/* * SiS driver main code * * Copyright (C) 2001-2005 by Thomas Winischhofer, Vienna, Austria. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1) Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3) The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Author: Thomas Winischhofer * - driver entirely rewritten since 2001, only basic structure taken from * old code (except sis_dri.c, sis_shadow.c, sis_accel.c and parts of * sis_dga.c; these were mostly taken over; sis_dri.c was changed for * new versions of the DRI layer) * * This notice covers the entire driver code unless indicated otherwise. * * Formerly based on code which was * Copyright (C) 1998, 1999 by Alan Hourihane, Wigan, England. * Written by: * Alan Hourihane , * Mike Chapman , * Juanjo Santamarta , * Mitani Hiroshi , * David Thomas . */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "sis.h" #include "xf86RAC.h" #include "dixstruct.h" #include "shadowfb.h" #include "fb.h" #include "micmap.h" #include "mibank.h" #include "mipointer.h" #include "mibstore.h" #define _XF86MISC_SERVER_ #include #include "edid.h" #define SIS_NEED_inSISREG #define SIS_NEED_inSISIDXREG #define SIS_NEED_outSISIDXREG #define SIS_NEED_orSISIDXREG #define SIS_NEED_andSISIDXREG #define SIS_NEED_setSISIDXREG #define SIS_NEED_outSISREG #define SIS_NEED_MYMMIO #define SIS_NEED_sisclearvram #include "sis_regs.h" #include "sis_dac.h" #include "sis_driver.h" #define _XF86DGA_SERVER_ #include #include "globals.h" #define DPMS_SERVER #include #ifdef XF86DRI #include "dri.h" #endif /* Globals (yes, these ARE really required to be global) */ #ifdef SISUSEDEVPORT int sisdevport = 0; #endif #ifdef SISDUALHEAD static int SISEntityIndex = -1; #endif #ifdef SISMERGED #ifdef SISXINERAMA static Bool SiSnoPanoramiXExtension = TRUE; static int SiSXineramaNumScreens = 0; static SiSXineramaData *SiSXineramadataPtr = NULL; static int SiSXineramaGeneration; static int SiSProcXineramaQueryVersion(ClientPtr client); static int SiSProcXineramaGetState(ClientPtr client); static int SiSProcXineramaGetScreenCount(ClientPtr client); static int SiSProcXineramaGetScreenSize(ClientPtr client); static int SiSProcXineramaIsActive(ClientPtr client); static int SiSProcXineramaQueryScreens(ClientPtr client); static int SiSSProcXineramaDispatch(ClientPtr client); #endif #endif /* * This is intentionally screen-independent. It indicates the binding * choice made in the first PreInit. */ static int pix24bpp = 0; /* * This contains the functions needed by the server after loading the driver * module. It must be supplied, and gets passed back by the SetupProc * function in the dynamic case. In the static case, a reference to this * is compiled in, and this requires that the name of this DriverRec be * an upper-case version of the driver name. */ #ifdef _X_EXPORT _X_EXPORT #endif DriverRec SIS = { SIS_CURRENT_VERSION, SIS_DRIVER_NAME, SISIdentify, SISProbe, SISAvailableOptions, NULL, 0 #ifdef SIS_HAVE_DRIVER_FUNC , SISDriverFunc #endif }; static SymTabRec SISChipsets[] = { { PCI_CHIP_SIS5597, "SIS5597/5598" }, { PCI_CHIP_SIS530, "SIS530/620" }, { PCI_CHIP_SIS6326, "SIS6326/AGP/DVD" }, { PCI_CHIP_SIS300, "SIS300/305" }, { PCI_CHIP_SIS630, "SIS630/730" }, { PCI_CHIP_SIS540, "SIS540" }, { PCI_CHIP_SIS315, "SIS315" }, { PCI_CHIP_SIS315H, "SIS315H" }, { PCI_CHIP_SIS315PRO, "SIS315PRO/E" }, { PCI_CHIP_SIS550, "SIS550" }, { PCI_CHIP_SIS650, "SIS650/M650/651/740" }, { PCI_CHIP_SIS330, "SIS330(Xabre)" }, { PCI_CHIP_SIS660, "SIS660/[M]661[F|M]X/[M]670/[M]741[GX]/[M]760[GX]/[M]761[GX]/[M]770[GX]" }, { PCI_CHIP_SIS340, "SIS340" }, { -1, NULL } }; static PciChipsets SISPciChipsets[] = { { PCI_CHIP_SIS5597, PCI_CHIP_SIS5597, RES_SHARED_VGA }, { PCI_CHIP_SIS530, PCI_CHIP_SIS530, RES_SHARED_VGA }, { PCI_CHIP_SIS6326, PCI_CHIP_SIS6326, RES_SHARED_VGA }, { PCI_CHIP_SIS300, PCI_CHIP_SIS300, RES_SHARED_VGA }, { PCI_CHIP_SIS630, PCI_CHIP_SIS630, RES_SHARED_VGA }, { PCI_CHIP_SIS540, PCI_CHIP_SIS540, RES_SHARED_VGA }, { PCI_CHIP_SIS550, PCI_CHIP_SIS550, RES_SHARED_VGA }, { PCI_CHIP_SIS315, PCI_CHIP_SIS315, RES_SHARED_VGA }, { PCI_CHIP_SIS315H, PCI_CHIP_SIS315H, RES_SHARED_VGA }, { PCI_CHIP_SIS315PRO, PCI_CHIP_SIS315PRO, RES_SHARED_VGA }, { PCI_CHIP_SIS650, PCI_CHIP_SIS650, RES_SHARED_VGA }, { PCI_CHIP_SIS330, PCI_CHIP_SIS330, RES_SHARED_VGA }, { PCI_CHIP_SIS660, PCI_CHIP_SIS660, RES_SHARED_VGA }, { PCI_CHIP_SIS340, PCI_CHIP_SIS340, RES_SHARED_VGA }, { -1, -1, RES_UNDEFINED } }; static SymTabRec XGIChipsets[] = { { PCI_CHIP_XGIXG20, "Volari Z7 (XG20)" }, { PCI_CHIP_XGIXG40, "Volari V3XT/V5/V8/Duo (XG40)" }, { -1, NULL } }; static PciChipsets XGIPciChipsets[] = { { PCI_CHIP_XGIXG20, PCI_CHIP_XGIXG20, RES_SHARED_VGA }, { PCI_CHIP_XGIXG40, PCI_CHIP_XGIXG40, RES_SHARED_VGA }, { -1, -1, RES_UNDEFINED } }; #ifdef SIS_USE_XAA static const char *xaaSymbols[] = { "XAACreateInfoRec", "XAADestroyInfoRec", "XAAHelpPatternROP", "XAAInit", NULL }; #endif #ifdef SIS_USE_EXA static const char *exaSymbols[] = { "exaDriverAccel", "exaDriverInit", "exaDriverFini", "exaOffscreenAlloc", "exaOffscreenFree", NULL }; #endif static const char *fbSymbols[] = { "fbPictureInit", "fbScreenInit", NULL }; static const char *shadowSymbols[] = { "ShadowFBInit", NULL }; static const char *ramdacSymbols[] = { "xf86CreateCursorInfoRec", "xf86DestroyCursorInfoRec", "xf86InitCursor", NULL }; static const char *ddcSymbols[] = { "xf86PrintEDID", "xf86SetDDCproperties", "xf86InterpretEDID", NULL }; static const char *int10Symbols[] = { "xf86FreeInt10", "xf86InitInt10", NULL }; static const char *vbeSymbols[] = { #if XF86_VERSION_CURRENT < XF86_VERSION_NUMERIC(4,2,99,0,0) "VBEInit", #else "VBEExtendedInit", #endif "vbeDoEDID", "vbeFree", "VBEGetVBEInfo", "VBEFreeVBEInfo", "VBEGetModeInfo", "VBEFreeModeInfo", "VBESaveRestore", "VBESetVBEMode", "VBEGetVBEMode", "VBESetDisplayStart", "VBESetGetLogicalScanlineLength", NULL }; #ifdef XF86DRI static const char *drmSymbols[] = { "drmAddMap", "drmAgpAcquire", "drmAgpRelease", "drmAgpAlloc", "drmAgpFree", "drmAgpBase", "drmAgpBind", "drmAgpUnbind", "drmAgpEnable", "drmAgpGetMode", "drmCtlInstHandler", "drmCtlUninstHandler", "drmGetInterruptFromBusID", #ifndef SISHAVEDRMWRITE "drmSiSAgpInit", #else "drmCommandWrite", #endif #if XF86_VERSION_CURRENT >= XF86_VERSION_NUMERIC(4,3,0,0,0) "drmGetVersion", "drmFreeVersion", #endif NULL }; static const char *driSymbols[] = { "DRICreateInfoRec", "DRIScreenInit", "DRIFinishScreenInit", "DRIDestroyInfoRec", "DRICloseScreen", "DRIGetSAREAPrivate", "DRILock", "DRIUnlock", "DRIQueryVersion", "GlxSetVisualConfigs", NULL }; #ifdef XFree86LOADER static const char *driRefSymbols[] = { "DRICreatePCIBusID", /* not REQUIRED, but eventually referenced */ NULL }; #endif #endif /* XF86DRI */ #ifdef XFree86LOADER static MODULESETUPPROTO(sisSetup); static XF86ModuleVersionInfo sisVersRec = { SIS_DRIVER_NAME, MODULEVENDORSTRING, MODINFOSTRING1, MODINFOSTRING2, #ifdef XORG_VERSION_CURRENT XORG_VERSION_CURRENT, #else XF86_VERSION_CURRENT, #endif SIS_MAJOR_VERSION, SIS_MINOR_VERSION, SIS_PATCHLEVEL, ABI_CLASS_VIDEODRV, /* This is a video driver */ ABI_VIDEODRV_VERSION, MOD_CLASS_VIDEODRV, {0,0,0,0} }; #ifdef _X_EXPORT _X_EXPORT #endif XF86ModuleData sisModuleData = { &sisVersRec, sisSetup, NULL }; pointer sisSetup(pointer module, pointer opts, int *errmaj, int *errmin) { static Bool setupDone = FALSE; if(!setupDone) { setupDone = TRUE; xf86AddDriver(&SIS, module, SIS_HaveDriverFuncs); LoaderRefSymLists(fbSymbols, #ifdef SIS_USE_XAA xaaSymbols, #endif #ifdef SIS_USE_EXA exaSymbols, #endif shadowSymbols, ramdacSymbols, vbeSymbols, int10Symbols, #ifdef XF86DRI drmSymbols, driSymbols, driRefSymbols, #endif NULL); return (pointer)TRUE; } if(errmaj) *errmaj = LDR_ONCEONLY; return NULL; } #endif /* XFree86LOADER */ /* Mandatory */ static void SISIdentify(int flags) { xf86PrintChipsets(SIS_NAME, "driver for SiS chipsets", SISChipsets); xf86PrintChipsets(SIS_NAME, "driver for XGI chipsets", XGIChipsets); } #ifdef SIS_HAVE_DRIVER_FUNC static Bool SISDriverFunc(ScrnInfoPtr pScrn, xorgDriverFuncOp op, pointer ptr) { CARD32 *flag; switch(op) { case RR_GET_INFO: break; case RR_SET_CONFIG: break; case GET_REQUIRED_HW_INTERFACES: break; } return TRUE; } #endif static Bool SISGetRec(ScrnInfoPtr pScrn) { /* Allocate an SISRec, and hook it into pScrn->driverPrivate. * pScrn->driverPrivate is initialised to NULL, so we can check if * the allocation has already been done. */ if(pScrn->driverPrivate != NULL) return