->panning_info) { if (has_1_3) s = XRRSetPanning (dpy, res, crtc->crtc.xid, crtc->panning_info); else fatal ("panning needs RandR 1.3\n"); } } free (rr_outputs); return s; } static void screen_revert (void) { if (verbose) printf ("screen %d: revert\n", screen); if (dryrun) return; XRRSetScreenSize (dpy, root, DisplayWidth (dpy, screen), DisplayHeight (dpy, screen), DisplayWidthMM (dpy, screen), DisplayHeightMM (dpy, screen)); } static void screen_apply (void) { if (fb_width == DisplayWidth (dpy, screen) && fb_height == DisplayHeight (dpy, screen) && fb_width_mm == DisplayWidthMM (dpy, screen) && fb_height_mm == DisplayHeightMM (dpy, screen)) { return; } if (verbose) printf ("screen %d: %dx%d %dx%d mm %6.2fdpi\n", screen, fb_width, fb_height, fb_width_mm, fb_height_mm, dpi); if (dryrun) return; XRRSetScreenSize (dpy, root, fb_width, fb_height, fb_width_mm, fb_height_mm); } static void revert (void) { /* first disable all crtcs */ for (int c = 0; c < res->ncrtc; c++) crtc_disable (&crtcs[c]); /* next reset screen size */ screen_revert (); /* now restore all crtcs */ for (int c = 0; c < res->ncrtc; c++) crtc_revert (&crtcs[c]); } /* * uh-oh, something bad happened in the middle of changing * the configuration. Revert to the previous configuration * and bail */ static void _X_NORETURN panic (Status s, crtc_t *crtc) { int c = crtc->crtc.index; const char *message; switch (s) { case RRSetConfigSuccess: message = "succeeded"; break; case BadAlloc: message = "out of memory"; break; case RRSetConfigFailed: message = "failed"; break; case RRSetConfigInvalidConfigTime: message = "invalid config time"; break; case RRSetConfigInvalidTime: message = "invalid time"; break; default: message = "unknown failure"; break; } fprintf (stderr, "%s: Configure crtc %d %s\n", program_name, c, message); revert (); exit (1); } static void apply (void) { Status s; /* * Hold the server grabbed while messing with * the screen so that apps which notice the resize * event and ask for xinerama information from the server * receive up-to-date information */ if (grab_server) XGrabServer (dpy); /* * Turn off any crtcs which are to be disabled or which are * larger than the target size */ for (int c = 0; c < res->ncrtc; c++) { crtc_t *crtc = &crtcs[c]; XRRCrtcInfo *crtc_info = crtc->crtc_info; /* if this crtc is already disabled, skip it */ if (crtc_info->mode == None) continue; /* * If this crtc is to be left enabled, make * sure the old size fits then new screen */ if (crtc->mode_info) { XRRModeInfo *old_mode = find_mode_by_xid (crtc_info->mode); int x, y, w, h; box_t bounds; if (!old_mode) panic (RRSetConfigFailed, crtc); /* old position and size information */ mode_geometry (old_mode, crtc_info->rotation, &crtc->current_transform.transform, &bounds); x = crtc_info->x + bounds.x1; y = crtc_info->y + bounds.y1; w = bounds.x2 - bounds.x1; h = bounds.y2 - bounds.y1; /* if it fits, skip it */ if (x + w <= fb_width && y + h <= fb_height) continue; crtc->changing = True; } s = crtc_disable (crtc); if (s != RRSetConfigSuccess) panic (s, crtc); } /* * Set the screen size */ screen_apply (); /* * Set crtcs */ for (int c = 0; c < res->ncrtc; c++) { crtc_t *crtc = &crtcs[c]; s = crtc_apply (crtc); if (s != RRSetConfigSuccess) panic (s, crtc); } set_primary (); /* * Release the server grab and let all clients * respond to the updated state */ if (grab_server) XUngrabServer (dpy); } /* * Use current output state to complete the output list */ static void get_outputs (void) { for (int o = 0; o < res->noutput; o++) { XRROutputInfo *output_info = XRRGetOutputInfo (dpy, res, res->outputs[o]); output_t *output; name_t output_name; if (!output_info) fatal ("could not get output 0x%lx information\n", res->outputs[o]); init_name(&output_name); set_name_xid (&output_name, res->outputs[o]); set_name_index (&output_name, o); set_name_string (&output_name, output_info->name); output = find_output (&output_name); if (!output) { output = add_output (); set_name_all (&output->output, &output_name); /* * When global --automatic mode is set, turn on connected but off * outputs, turn off disconnected but on outputs */ if (automatic) { switch (output_info->connection) { case RR_Connected: if (!output_info->crtc) { output->changes |= changes_automatic; output->automatic = True; } break; case RR_Disconnected: if (output_info->crtc) { output->changes |= changes_automatic; output->automatic = True; } break; } } } output->found = True; /* * Automatic mode -- track connection state and enable/disable outputs * as necessary */ if (output->automatic) { switch (output_info->connection) { case RR_Connected: case RR_UnknownConnection: if ((!(output->changes & changes_mode))) { set_name_preferred (&output->mode); output->changes |= changes_mode; } break; case RR_Disconnected: if ((!(output->changes & changes_mode))) { set_name_xid (&output->mode, None); set_name_xid (&output->crtc, None); output->changes |= changes_mode; output->changes |= changes_crtc; } break; } } set_output_info (output, res->outputs[o], output_info); } for (output_t *q = all_outputs; q; q = q->next) { if (!q->found) { fprintf(stderr, "warning: output %s not found; ignoring\n", q->output.string); } } } static void mark_changing_crtcs (void) { for (int c = 0; c < num_crtcs; c++) { crtc_t *crtc = &crtcs[c]; output_t *output; /* walk old output list (to catch disables) */ for (int o = 0; o < crtc->crtc_info->noutput; o++) { output = find_output_by_xid (crtc->crtc_info->outputs[o]); if (!output) fatal ("cannot find output 0x%lx\n", crtc->crtc_info->outputs[o]); if (output->changes) crtc->changing = True; } /* walk new output list */ for (int o = 0; o < crtc->noutput; o++) { output = crtc->outputs[o]; if (output->changes) crtc->changing = True; } } } /* * Test whether 'crtc' can be used for 'output' */ static Bool check_crtc_for_output (crtc_t *crtc, output_t *output) { int c; int l; output_t *other; for (c = 0; c < output->output_info->ncrtc; c++) if (output->output_info->crtcs[c] == crtc->crtc.xid) break; if (c == output->output_info->ncrtc) return False; for (other = all_outputs; other; other = other->next) { if (other == output) continue; if (other->mode_info == NULL) continue; if (other->crtc_info != crtc) continue; /* see if the output connected to the crtc can clone to this output */ for (l = 0; l < output->output_info->nclone; l++) if (output->output_info->clones[l] == other->output.xid) break; /* not on the list, can't clone */ if (l == output->output_info->nclone) return False; } if (crtc->noutput) { /* make sure the state matches */ if (crtc->mode_info != output->mode_info) return False; if (crtc->x != output->x) return False; if (crtc->y != output->y) return False; if (crtc->rotation != output->rotation) return False; if (!equal_transform (&crtc->current_transform, &output->transform)) return False; } else if (crtc->crtc_info->noutput) { /* make sure the state matches the already used state */ XRRModeInfo *mode = find_mode_by_xid (crtc->crtc_info->mode); if (mode != output->mode_info) return False; if (crtc->crtc_info->x != output->x) return False; if (crtc->crtc_info->y != output->y) return False; if (crtc->crtc_info->rotation != output->rotation) return False; } return True; } static crtc_t * find_crtc_for_output (output_t *output) { for (int c = 0; c < output->output_info->ncrtc; c++) { crtc_t *crtc; crtc = find_crtc_by_xid (output->output_info->crtcs[c]); if (!crtc) fatal ("cannot find crtc 0x%lx\n", output->output_info->crtcs[c]); if (check_crtc_for_output (crtc, output)) return crtc; } return NULL; } static void set_positions (void) { output_t *output; int min_x, min_y; for (;;) { Bool any_set = False; Bool keep_going = False; for (output = all_outputs; output; output = output->next) { output_t *relation; name_t relation_name; if (!