TRUE; pScrn->driverPrivate = xnfcalloc(sizeof(SISRec), 1); /* Initialise it to 0 */ memset(pScrn->driverPrivate, 0, sizeof(SISRec)); return TRUE; } static void SISFreeRec(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = NULL; #endif /* Just to make sure... */ if(!pSiS) return; #ifdef SISDUALHEAD pSiSEnt = pSiS->entityPrivate; #endif if(pSiS->pstate) xfree(pSiS->pstate); pSiS->pstate = NULL; if(pSiS->fonts) xfree(pSiS->fonts); pSiS->fonts = NULL; #ifdef SISDUALHEAD if(pSiSEnt) { if(!pSiS->SecondHead) { /* Free memory only if we are first head; in case of an error * during init of the second head, the server will continue - * and we need the BIOS image and SiS_Private for the first * head. */ if(pSiSEnt->BIOS) xfree(pSiSEnt->BIOS); pSiSEnt->BIOS = pSiS->BIOS = NULL; if(pSiSEnt->SiS_Pr) xfree(pSiSEnt->SiS_Pr); pSiSEnt->SiS_Pr = pSiS->SiS_Pr = NULL; if(pSiSEnt->RenderAccelArray) xfree(pSiSEnt->RenderAccelArray); pSiSEnt->RenderAccelArray = pSiS->RenderAccelArray = NULL; pSiSEnt->pScrn_1 = NULL; } else { pSiS->BIOS = NULL; pSiS->SiS_Pr = NULL; pSiS->RenderAccelArray = NULL; pSiSEnt->pScrn_2 = NULL; } } else { #endif if(pSiS->BIOS) xfree(pSiS->BIOS); pSiS->BIOS = NULL; if(pSiS->SiS_Pr) xfree(pSiS->SiS_Pr); pSiS->SiS_Pr = NULL; if(pSiS->RenderAccelArray) xfree(pSiS->RenderAccelArray); pSiS->RenderAccelArray = NULL; #ifdef SISDUALHEAD } #endif #ifdef SISMERGED if(pSiS->CRT2HSync) xfree(pSiS->CRT2HSync); pSiS->CRT2HSync = NULL; if(pSiS->CRT2VRefresh) xfree(pSiS->CRT2VRefresh); pSiS->CRT2VRefresh = NULL; if(pSiS->MetaModes) xfree(pSiS->MetaModes); pSiS->MetaModes = NULL; if(pSiS->CRT2pScrn) { if(pSiS->CRT2pScrn->modes) { while(pSiS->CRT2pScrn->modes) xf86DeleteMode(&pSiS->CRT2pScrn->modes, pSiS->CRT2pScrn->modes); } if(pSiS->CRT2pScrn->monitor) { if(pSiS->CRT2pScrn->monitor->Modes) { while(pSiS->CRT2pScrn->monitor->Modes) xf86DeleteMode(&pSiS->CRT2pScrn->monitor->Modes, pSiS->CRT2pScrn->monitor->Modes); } if(pSiS->CRT2pScrn->monitor->DDC) xfree(pSiS->CRT2pScrn->monitor->DDC); xfree(pSiS->CRT2pScrn->monitor); } xfree(pSiS->CRT2pScrn); pSiS->CRT2pScrn = NULL; } if(pSiS->CRT1Modes) { if(pSiS->CRT1Modes != pScrn->modes) { if(pScrn->modes) { pScrn->currentMode = pScrn->modes; do { DisplayModePtr p = pScrn->currentMode->next; if(pScrn->currentMode->Private) xfree(pScrn->currentMode->Private); xfree(pScrn->currentMode); pScrn->currentMode = p; } while(pScrn->currentMode != pScrn->modes); } pScrn->currentMode = pSiS->CRT1CurrentMode; pScrn->modes = pSiS->CRT1Modes; pSiS->CRT1CurrentMode = NULL; pSiS->CRT1Modes = NULL; } } #endif while(pSiS->SISVESAModeList) { sisModeInfoPtr mp = pSiS->SISVESAModeList->next; xfree(pSiS->SISVESAModeList); pSiS->SISVESAModeList = mp; } if(pSiS->pVbe) vbeFree(pSiS->pVbe); pSiS->pVbe = NULL; #ifdef SISUSEDEVPORT if(pSiS->sisdevportopen) close(sisdevport); #endif if(pScrn->driverPrivate == NULL) return; xfree(pScrn->driverPrivate); pScrn->driverPrivate = NULL; } static void SISErrorLog(ScrnInfoPtr pScrn, const char *format, ...) { va_list ap; static const char *str = "**************************************************\n"; va_start(ap, format); xf86DrvMsg(pScrn->scrnIndex, X_ERROR, str); xf86DrvMsg(pScrn->scrnIndex, X_ERROR, " ERROR:\n"); xf86VDrvMsgVerb(pScrn->scrnIndex, X_ERROR, 1, format, ap); va_end(ap); xf86DrvMsg(pScrn->scrnIndex, X_ERROR, " END OF MESSAGE\n"); xf86DrvMsg(pScrn->scrnIndex, X_ERROR, str); } static void SiS_SiSFB_Lock(ScrnInfoPtr pScrn, Bool lock) { SISPtr pSiS = SISPTR(pScrn); int fd; CARD32 parm; if(!pSiS->sisfbfound) return; if(!pSiS->sisfb_havelock) return; if((fd = open(pSiS->sisfbdevname, O_RDONLY)) != -1) { parm = lock ? 1 : 0; ioctl(fd, SISFB_SET_LOCK, &parm); close(fd); } } /* Probe() * * Mandatory */ static Bool SISProbe(DriverPtr drv, int flags) { int i; GDevPtr *devSections; int *usedChipsSiS, *usedChipsXGI; int numDevSections; int numUsed, numUsedSiS, numUsedXGI; Bool foundScreen = FALSE; /* * The aim here is to find all cards that this driver can handle, * and for the ones not already claimed by another driver, claim the * slot, and allocate a ScrnInfoRec. * * This should be a minimal probe, and it should under no circumstances * change the state of the hardware. Because a device is found, don't * assume that it will be used. Don't do any initialisations other than * the required ScrnInfoRec initialisations. Don't allocate any new * data structures. * */ /* * Next we check, if there has been a chipset override in the config file. * For this we must find out if there is an active device section which * is relevant, i.e., which has no driver specified or has THIS driver * specified. */ if((numDevSections = xf86MatchDevice(SIS_DRIVER_NAME, &devSections)) <= 0) { /* * There's no matching device section in the config file, so quit * now. */ return FALSE; } /* * We need to probe the hardware first. We then need to see how this * fits in with what is given in the config file, and allow the config * file info to override any contradictions. */ /* * All of the cards this driver supports are PCI, so the "probing" just * amounts to checking the PCI data that the server has already collected. */ #ifndef XSERVER_LIBPCIACCESS if(xf86GetPciVideoInfo() == NULL) { /* * We won't let anything in the config file override finding no * PCI video cards at all. */ return FALSE; } #endif numUsedSiS = xf86MatchPciInstances(SIS_NAME, PCI_VENDOR_SIS, SISChipsets, SISPciChipsets, devSections, numDevSections, drv, &usedChipsSiS); numUsedXGI = xf86MatchPciInstances(SIS_NAME, PCI_VENDOR_XGI, XGIChipsets, XGIPciChipsets, devSections, numDevSections, drv, &usedChipsXGI); /* Free it since we don't need that list