(output->changes & changes_relation)) continue; if (output->mode_info == NULL) continue; init_name (&relation_name); set_name_string (&relation_name, output->relative_to); relation = find_output (&relation_name); if (!relation) fatal ("cannot find output \"%s\"\n", output->relative_to); if (relation->mode_info == NULL) { output->x = 0; output->y = 0; output->changes |= changes_position; any_set = True; continue; } /* * Make sure the dependent object has been set in place */ if ((relation->changes & changes_relation) && !(relation->changes & changes_position)) { keep_going = True; continue; } switch (output->relation) { case relation_left_of: output->y = relation->y; output->x = relation->x - mode_width (output->mode_info, output->rotation); break; case relation_right_of: output->y = relation->y; output->x = relation->x + mode_width (relation->mode_info, relation->rotation); break; case relation_above: output->x = relation->x; output->y = relation->y - mode_height (output->mode_info, output->rotation); break; case relation_below: output->x = relation->x; output->y = relation->y + mode_height (relation->mode_info, relation->rotation); break; case relation_same_as: output->x = relation->x; output->y = relation->y; } output->changes |= changes_position; any_set = True; } if (!keep_going) break; if (!any_set) fatal ("loop in relative position specifications\n"); } /* * Now normalize positions so the upper left corner of all outputs is at 0,0 */ min_x = 32768; min_y = 32768; for (output = all_outputs; output; output = output->next) { if (output->mode_info == NULL) continue; if (output->x < min_x) min_x = output->x; if (output->y < min_y) min_y = output->y; } if (min_x || min_y) { /* move all outputs */ for (output = all_outputs; output; output = output->next) { if (output->mode_info == NULL) continue; output->x -= min_x; output->y -= min_y; output->changes |= changes_position; } } } static void set_screen_size (void) { Bool fb_specified = fb_width != 0 && fb_height != 0; for (output_t *output = all_outputs; output; output = output->next) { XRRModeInfo *mode_info = output->mode_info; int x, y, w, h; box_t bounds; if (!mode_info) continue; mode_geometry (mode_info, output->rotation, &output->transform.transform, &bounds); x = output->x + bounds.x1; y = output->y + bounds.y1; w = bounds.x2 - bounds.x1; h = bounds.y2 - bounds.y1; /* make sure output fits in specified size */ if (fb_specified) { if (x + w > fb_width || y + h > fb_height) warning ("specified screen %dx%d not large enough for output %s (%dx%d+%d+%d)\n", fb_width, fb_height, output->output.string, w, h, x, y); } /* fit fb to output */ else { XRRPanning *pan; if (x + w > fb_width) fb_width = x + w; if (y + h > fb_height) fb_height = y + h; if (output->changes & changes_panning) pan = &output->panning; else pan = output->crtc_info ? output->crtc_info->panning_info : NULL; if (pan && pan->left + pan->width > fb_width) fb_width = pan->left + pan->width; if (pan && pan->top + pan->height > fb_height) fb_height = pan->top + pan->height; } } if (fb_width > maxWidth || fb_height > maxHeight) fatal ("screen cannot be larger than %dx%d (desired size %dx%d)\n", maxWidth, maxHeight, fb_width, fb_height); if (fb_specified) { if (fb_width < minWidth || fb_height < minHeight) fatal ("screen must be at least %dx%d\n", minWidth, minHeight); } else { if (fb_width < minWidth) fb_width = minWidth; if (fb_height < minHeight) fb_height = minHeight; } } static void disable_outputs (output_t *outputs) { while (outputs) { outputs->crtc_info = NULL; outputs = outputs->next; } } /* * find the best mapping from output to crtc available */ static int pick_crtcs_score (output_t *outputs) { output_t *output; int best_score; int my_score; int score; crtc_t *best_crtc; if (!outputs) return 0; output = outputs; outputs = outputs->next; /* * Score with this output disabled */ output->crtc_info = NULL; best_score = pick_crtcs_score (outputs); if (output->mode_info == NULL) return best_score; best_crtc = NULL; /* * Now score with this output any valid crtc */ for (int c = 0; c < output->output_info->ncrtc; c++) { crtc_t *crtc; crtc = find_crtc_by_xid (output->output_info->crtcs[c]); if (!crtc) fatal ("cannot find crtc 0x%lx\n", output->output_info->crtcs[c]); /* reset crtc allocation for following outputs */ disable_outputs (outputs); if (!check_crtc_for_output (crtc, output)) continue; my_score = 1000; /* slight preference for existing connections */ if (crtc == output->current_crtc_info) my_score++; output->crtc_info = crtc; score = my_score + pick_crtcs_score (outputs); if (score > best_score) { best_crtc = crtc; best_score = score; } } if (output->crtc_info != best_crtc) output->crtc_info = best_crtc; /* * Reset other outputs based on this one using the best crtc */ (void) pick_crtcs_score (outputs); return best_score; } /* * Pick crtcs for any changing outputs that don't have one */ static void pick_crtcs (void) { output_t *output; int saved_crtc_noutput[num_crtcs]; /* * First try to match up newly enabled outputs with spare crtcs */ for (output = all_outputs; output; output = output->next) { if (output->changes && output->mode_info) { if (output->crtc_info) { if (output->crtc_info->crtc_info->noutput > 0 && (output->crtc_info->crtc_info->noutput > 1 || output != find_output_by_xid (output->crtc_info->crtc_info->outputs[0]))) break; } else { output->crtc_info = find_crtc_for_output (output); if (!output->crtc_info) break; } } } /* * Everyone is happy */ if (!output) return; /* * When the simple way fails, see if there is a way * to swap crtcs around and make things work */ for (output = all_outputs; output; output = output->next) output->current_crtc_info = output->crtc_info; /* Mark all CRTC as currently unused */ for (int n = 0; n < num_crtcs; n++) { saved_crtc_noutput[n] = crtcs[n].crtc_info->noutput; crtcs[n].crtc_info->noutput = 0; } pick_crtcs_score (all_outputs); for (int n = 0; n < num_crtcs; n++) crtcs[n].crtc_info->noutput = saved_crtc_noutput[n]; for (output = all_outputs; output; output = output->next) { if (output->mode_info && !output->crtc_info) fatal ("cannot find crtc for output %s\n", output->output.string); if (!output->changes && output->crtc_info != output->current_crtc_info) output->changes |= changes_crtc; } } static int check_strtol(char *s) { char *endptr; int result = strtol(s, &endptr, 10); if (s == endptr) argerr ("failed to parse '%s' as a number\n", s); return result; } static double check_strtod(char *s) { char *endptr; double result = strtod(s, &endptr); if (s == endptr) argerr ("failed to parse '%s' as a