after this */ xfree(devSections); numUsed = numUsedSiS + numUsedXGI; if(numUsed <= 0) return FALSE; if(flags & PROBE_DETECT) { foundScreen = TRUE; } else for(i = 0; i < numUsed; i++) { ScrnInfoPtr pScrn; #ifdef SISDUALHEAD EntityInfoPtr pEnt; #endif /* Allocate a ScrnInfoRec and claim the slot */ pScrn = NULL; if((pScrn = xf86ConfigPciEntity(pScrn, 0, (i < numUsedSiS) ? usedChipsSiS[i] : usedChipsXGI[i-numUsedSiS], (i < numUsedSiS) ? SISPciChipsets : XGIPciChipsets, NULL, NULL, NULL, NULL, NULL))) { /* Fill in what we can of the ScrnInfoRec */ pScrn->driverVersion = SIS_CURRENT_VERSION; pScrn->driverName = SIS_DRIVER_NAME; pScrn->name = SIS_NAME; pScrn->Probe = SISProbe; pScrn->PreInit = SISPreInit; pScrn->ScreenInit = SISScreenInit; pScrn->SwitchMode = SISSwitchMode; pScrn->AdjustFrame = SISAdjustFrame; pScrn->EnterVT = SISEnterVT; pScrn->LeaveVT = SISLeaveVT; pScrn->FreeScreen = SISFreeScreen; pScrn->ValidMode = SISValidMode; #ifdef X_XF86MiscPassMessage if(xf86GetVersion() >= XF86_VERSION_NUMERIC(4,3,99,2,0)) { pScrn->HandleMessage = SISHandleMessage; } #endif foundScreen = TRUE; } #ifdef SISDUALHEAD pEnt = xf86GetEntityInfo((i < numUsedSiS) ? usedChipsSiS[i] : usedChipsXGI[i-numUsedSiS]); if(pEnt->chipset == PCI_CHIP_SIS630 || pEnt->chipset == PCI_CHIP_SIS540 || pEnt->chipset == PCI_CHIP_SIS650 || pEnt->chipset == PCI_CHIP_SIS550 || pEnt->chipset == PCI_CHIP_SIS315 || pEnt->chipset == PCI_CHIP_SIS315H || pEnt->chipset == PCI_CHIP_SIS315PRO || pEnt->chipset == PCI_CHIP_SIS330 || pEnt->chipset == PCI_CHIP_SIS300 || pEnt->chipset == PCI_CHIP_SIS660 || pEnt->chipset == PCI_CHIP_SIS340 || pEnt->chipset == PCI_CHIP_XGIXG40) { SISEntPtr pSiSEnt = NULL; DevUnion *pPriv; xf86SetEntitySharable((i < numUsedSiS) ? usedChipsSiS[i] : usedChipsXGI[i-numUsedSiS]); if(SISEntityIndex < 0) { SISEntityIndex = xf86AllocateEntityPrivateIndex(); } pPriv = xf86GetEntityPrivate(pScrn->entityList[0], SISEntityIndex); if(!pPriv->ptr) { pPriv->ptr = xnfcalloc(sizeof(SISEntRec), 1); pSiSEnt = pPriv->ptr; memset(pSiSEnt, 0, sizeof(SISEntRec)); pSiSEnt->lastInstance = -1; } else { pSiSEnt = pPriv->ptr; } pSiSEnt->lastInstance++; xf86SetEntityInstanceForScreen(pScrn, pScrn->entityList[0], pSiSEnt->lastInstance); } #endif /* DUALHEAD */ } if(usedChipsSiS) xfree(usedChipsSiS); if(usedChipsXGI) xfree(usedChipsXGI); return foundScreen; } /* Various helpers */ static unsigned short calcgammaval(int j, int nramp, float invgamma, float bri, float c) { float k = (float)j; float nrm1 = (float)(nramp - 1); float con = c * nrm1 / 3.0; float l, v; if(con != 0.0) { l = nrm1 / 2.0; if(con <= 0.0) { k -= l; k *= (l + con) / l; } else { l -= 1.0; k -= l; k *= l / (l - con); } k += l; if(k < 0.0) k = 0.0; } if(invgamma == 1.0) { v = k / nrm1 * 65535.0; } else { v = pow(k / nrm1, invgamma) * 65535.0 + 0.5; } v += (bri * (65535.0 / 3.0)) ; if(v < 0.0) v = 0.0; else if(v > 65535.0) v = 65535.0; return (unsigned short)v; } #ifdef SISGAMMARAMP void SISCalculateGammaRamp(ScreenPtr pScreen, ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int i, j, nramp; UShort *ramp[3]; float gamma_max[3], framp; Bool newmethod = FALSE; if(!