number\n", s); return result; } static void * property_values_from_string(const char *str, const Atom type, const int format, int *returned_nitems) { char *tmp; void *returned_bytes = NULL; int nitems = 0, bytes_per_item; if (type != XA_INTEGER && type != XA_CARDINAL) return NULL; /* compute memory needed for Xlib datatype (sigh) */ switch (format) { case 8: bytes_per_item = sizeof(char); break; case 16: bytes_per_item = sizeof(short); break; case 32: bytes_per_item = sizeof(long); break; default: return NULL; } tmp = strdup (str); for (char *token = strtok (tmp, ","); token; token = strtok (NULL, ",")) { char *endptr; long int val = strtol (token, &endptr, 0); if (token == endptr || *endptr != '\0') { argerr ("failed to parse '%s' as a number\n", token); } returned_bytes = realloc (returned_bytes, (nitems + 1) * bytes_per_item); if (type == XA_INTEGER && format == 8) { signed char *ptr = returned_bytes; ptr[nitems] = (char) val; } else if (type == XA_INTEGER && format == 16) { short *ptr = returned_bytes; ptr[nitems] = (short) val; } else if (type == XA_INTEGER && format == 32) { long *ptr = returned_bytes; ptr[nitems] = (long) val; } else if (type == XA_CARDINAL && format == 8) { unsigned char *ptr = returned_bytes; ptr[nitems] = (unsigned char) val; } else if (type == XA_CARDINAL && format == 16) { unsigned short *ptr = returned_bytes; ptr[nitems] = (unsigned short) val; } else if (type == XA_CARDINAL && format == 32) { unsigned long *ptr = returned_bytes; ptr[nitems] = (unsigned long) val; } else { free (tmp); free (returned_bytes); return NULL; } nitems++; } free (tmp); *returned_nitems = nitems; return returned_bytes; } static void print_output_property_value(int value_format, /* 8, 16, 32 */ Atom value_type, /* XA_{ATOM,INTEGER,CARDINAL} */ const void *value_bytes) { if (value_type == XA_ATOM && value_format == 32) { const Atom *val = value_bytes; char *str = XGetAtomName (dpy, *val); if (str != NULL) { printf ("%s", str); XFree (str); return; } } if (value_type == XA_INTEGER) { if (value_format == 8) { const signed char *val = value_bytes; printf ("%d", *val); return; } if (value_format == 16) { const short *val = value_bytes; printf ("%d", *val); return; } if (value_format == 32) { const long *val = value_bytes; printf ("%ld", *val); return; } } if (value_type == XA_CARDINAL) { if (value_format == 8) { const unsigned char *val = value_bytes; printf ("%u", *val); return; } if (value_format == 16) { const unsigned short *val = value_bytes; printf ("%u", *val); return; } if (value_format == 32) { const unsigned long *val = value_bytes; printf ("%lu", *val); return; } } printf ("?"); } static void print_edid(int nitems, const unsigned char *prop) { printf ("\n\t\t"); for (int k = 0; k < nitems; k++) { if (k != 0 && (k % 16) == 0) { printf ("\n\t\t"); } printf("%02" PRIx8, prop[k]); } printf("\n"); } static void print_guid(const unsigned char *prop) { printf("{"); for (int k = 0; k < 16; k++) { printf("%02" PRIX8, prop[k]); if (k == 3 || k == 5 || k == 7 || k == 9) { printf("-"); } } printf("}\n"); } static void print_output_property(const char *atom_name, int value_format, Atom value_type, int nitems, const unsigned char *prop) { int bytes_per_item; switch (value_format) { case 8: bytes_per_item = sizeof(char); break; case 16: bytes_per_item = sizeof(short); break; case 32: bytes_per_item = sizeof(long); break; default: return; } /* * Check for properties that need special formatting. */ if (strcmp (atom_name, "EDID") == 0 && value_format == 8 && value_type == XA_INTEGER) { print_edid (nitems, prop); return; } else if (strcmp (atom_name, "GUID") == 0 && value_format == 8 && value_type == XA_INTEGER && nitems == 16) { print_guid (prop); return; } for (int k = 0; k < nitems; k++) { if (k != 0) { if ((k % 16) == 0) { printf ("\n\t\t"); } } print_output_property_value (value_format, value_type, prop + (k * bytes_per_item)); printf (" "); } printf ("\n"); } static void get_providers (void) { XRRProviderResources *pr; if (!has_1_4 || providers) return; pr = XRRGetProviderResources(dpy, root); num_providers = pr->nproviders; providers = calloc (num_providers, sizeof (provider_t)); if (!providers) fatal ("out of memory\n"); for (int i = 0; i < num_providers; i++) { provider_t *provider = &providers[i]; name_t *name = &provider->provider; XRRProviderInfo *info = XRRGetProviderInfo(dpy, res, pr->providers[i]); provider->info = info; set_name_xid (name, pr->providers[i]); set_name_index (name, i); set_name_string (name, info->name); } XRRFreeProviderResources(pr); } static provider_t * find_provider (name_t *name) { if ((name->kind & name_xid) && name->xid == 0) return NULL; for (int i = 0; i < num_providers; i++) { provider_t *p = &providers[i]; name_kind_t common = name->kind & p->provider.kind; if ((common & name_xid) && name->xid == p->provider.xid) return p; if ((common & name_string) && !strcmp (name->string, p->provider.string)) return p; if ((common & name_index) && name->index == p->provider.index) return p; } printf ("Could not find provider with "); print_name (name); printf ("\n"); exit (1); } static void get_monitors(Bool get_active) { XRRMonitorInfo *m; int n; if (!has_1_5 || monitors) return; m = XRRGetMonitors(dpy, root, get_active, &n); if (n == -1) fatal("get monitors failed\n"); monitors = calloc(1, sizeof (monitors_t)); monitors->n = n; monitors->monitors = m; } int main (int argc, char **argv) { XRRScreenSize *sizes; XRRScreenConfiguration *sc; int nsize; int nrate; Status status = RRSetConfigFailed; int rot = -1; int query = False; int action_requested = False; Rotation current_rotation; XEvent event; XRRScreenChangeNotifyEvent *sce; char *display_name = NULL; SizeID current_size; short current_rate; double rate = -1; int size = -1; int dirind = 0; Bool setit = False; Bool version = False; int event_base, error_base; int reflection = 0; int width = 0, height = 0; Bool have_pixel_size = False; int ret = 0; output_t *config_output = NULL; Bool setit_1_2 = False; Bool query_1_2 = False; Bool modeit = False; Bool propit = False; Bool query_1 = False; Bool list_providers = False; Bool provsetoutsource = False; Bool provsetoffsink = False; Bool monitorit = False; Bool list_monitors = False; Bool list_active_monitors = False; int major, minor; Bool current = False; Bool toggle_x = False; Bool toggle_y = False; program_name = argv[0]; for (int i = 1; i < argc; i++) { if (!strcmp ("-display", argv[i]) || !strcmp ("--display", argv[i]) || !strcmp ("-d", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); display_name = argv[i]; continue; } if (!strcmp("-help", argv[i]) || !strcmp("--help", argv[i])) { usage(); exit(0); } if (!strcmp ("--verbose", argv[i])) { verbose = True; continue; } if (!strcmp ("--dryrun", argv[i])) { dryrun = True; verbose = True; continue; } if (!strcmp ("--nograb", argv[i])) { grab_server = False; continue; } if (!strcmp("--current", argv[i])) { current = True; continue; } if (!strcmp ("-s", argv[i]) || !strcmp ("--size", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); if (sscanf (argv[i], "%dx%d", &width, &height) == 2) { have_pixel_size = True; } else { size = check_strtol(argv[i]); if (size < 0) argerr ("--size argument