(pSiS->SiS_SD3_Flags & SiS_SD3_OLDGAMMAINUSE)) { newmethod = TRUE; } else { gamma_max[0] = (float)pSiS->GammaBriR / 1000; gamma_max[1] = (float)pSiS->GammaBriG / 1000; gamma_max[2] = (float)pSiS->GammaBriB / 1000; } if(!(nramp = xf86GetGammaRampSize(pScreen))) return; for(i=0; i<3; i++) { ramp[i] = (UShort *)xalloc(nramp * sizeof(UShort)); if(!ramp[i]) { if(ramp[0]) { xfree(ramp[0]); ramp[0] = NULL; } if(ramp[1]) { xfree(ramp[1]); ramp[1] = NULL; } return; } } if(newmethod) { for(i = 0; i < 3; i++) { float invgamma = 0.0, bri = 0.0, con = 0.0; switch(i) { case 0: invgamma = 1. / pScrn->gamma.red; bri = pSiS->NewGammaBriR; con = pSiS->NewGammaConR; break; case 1: invgamma = 1. / pScrn->gamma.green; bri = pSiS->NewGammaBriG; con = pSiS->NewGammaConG; break; case 2: invgamma = 1. / pScrn->gamma.blue; bri = pSiS->NewGammaBriB; con = pSiS->NewGammaConB; break; } for(j = 0; j < nramp; j++) { ramp[i][j] = calcgammaval(j, nramp, invgamma, bri, con); } } } else { for(i = 0; i < 3; i++) { int fullscale = 65535 * gamma_max[i]; float dramp = 1. / (nramp - 1); float invgamma = 0.0, v; switch(i) { case 0: invgamma = 1. / pScrn->gamma.red; break; case 1: invgamma = 1. / pScrn->gamma.green; break; case 2: invgamma = 1. / pScrn->gamma.blue; break; } for(j = 0; j < nramp; j++) { framp = pow(j * dramp, invgamma); v = (fullscale < 0) ? (65535 + fullscale * framp) : fullscale * framp; if(v < 0) v = 0; else if(v > 65535) v = 65535; ramp[i][j] = (UShort)v; } } } xf86ChangeGammaRamp(pScreen, nramp, ramp[0], ramp[1], ramp[2]); xfree(ramp[0]); xfree(ramp[1]); xfree(ramp[2]); ramp[0] = ramp[1] = ramp[2] = NULL; } #endif void SISCalculateGammaRampCRT2(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int i; int myshift = 16 - pScrn->rgbBits; int maxvalue = (1 << pScrn->rgbBits) - 1; int reds = pScrn->mask.red >> pScrn->offset.red; int greens = pScrn->mask.green >> pScrn->offset.green; int blues = pScrn->mask.blue >> pScrn->offset.blue; float framp, invgamma1, invgamma2, invgamma3, v; invgamma1 = 1. / pSiS->GammaR2; invgamma2 = 1. / pSiS->GammaG2; invgamma3 = 1. / pSiS->GammaB2; if(!