must be nonnegative\n"); } setit = True; action_requested = True; continue; } if (!strcmp ("-r", argv[i]) || !strcmp ("--rate", argv[i]) || !strcmp ("--refresh", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); rate = check_strtod(argv[i]); setit = True; if (config_output) { config_output->refresh = rate; config_output->changes |= changes_refresh; setit_1_2 = True; } action_requested = True; continue; } if (!strcmp ("-v", argv[i]) || !strcmp ("--version", argv[i])) { version = True; action_requested = True; continue; } if (!strcmp ("-x", argv[i])) { toggle_x = True; setit = True; action_requested = True; continue; } if (!strcmp ("-y", argv[i])) { toggle_y = True; setit = True; action_requested = True; continue; } if (!strcmp ("--screen", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); screen = check_strtol(argv[i]); if (screen < 0) argerr ("--screen argument must be nonnegative\n"); continue; } if (!strcmp ("-q", argv[i]) || !strcmp ("--query", argv[i])) { query = True; continue; } if (!strcmp ("-o", argv[i]) || !strcmp ("--orientation", argv[i])) { char *endptr; if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); dirind = strtol(argv[i], &endptr, 10); if (argv[i] == endptr) { for (dirind = 0; dirind < 4; dirind++) { if (strcmp (direction[dirind], argv[i]) == 0) break; } } if ((dirind < 0) || (dirind > 3)) argerr ("%s: invalid argument '%s'\n", argv[i-1], argv[i]); rot = dirind; setit = True; action_requested = True; continue; } if (!strcmp ("--prop", argv[i]) || !strcmp ("--props", argv[i]) || !strcmp ("--madprops", argv[i]) || !strcmp ("--properties", argv[i])) { query_1_2 = True; properties = True; action_requested = True; continue; } if (!strcmp ("--output", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); config_output = find_output_by_name (argv[i]); if (!config_output) { config_output = add_output (); set_name (&config_output->output, argv[i], name_string|name_xid); } setit_1_2 = True; action_requested = True; continue; } if (!strcmp("--filter", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr("%s requires an argument\n", argv[i-1]); filter_type = -1; for (size_t t = 0; t < sizeof(filter_names) / sizeof(filter_names[0]); t++) { if (!strcmp(filter_names[t], argv[i])) { filter_type = t; break; } } if (filter_type == -1) argerr("Bad argument: %s, for a filter\n", argv[i]); config_output->changes |= changes_filter; action_requested = True; continue; } if (!strcmp ("--crtc", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); set_name (&config_output->crtc, argv[i], name_xid|name_index); config_output->changes |= changes_crtc; continue; } if (!strcmp ("--mode", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); set_name (&config_output->mode, argv[i], name_string|name_xid); config_output->changes |= changes_mode; continue; } if (!strcmp ("--preferred", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); set_name_preferred (&config_output->mode); config_output->changes |= changes_mode; continue; } if (!strcmp ("--pos", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); if (sscanf (argv[i], "%dx%d", &config_output->x, &config_output->y) != 2) argerr ("failed to parse '%s' as a position\n", argv[i]); config_output->changes |= changes_position; continue; } if (!strcmp ("--rotation", argv[i]) || !strcmp ("--rotate", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); for (dirind = 0; dirind < 4; dirind++) { if (strcmp (direction[dirind], argv[i]) == 0) break; } if (dirind == 4) argerr ("%s: invalid argument '%s'\n", argv[i-1], argv[i]); config_output->rotation &= ~0xf; config_output->rotation |= 1 << dirind; config_output->changes |= changes_rotation; continue; } if (!strcmp ("--reflect", argv[i]) || !strcmp ("--reflection", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); for (dirind = 0; dirind < 4; dirind++) { if (strcmp (reflections[dirind], argv[i]) == 0) break; } if (dirind == 4) argerr ("%s: invalid argument '%s'\n", argv[i-1], argv[i]); config_output->rotation &= ~(RR_Reflect_X|RR_Reflect_Y); config_output->rotation |= dirind * RR_Reflect_X; config_output->changes |= changes_reflection; continue; } if (!strcmp ("--left-of", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); config_output->relation = relation_left_of; config_output->relative_to = argv[i]; config_output->changes |= changes_relation; continue; } if (!strcmp ("--right-of", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); config_output->relation = relation_right_of; config_output->relative_to = argv[i]; config_output->changes |= changes_relation; continue; } if (!strcmp ("--above", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); config_output->relation = relation_above; config_output->relative_to = argv[i]; config_output->changes |= changes_relation; continue; } if (!strcmp ("--below", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); config_output->relation = relation_below; config_output->relative_to = argv[i]; config_output->changes |= changes_relation; continue; } if (!strcmp ("--same-as", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); config_output->relation = relation_same_as; config_output->relative_to = argv[i]; config_output->changes |= changes_relation; continue; } if (!strcmp ("--panning", argv[i])) { XRRPanning *pan; if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); pan = &config_output->panning; switch (sscanf (argv[i], "%dx%d+%d+%d/%dx%d+%d+%d/%d/%d/%d/%d", &pan->width, &pan->height, &pan->left, &pan->top, &pan->track_width, &pan->track_height, &pan->track_left, &pan->track_top, &pan->border_left, &pan->border_top, &pan->border_right, &pan->border_bottom)) { case 2: pan->left = pan->top = 0; /* fall through */ case 4: pan->track_left = pan->track_top = pan->track_width = pan->track_height = 0; /* fall through */ case 8: pan->border_left = pan->border_top = pan->border_right = pan->border_bottom = 0; /* fall through */ case 12: break; default: argerr ("%s: invalid argument '%s'\n", argv[i-1], argv[i]); } config_output->changes |= changes_panning; continue; } if (!strcmp ("--gamma", argv[i])) { char junk; if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); if (sscanf(argv[i], "%f:%f:%f%c", &config_output->gamma.red, &config_output->gamma.green, &config_output->gamma.blue, &junk) != 3) { /* check if it's a single floating-point value, * to be applied to all components */ if (sscanf(argv[i], "%f%c", &config_output->gamma.red, &junk) != 1) argerr ("%s: invalid argument '%s'\n", argv[i-1], argv[i]); config_output->gamma.green = config_output->gamma.blue = config_output->gamma.red; } if (config_output->gamma.red <= 0.0 || config_output->gamma.green <= 0.0 || config_output->gamma.blue <= 0.0) argerr ("gamma correction factors must be positive\n"); config_output->changes |= changes_gamma; setit_1_2 = True; continue; } if (!strcmp ("--brightness", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); if (sscanf(argv[i], "%f", &config_output->brightness) != 1) argerr ("%s: invalid argument '%s'\n", argv[i-1], argv[i]); config_output->changes |= changes_gamma; setit_1_2 = True; continue; } if (!strcmp ("--primary", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); config_output->changes |= changes_primary; config_output->primary = True; setit_1_2 = True; continue; } if (!strcmp ("--noprimary", argv[i])) { no_primary = True; setit_1_2 = True; continue; } if (!strcmp ("--set", argv[i])) { output_prop_t *prop; if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (i+2 >= argc) argerr ("%s requires two arguments\n", argv[i]); prop = malloc (sizeof (output_prop_t)); prop->next = config_output->props; config_output->props = prop; prop->name = argv[++i]; prop->value = argv[++i]; propit = True; config_output->changes |= changes_property; setit_1_2 = True; continue; } if (!strcmp ("--scale", argv[i])) { double sx, sy; char junk; if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); if (sscanf (argv[i], "%lfx%lf%c", &sx, &sy, &junk) != 2) { if (sscanf (argv[i], "%lf%c", &sx, &junk) != 1) argerr ("failed to parse '%s' as a scaling factor\n", argv[i]); sy = sx; } if (sx <= 0.0 || sy <= 0.0) argerr ("scaling factors must be positive\n"); init_transform (&config_output->transform); config_output->transform.transform.matrix[0][0] = XDoubleToFixed (sx); config_output->transform.transform.matrix[1][1] = XDoubleToFixed (sy); config_output->transform.transform.matrix[2][2] = XDoubleToFixed (1.0); if (sx != 1 || sy != 1) config_output->transform.filter = "bilinear"; else config_output->transform.filter = "nearest"; config_output->transform.nparams = 0; config_output->transform.params = NULL; config_output->changes |= changes_transform; continue; } if (!strcmp ("--scale-from", argv[i])) { int w, h; if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); if (sscanf (argv[i], "%dx%d", &w, &h) != 2) argerr ("failed to parse '%s' as a scale-from size\n", argv[i]); if (w <=0 || h <= 0) argerr ("--scale-from dimensions must be nonnegative\n"); config_output->scale_from_w = w; config_output->scale_from_h = h; config_output->changes |= changes_transform; continue; } if (!strcmp ("--transform", argv[i])) { double transform[3][3]; if (!config_output) argerr ("%s must be used after --output\n", argv[i]); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); init_transform (&config_output->transform); if (strcmp (argv[i], "none") != 0) { if (sscanf(argv[i], "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf", &transform[0][0],&transform[0][1],&transform[0][2], &transform[1][0],&transform[1][1],&transform[1][2], &transform[2][0],&transform[2][1],&transform[2][2]) != 9) argerr ("failed to parse '%s' as a transformation\n", argv[i]); init_transform (&config_output->transform); for (int k = 0; k < 3; k++) for (int l = 0; l < 3; l++) { config_output->transform.transform.matrix[k][l] = XDoubleToFixed (transform[k][l]); } config_output->transform.filter = "bilinear"; config_output->transform.nparams = 0; config_output->transform.params = NULL; } config_output->changes |= changes_transform; continue; } if (!strcmp ("--off", argv[i])) { if (!config_output) argerr ("%s must be used after --output\n", argv[i]); set_name_xid (&config_output->mode, None); set_name_xid (&config_output->crtc, None); config_output->changes |= changes_mode | changes_crtc; continue; } if (!strcmp ("--fb", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); if (sscanf (argv[i], "%dx%d", &fb_width, &fb_height) != 2) argerr ("failed to parse '%s' as a framebuffer size\n", argv[i]); setit_1_2 = True; action_requested = True; continue; } if (!strcmp ("--fbmm", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); if (sscanf (argv[i], "%dx%d", &fb_width_mm, &fb_height_mm) != 2) argerr ("failed to parse '%s' as a physical size\n", argv[i]); setit_1_2 = True; action_requested = True; continue; } if (!strcmp ("--dpi", argv[i])) { char *strtod_error; if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); dpi = strtod(argv[i], &strtod_error); if (argv[i] == strtod_error) { dpi = 0.0; dpi_output_name = argv[i]; } setit_1_2 = True; action_requested = True; continue; } if (!strcmp ("--auto", argv[i])) { if (config_output) { config_output->automatic = True; config_output->changes |= changes_automatic; } else automatic = True; setit_1_2 = True; action_requested = True; continue; } if (!strcmp ("--q12", argv[i])) { query_1_2 = True; continue; } if (!strcmp ("--q1", argv[i])) { query_1 = True; continue; } if (!strcmp ("--newmode", argv[i])) { umode_t *m = calloc (1, sizeof (umode_t)); double clock; ++i; if (i + 9 >= argc) argerr ("failed to parse '%s' as a mode specification\n", argv[i]); m->mode.name = argv[i]; m->mode.nameLength = strlen (argv[i]); i++; clock = check_strtod(argv[i++]); m->mode.dotClock = clock * 1e6; m->mode.width = check_strtol(argv[i++]); m->mode.hSyncStart = check_strtol(argv[i++]); m->mode.hSyncEnd = check_strtol(argv[i++]); m->mode.hTotal = check_strtol(argv[i++]); m->mode.height = check_strtol(argv[i++]); m->mode.vSyncStart = check_strtol(argv[i++]); m->mode.vSyncEnd = check_strtol(argv[i++]); m->mode.vTotal = check_strtol(argv[i++]); m->mode.modeFlags = 0; while (i < argc) { int f; for (f = 0; mode_flags[f].string; f++) if (!strcasecmp (mode_flags[f].string, argv[i])) break; if (!mode_flags[f].string) break; m->mode.modeFlags |= mode_flags[f].flag; i++; } m->next = umodes; m->action = umode_create; umodes = m; modeit = True; action_requested = True; continue; } if (!strcmp ("--rmmode", argv[i])) { umode_t *m = calloc (1, sizeof (umode_t)); if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); set_name (&m->name, argv[i], name_string|name_xid); m->action = umode_destroy; m->next = umodes; umodes = m; modeit = True; action_requested = True; continue; } if (!strcmp ("--addmode", argv[i])) { umode_t *m = calloc (1, sizeof (umode_t)); if (i+2 >= argc) argerr ("%s requires two arguments\n", argv[i]); set_name (&m->output, argv[++i], name_string|name_xid); set_name (&m->name, argv[++i], name_string|name_xid); m->action = umode_add; m->next = umodes; umodes = m; modeit = True; action_requested = True; continue; } if (!strcmp ("--delmode", argv[i])) { umode_t *m = calloc (1, sizeof (umode_t)); if (i+2 >= argc) argerr ("%s requires two arguments\n", argv[i]); set_name (&m->output, argv[++i], name_string|name_xid); set_name (&m->name, argv[++i], name_string|name_xid); m->action = umode_delete; m->next = umodes; umodes = m; modeit = True; action_requested = True; continue; } if (!strcmp ("--listproviders", argv[i])) { list_providers = True; action_requested = True; continue; } if (!strcmp("--setprovideroutputsource", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); set_name (&provider_name, argv[i], name_string|name_xid|name_index); if (++i>=argc) set_name_xid (&output_source_provider_name, 0); else set_name (&output_source_provider_name, argv[i], name_string|name_xid|name_index); action_requested = True; provsetoutsource = True; continue; } if (!strcmp("--setprovideroffloadsink", argv[i])) { if (++i >= argc) argerr ("%s requires an argument\n", argv[i-1]); set_name (&provider_name, argv[i], name_string|name_xid|name_index); if (++i>=argc) set_name_xid (&offload_sink_provider_name, 0); else set_name (&offload_sink_provider_name, argv[i], name_string|name_xid|name_index); action_requested = True; provsetoffsink = True; continue; } if (!strcmp("--listmonitors", argv[i])) { list_monitors = True; action_requested = True; continue; } if (!strcmp("--listactivemonitors", argv[i])) { list_active_monitors = True; action_requested = True; continue; } if (!strcmp("--setmonitor", argv[i])) { umonitor_t *m = calloc(1, sizeof (umonitor_t)), **l; char *o; char *n; char *geom; if (i+3 >= argc) argerr("%s requires three argument\n", argv[i]); n = argv[++i]; if (*n == '*') { m->primary = True; n++; } m->name = n; m->set = True; geom = argv[++i]; if (strncmp (geom, "auto", 4) != 0) { if (sscanf(geom, "%d/%dx%d/%d+%d+%d", &m->width, &m->mmwidth, &m->height, &m->mmheight, &m->x, &m->y) != 6) argerr ("failed to parse '%s' as monitor geometry\n", argv[i]); } o = argv[++i]; if (strcmp(o, "none") != 0) { char *t; printf ("output list %s\n", o); for (; (t = strtok(o, ",")) != NULL; o = NULL) { m->outputs = realloc(m->outputs, (m->noutput + 1) * sizeof (name_t)); printf ("add monitor %s\n", t); set_name(&m->outputs[m->noutput++], t, name_string|name_xid|name_index); printf ("output name %s\n", m->outputs[m->noutput-1].string); } } for (l = &umonitors; *l; l = &((*l)->next)); *l = m; action_requested = True; monitorit = True; continue; } if (!strcmp("--delmonitor", argv[i])) { umonitor_t *m = calloc(1, sizeof (umonitor_t)), **l; if (++i >= argc) argerr("%s requires an argument\n", argv[i-1]); m->name = argv[i]; m->set = False; for (l = &umonitors; *l; l = &((*l)->next)); *l = m; action_requested = True; monitorit = True; continue; } argerr ("unrecognized option '%s'\n", argv[i]); } if (!action_requested) query = True; if (verbose) { query = True; if (setit && !setit_1_2) query_1 = True; } if (version) printf("xrandr program version " VERSION "\n"); dpy = XOpenDisplay (display_name); if (dpy == NULL) { fprintf (stderr, "Can't open display %s\n", XDisplayName(display_name)); exit (1); } if (screen < 0) screen = DefaultScreen (dpy); if (screen >= ScreenCount (dpy)) { fprintf (stderr, "Invalid screen number %d (display has %d)\n", screen, ScreenCount (dpy)); exit (1); } root = RootWindow (dpy, screen); if (!XRRQueryExtension (dpy, &event_base, &error_base) || !XRRQueryVersion (dpy, &major, &minor)) { fprintf (stderr, "RandR extension missing\n"); exit (1); } if (major > 1 || (major == 1 && minor >= 2)) has_1_2 = True; if (major > 1 || (major == 1 && minor >= 3)) has_1_3 = True; if (major > 1 || (major == 1 && minor >= 4)) has_1_4 = True; if (major > 1 || (major == 1 && minor >= 5)) has_1_5 = True; if (has_1_2 && modeit) { get_screen (True); get_crtcs(); get_outputs(); for (umode_t *m = umodes; m; m = m->next) { XRRModeInfo *e; output_t *o; switch (m->action) { case umode_create: XRRCreateMode (dpy, root, &m->mode); break; case umode_destroy: e = find_mode (&m->name, 0); if (!e) fatal ("cannot find mode \"%s\"\n", m->name.string); XRRDestroyMode (dpy, e->id); break; case umode_add: o = find_output (&m->output); if (!o) fatal ("cannot find output \"%s\"\n", m->output.string); e = find_mode (&m->name, 0); if (!e) fatal ("cannot find mode \"%s\"\n", m->name.string); XRRAddOutputMode (dpy, o->output.xid, e->id); break; case umode_delete: o = find_output (&m->output); if (!o) fatal ("cannot find output \"%s\"\n", m->output.string); e = find_mode (&m->name, 0); if (!e) fatal ("cannot find mode \"%s\"\n", m->name.string); XRRDeleteOutputMode (dpy, o->output.xid, e->id); break; } } if (!propit && !setit_1_2 && !monitorit) { XSync (dpy, False); exit (0); } } if (has_1_2 && propit) { get_screen (True); get_crtcs(); get_outputs(); for (output_t *output = all_outputs; output; output = output->next) { for (output_prop_t *prop = output->props; prop; prop = prop->next) { Atom name = XInternAtom (dpy, prop->name, False); Atom type; int format = 0; unsigned char *data, *malloced_data = NULL; int nelements; int int_value; unsigned long ulong_value; unsigned char *prop_data; int actual_format; unsigned long nitems, bytes_after; Atom actual_type; XRRPropertyInfo *propinfo; type = AnyPropertyType; if (XRRGetOutputProperty (dpy, output->output.xid, name, 0, 100, False, False, AnyPropertyType, &actual_type, &actual_format, &nitems, &bytes_after, &prop_data) == Success && (propinfo = XRRQueryOutputProperty(dpy, output->output.xid, name))) { type = actual_type; format = actual_format; } malloced_data = property_values_from_string (prop->value, type, actual_format, &nelements); if (malloced_data) { data = malloced_data; type = actual_type; format = actual_format; } else if (type == AnyPropertyType && (sscanf (prop->value, "%d", &int_value) == 1 || sscanf (prop->value, "0x%x", &int_value) == 1)) { type = XA_INTEGER; ulong_value = int_value; data = (unsigned char *) &ulong_value; nelements = 1; format = 32; } else if (type == XA_ATOM) { ulong_value = XInternAtom (dpy, prop->value, False); data = (unsigned char *) &ulong_value; nelements = 1; } else if (type == XA_STRING || type == AnyPropertyType) { type = XA_STRING; data = (unsigned char *) prop->value; nelements = strlen (prop->value); format = 8; } else continue; XRRChangeOutputProperty (dpy, output->output.xid, name, type, format, PropModeReplace, data, nelements); free (malloced_data); } } if (!setit_1_2) { XSync (dpy, False); exit (0); } } if (provsetoutsource) { provider_t *provider, *source; if (!has_1_4) fatal ("--setprovideroutputsource requires RandR 1.4\n"); get_screen (True); get_providers (); provider = find_provider (&provider_name); source = find_provider(&output_source_provider_name); XRRSetProviderOutputSource(dpy, provider->provider.xid, source ? source->provider.xid : 0); } if (provsetoffsink) { provider_t *provider, *sink; if (!has_1_4) fatal ("--setprovideroffloadsink requires RandR 1.4\n"); get_screen (True); get_providers (); provider = find_provider (&provider_name); sink = find_provider(&offload_sink_provider_name); XRRSetProviderOffloadSink(dpy, provider->provider.xid, sink ? sink->provider.xid : 0); } if (setit_1_2) { get_screen (True); get_crtcs (); get_outputs (); set_positions (); set_screen_size (); pick_crtcs (); /* * Assign outputs to crtcs */ set_crtcs (); /* * Mark changing crtcs */ mark_changing_crtcs (); /* * If an output was specified to track dpi, use it */ if (dpi_output_name) { output_t *dpi_output = find_output_by_name (dpi_output_name); XRROutputInfo *output_info; XRRModeInfo *mode_info; if (!dpi_output) fatal ("Cannot find output %s\n", dpi_output_name); output_info = dpi_output->output_info; mode_info = dpi_output->mode_info; if (output_info && mode_info && output_info->mm_height) { /* * When this output covers the whole screen, just use * the known physical size */ if (fb_width == mode_info->width && fb_height == mode_info->height) { fb_width_mm = output_info->mm_width; fb_height_mm = output_info->mm_height; } else { dpi = (25.4 * mode_info->height) / output_info->mm_height; } } } /* * Compute physical screen size */ if (fb_width_mm == 0 || fb_height_mm == 0) { if (fb_width != DisplayWidth (dpy, screen) || fb_height != DisplayHeight (dpy, screen) || dpi != 0.0) { if (dpi <= 0) dpi = (25.4 * DisplayHeight (dpy, screen)) / DisplayHeightMM(dpy, screen); fb_width_mm = (25.4 * fb_width) / dpi; fb_height_mm = (25.4 * fb_height) / dpi; } else { fb_width_mm = DisplayWidthMM (dpy, screen); fb_height_mm = DisplayHeightMM (dpy, screen); } } /* * Set panning */ set_panning (); /* * Set gamma on crtc's that belong to the outputs. */ set_gamma (); /* * Now apply all of the changes */ apply (); if (!monitorit) { XSync (dpy, False); exit (0); } } if (monitorit) { if (!has_1_5) { printf("RandR 1.5 not supported\n"); exit(0); } get_screen(True); get_monitors(False); get_crtcs(); get_outputs(); for (umonitor_t *u = umonitors; u; u = u->next) { if (u->set) { Atom name = XInternAtom(dpy, u->name, False); XRRMonitorInfo *m = XRRAllocateMonitor(dpy, u->noutput); m->name = name; m->primary = u->primary; m->x = u->x; m->y = u->y; m->width = u->width; m->height = u->height; m->mwidth = u->mmwidth; m->mheight = u->mmheight; for (int o = 0; o < u->noutput; o++) { output_t *output = find_output(&u->outputs[o]); if (!output) fatal("cannot find output\n"); m->outputs[o] = output->output.xid; } XRRSetMonitor(dpy, root, m); XRRFreeMonitors(m); } else { Atom name = XInternAtom(dpy, u->name, True); if (!name) { printf("No monitor named '%s'\n", u->name); } else { if (!monitors) printf ("No monitors\n"); else { int m; for (m = 0; m < monitors->n; m++) { if (monitors->monitors[m].name == name) break; } if (m == monitors->n) printf("No monitor named '%s'\n", u->name); else XRRDeleteMonitor(dpy, root, name); } } } } XSync (dpy, False); exit (0); } if (query_1_2 || (query && has_1_2 && !query_1)) { #define ModeShown 0x80000000 get_screen (current); get_crtcs (); get_outputs (); printf ("Screen %d: minimum %d x %d, current %d x %d, maximum %d x %d\n", screen, minWidth, minHeight, DisplayWidth (dpy, screen), DisplayHeight(dpy, screen), maxWidth, maxHeight); for (output_t *output = all_outputs; output; output = output->next) { XRROutputInfo *output_info = output->output_info; crtc_t *cur_crtc = output->crtc_info; XRRCrtcInfo *crtc_info = cur_crtc ? cur_crtc->crtc_info : NULL; XRRModeInfo *cur_mode = output->mode_info; int nprop; Rotation rotations = output_rotations (output); printf ("%s %s", output_info->name, connection[output_info->connection]); if (output->primary) { printf(" primary"); } if (cur_mode) { if (crtc_info) { printf (" %dx%d+%d+%d", crtc_info->width, crtc_info->height, crtc_info->x, crtc_info->y); } else { printf (" %dx%d+%d+%d", cur_mode->width, cur_mode->height, output->x, output->y); } if (verbose) printf (" (0x%x)", (int)cur_mode->id); if (output->rotation != RR_Rotate_0 || verbose) { printf (" %s", rotation_name (output->rotation)); if (output->rotation & (RR_Reflect_X|RR_Reflect_Y)) printf (" %s", reflection_name (output->rotation)); } } if (rotations != RR_Rotate_0 || verbose) { Bool first = True; printf (" ("); for (int i = 0; i < 4; i ++) { if ((rotations >> i) & 1) { if (!first) printf (" "); printf("%s", direction[i]); first = False; } } if (rotations & RR_Reflect_X) { if (!first) printf (" "); printf ("x axis"); first = False; } if (rotations & RR_Reflect_Y) { if (!first) printf (" "); printf ("y axis"); } printf (")"); } if (cur_mode) { printf (" %dmm x %dmm", (int)output_info->mm_width, (int)output_info->mm_height); } if (cur_crtc && cur_crtc->panning_info && cur_crtc->panning_info->width > 0) { XRRPanning *pan = cur_crtc->panning_info; printf (" panning %dx%d+%d+%d", pan->width, pan->height, pan->left, pan->top); if ((pan->track_width != 0 && (pan->track_left != pan->left || pan->track_width != pan->width || pan->border_left != 0 || pan->border_right != 0)) || (pan->track_height != 0 && (pan->track_top != pan->top || pan->track_height != pan->height || pan->border_top != 0 || pan->border_bottom != 0))) printf (" tracking %dx%d+%d+%d border %d/%d/%d/%d", pan->track_width, pan->track_height, pan->track_left, pan->track_top, pan->border_left, pan->border_top, pan->border_right, pan->border_bottom); } printf ("\n"); if (verbose) { printf ("\tIdentifier: 0x%x\n", (int)output->output.xid); printf ("\tTimestamp: %d\n", (int)output_info->timestamp); printf ("\tSubpixel: %s\n", order[output_info->subpixel_order]); if (output->gamma.red != 0.0 && output->gamma.green != 0.0 && output->gamma.blue != 0.0) { printf ("\tGamma: %#.2g:%#.2g:%#.2g\n", output->gamma.red, output->gamma.green, output->gamma.blue); printf ("\tBrightness: %#.2g\n", output->brightness); } printf ("\tClones: "); for (int j = 0; j < output_info->nclone; j++) { output_t *clone = find_output_by_xid (output_info->clones[j]); if (clone) printf (" %s", clone->output.string); } printf ("\n"); if (output->crtc_info) printf ("\tCRTC: %d\n", output->crtc_info->crtc.index); printf ("\tCRTCs: "); for (int j = 0; j < output_info->ncrtc; j++) { crtc_t *crtc = find_crtc_by_xid (output_info->crtcs[j]); if (crtc) printf (" %d", crtc->crtc.index); } printf ("\n"); if (output->crtc_info && output->crtc_info->panning_info) { XRRPanning *pan = output->crtc_info->panning_info; printf ("\tPanning: %dx%d+%d+%d\n", pan->width, pan->height, pan->left, pan->top); printf ("\tTracking: %dx%d+%d+%d\n", pan->track_width, pan->track_height, pan->track_left, pan->track_top); printf ("\tBorder: %d/%d/%d/%d\n", pan->border_left, pan->border_top, pan->border_right, pan->border_bottom); } } if (verbose) { printf ("\tTransform: "); for (int y = 0; y < 3; y++) { for (int x = 0; x < 3; x++) printf (" %f", XFixedToDouble (output->transform.transform.matrix[y][x])); if (y < 2) printf ("\n\t "); } if (output->transform.filter) printf ("\n\t filter: %s", output->transform.filter); printf ("\n"); } if (verbose || properties) { Atom *props = XRRListOutputProperties (dpy, output->output.xid, &nprop); for (int j = 0; j < nprop; j++) { unsigned char *prop; int actual_format; unsigned long nitems, bytes_after; Atom actual_type; XRRPropertyInfo *propinfo; char *atom_name = XGetAtomName (dpy, props[j]); XRRGetOutputProperty (dpy, output->output.xid, props[j], 0, 100, False, False, AnyPropertyType, &actual_type, &actual_format, &nitems, &bytes_after, &prop); propinfo = XRRQueryOutputProperty(dpy, output->output.xid, props[j]); printf ("\t%s: ", atom_name); print_output_property(atom_name, actual_format, actual_type, nitems, prop); if (propinfo->range && propinfo->num_values > 0) { printf ("\t\trange%s: ", (propinfo->num_values == 2) ? "" : "s"); for (int k = 0; k < propinfo->num_values / 2; k++) { printf ("("); print_output_property_value (32, actual_type, (unsigned char *) &(propinfo->values[k * 2])); printf (", "); print_output_property_value (32, actual_type, (unsigned char *) &(propinfo->values[k * 2 + 1])); printf (")"); if (k < propinfo->num_values / 2 - 1) printf (", "); } printf ("\n"); } if (!propinfo->range && propinfo->num_values > 0) { printf ("\t\tsupported: "); for (int k = 0; k < propinfo->num_values; k++) { print_output_property_value (32, actual_type, (unsigned char *) &(propinfo->values[k])); if (k < propinfo->num_values - 1) printf (", "); } printf ("\n"); } free(propinfo); } } if (verbose) { for (int j = 0; j < output_info->nmode; j++) { XRRModeInfo *mode = find_mode_by_xid (output_info->modes[j]); if (!mode) { printf (" [Unknown mode ID 0x%x]\n", (int)output_info->modes[j]); continue; } print_verbose_mode (mode, mode == output->mode_info, j < output_info->npreferred); mode->modeFlags |= ModeShown; } } else { Bool *mode_shown = calloc (output_info->nmode, sizeof (Bool)); if (!mode_shown) fatal ("out of memory\n"); for (int j = 0; j < output_info->nmode; j++) { XRRModeInfo *jmode, *kmode; if (mode_shown[j]) continue; jmode = find_mode_by_xid (output_info->modes[j]); if (!jmode) { printf (" [Unknown mode ID 0x%x]\n", (int)output_info->modes[j]); continue; } printf (" "); printf (" %-12s", jmode->name); for (int k = j; k < output_info->nmode; k++) { if (mode_shown[k]) continue; kmode = find_mode_by_xid (output_info->modes[k]); if (!kmode) continue; if (strcmp (jmode->name, kmode->name) != 0) continue; mode_shown[k] = True; kmode->modeFlags |= ModeShown; printf (" %6.2f", mode_refresh (kmode)); if (kmode == output->mode_info) printf ("*"); else printf (" "); if (k < output_info->npreferred) printf ("+"); else printf (" "); } printf ("\n"); } free (mode_shown); } } for (int m = 0; m < res->nmode; m++) { XRRModeInfo *mode = &res->modes[m]; if (!(mode->modeFlags & ModeShown)) print_verbose_mode(mode, False, False); } exit (0); } if (list_providers) { if (!has_1_4) { printf ("RandR 1.4 not supported\n"); exit (0); } get_screen (current); get_providers (); if (providers) { printf("Providers: number : %d\n", num_providers); for (int j = 0; j < num_providers; j++) { provider_t *provider = &providers[j]; XRRProviderInfo *info = provider->info; printf("Provider %d: id: 0x%x cap: 0x%x", j, (int)provider->provider.xid, info->capabilities); for (int k = 0; k < 4; k++) if (info->capabilities & (1 << k)) printf(", %s", capability_name(1<ncrtcs, info->noutputs, info->nassociatedproviders, info->name); } } } if (list_monitors || list_active_monitors) { if (!has_1_5) { printf("RandR 1.5 not supported\n"); exit(0); } get_screen(current); get_monitors(list_active_monitors ? True : False); get_crtcs(); get_outputs(); if (monitors) { printf("Monitors: %d\n", monitors->n); for (int m = 0; m < monitors->n; m++) { printf (" %d: %s%s%s %d/%dx%d/%d+%d+%d ", m, monitors->monitors[m].automatic ? "+" : "", monitors->monitors[m].primary ? "*" : "", XGetAtomName(dpy, monitors->monitors[m].name), monitors->monitors[m].width, monitors->monitors[m].mwidth, monitors->monitors[m].height, monitors->monitors[m].mheight, monitors->monitors[m].x, monitors->monitors[m].y); for (int o = 0; o < monitors->monitors[m].noutput; o++) { output_t *output = find_output_by_xid(monitors->monitors[m].outputs[o]); if (output) printf (" %s", output->output.string); else printf (" unknown output 0x%x\n", (CARD32) monitors->monitors[m].outputs[o]); } printf ("\n"); } } } sc = XRRGetScreenInfo (dpy, root); if (sc == NULL) exit (1); current_size = XRRConfigCurrentConfiguration (sc, ¤t_rotation); sizes = XRRConfigSizes(sc, &nsize); if (have_pixel_size) { for (size = 0; size < nsize; size++) { if (sizes[size].width == width && sizes[size].height == height) break; } if (size >= nsize) { fprintf (stderr, "Size %dx%d not found in available modes\n", width, height); exit (1); } } else if (size < 0) size = current_size; else if (size >= nsize) { fprintf (stderr, "Size index %d is too large, there are only %d sizes\n", size, nsize); exit (1); } if (rot < 0) { for (rot = 0; rot < 4; rot++) if (1 << rot == (current_rotation & 0xf)) break; } current_rate = XRRConfigCurrentRate (sc); if (rate < 0) { if (size == current_size) rate = current_rate; else rate = 0; } else { int i; short *rates = XRRConfigRates (sc, size, &nrate); for (i = 0; i < nrate; i++) if (rate == rates[i]) break; if (i == nrate) { fprintf (stderr, "Rate %.2f Hz not available for this size\n", rate); exit (1); } } if (version) { int major_version, minor_version; XRRQueryVersion (dpy, &major_version, &minor_version); printf("Server reports RandR version %d.%d\n", major_version, minor_version); } if (query || query_1) { printf(" SZ: Pixels Physical Refresh\n"); for (int i = 0; i < nsize; i++) { short *rates; printf ("%c%-2d %5d x %-5d (%4dmm x%4dmm )", i == current_size ? '*' : ' ', i, sizes[i].width, sizes[i].height, sizes[i].mwidth, sizes[i].mheight); rates = XRRConfigRates (sc, i, &nrate); if (nrate) printf (" "); for (int j = 0; j < nrate; j++) printf ("%c%-4d", i == current_size && rates[j] == current_rate ? '*' : ' ', rates[j]); printf ("\n"); } } { Rotation rotations = XRRConfigRotations(sc, ¤t_rotation); if (toggle_x && !(current_rotation & RR_Reflect_X)) reflection |= RR_Reflect_X; if (toggle_y && !(current_rotation & RR_Reflect_Y)) reflection |= RR_Reflect_Y; if (query) { printf("Current rotation - %s\n", rotation_name (current_rotation)); printf("Current reflection - %s\n", reflection_name (current_rotation)); printf ("Rotations possible - "); for (int i = 0; i < 4; i ++) { if ((rotations >> i) & 1) printf("%s ", direction[i]); } printf ("\n"); printf ("Reflections possible - "); if (rotations & (RR_Reflect_X|RR_Reflect_Y)) { if (rotations & RR_Reflect_X) printf ("X Axis "); if (rotations & RR_Reflect_Y) printf ("Y Axis"); } else printf ("none"); printf ("\n"); } } if (verbose) { printf("Setting size to %d, rotation to %s\n", size, direction[rot]); printf ("Setting reflection on "); if (reflection) { if (reflection & RR_Reflect_X) printf ("X Axis "); if (reflection & RR_Reflect_Y) printf ("Y Axis"); } else printf ("neither axis"); printf ("\n"); } /* we should test configureNotify on the root window */ XSelectInput (dpy, root, StructureNotifyMask); if (setit && !dryrun) XRRSelectInput (dpy, root, RRScreenChangeNotifyMask); if (setit && !dryrun) { Rotation rotation = 1 << rot; status = XRRSetScreenConfigAndRate (dpy, sc, root, (SizeID) size, (Rotation) (rotation | reflection), rate, CurrentTime); } if (setit && !dryrun && status == RRSetConfigFailed) { printf ("Failed to change the screen configuration!\n"); ret = 1; } if (verbose && setit && !dryrun && size != current_size) { if (status == RRSetConfigSuccess) { Bool seen_screen = False; while (!seen_screen) { int spo; XNextEvent(dpy, (XEvent *) &event); printf ("Event received, type = %d\n", event.type); /* update Xlib's knowledge of the event */ XRRUpdateConfiguration (&event); if (event.type == ConfigureNotify) printf("Received ConfigureNotify Event!\n"); switch (event.type - event_base) { case RRScreenChangeNotify: sce = (XRRScreenChangeNotifyEvent *) &event; printf("Got a screen change notify event!\n"); printf(" window = %d\n root = %d\n size_index = %d\n rotation %d\n", (int) sce->window, (int) sce->root, sce->size_index, sce->rotation); printf(" timestamp = %ld, config_timestamp = %ld\n", sce->timestamp, sce->config_timestamp); printf(" Rotation = %x\n", sce->rotation); printf(" %d X %d pixels, %d X %d mm\n", sce->width, sce->height, sce->mwidth, sce->mheight); printf("Display width %d, height %d\n", DisplayWidth(dpy, screen), DisplayHeight(dpy, screen)); printf("Display widthmm %d, heightmm %d\n", DisplayWidthMM(dpy, screen), DisplayHeightMM(dpy, screen)); spo = sce->subpixel_order; if ((spo < 0) || (spo > 5)) printf ("Unknown subpixel order, value = %d\n", spo); else printf ("new Subpixel rendering model is %s\n", order[spo]); seen_screen = True; break; default: if (event.type != ConfigureNotify) printf("unknown event received, type = %d!\n", event.type); } } } } XRRFreeScreenConfigInfo(sc); return(ret); }