(pSiS->SiS_SD3_Flags & SiS_SD3_OLDGAMMAINUSE)) { for(i = 0; i < pSiS->CRT2ColNum; i++) { pSiS->crt2gcolortable[i].red = calcgammaval(i, pSiS->CRT2ColNum, invgamma1, pSiS->NewGammaBriR2, pSiS->NewGammaConR2) >> myshift; pSiS->crt2gcolortable[i].green = calcgammaval(i, pSiS->CRT2ColNum, invgamma2, pSiS->NewGammaBriG2, pSiS->NewGammaConG2) >> myshift; pSiS->crt2gcolortable[i].blue = calcgammaval(i, pSiS->CRT2ColNum, invgamma3, pSiS->NewGammaBriB2, pSiS->NewGammaConB2) >> myshift; } } else { int fullscale1 = 65536 * (float)pSiS->GammaBriR2 / 1000; int fullscale2 = 65536 * (float)pSiS->GammaBriG2 / 1000; int fullscale3 = 65536 * (float)pSiS->GammaBriB2 / 1000; float dramp = 1. / (pSiS->CRT2ColNum - 1); for(i = 0; i < pSiS->CRT2ColNum; i++) { framp = pow(i * dramp, invgamma1); v = (fullscale1 < 0) ? (65535 + fullscale1 * framp) : fullscale1 * framp; if(v < 0) v = 0; else if(v > 65535) v = 65535; pSiS->crt2gcolortable[i].red = ((UShort)v) >> myshift; framp = pow(i * dramp, invgamma2); v = (fullscale2 < 0) ? (65535 + fullscale2 * framp) : fullscale2 * framp; if(v < 0) v = 0; else if(v > 65535) v = 65535; pSiS->crt2gcolortable[i].green = ((UShort)v) >> myshift; framp = pow(i * dramp, invgamma3); v = (fullscale3 < 0) ? (65535 + fullscale3 * framp) : fullscale3 * framp; if(v < 0) v = 0; else if(v > 65535) v = 65535; pSiS->crt2gcolortable[i].blue = ((UShort)v) >> myshift; } } for(i = 0; i < pSiS->CRT2ColNum; i++) { pSiS->crt2colors[i].red = pSiS->crt2gcolortable[i * maxvalue / reds].red; pSiS->crt2colors[i].green = pSiS->crt2gcolortable[i * maxvalue / greens].green; pSiS->crt2colors[i].blue = pSiS->crt2gcolortable[i * maxvalue / blues].blue; } } /* If monitor section has no HSync/VRefresh data, * derive it from DDC data. */ static void SiSSetSyncRangeFromEdid(ScrnInfoPtr pScrn, int flag) { MonPtr mon = pScrn->monitor; xf86MonPtr ddc = mon->DDC; float myhhigh = 0.0, myhlow = 0.0, htest; int myvhigh = 0, myvlow = 0, vtest, i; UChar temp; const myhddctiming myhtiming[12] = { { 1, 0x20, 31.6 }, /* rounded up by .1 */ { 1, 0x80, 31.6 }, { 1, 0x02, 35.3 }, { 1, 0x04, 37.6 }, { 1, 0x08, 38.0 }, { 1, 0x01, 38.0 }, { 2, 0x40, 47.0 }, { 2, 0x80, 48.2 }, { 2, 0x08, 48.5 }, { 2, 0x04, 56.6 }, { 2, 0x02, 60.1 }, { 2, 0x01, 80.1 } }; const myvddctiming myvtiming[11] = { { 1, 0x02, 56 }, { 1, 0x01, 60 }, { 2, 0x08, 60 }, { 2, 0x04, 70 }, { 1, 0x80, 71 }, { 1, 0x08, 72 }, { 2, 0x80, 72 }, { 1, 0x04, 75 }, { 2, 0x40, 75 }, { 2, 0x02, 75 }, { 2, 0x01, 75 } }; if(flag) { /* HSync */ for(i = 0; i < 4; i++) { if(ddc->det_mon[i].type == DS_RANGES) { mon->nHsync = 1; mon->hsync[0].lo = ddc->det_mon[i].section.ranges.min_h; mon->hsync[0].hi = ddc->det_mon[i].section.ranges.max_h; if(mon->hsync[0].lo > 32.0 || mon->hsync[0].hi < 31.0) { if(ddc->timings1.t1 & 0x80) { mon->nHsync++; mon->hsync[1].lo = 31.0; mon->hsync[1].hi = 32.0; } } return; } } /* If no sync ranges detected in detailed timing table, we * derive them from supported VESA modes. */ for(i = 0; i < 12; i++) { if(myhtiming[i].whichone == 1) temp = ddc->timings1.t1; else temp = ddc->timings1.t2; if(temp & myhtiming[i].mask) { if((i == 0) || (myhlow > myhtiming[i].rate)) myhlow = myhtiming[i].rate; } if(myhtiming[11-i].whichone == 1) temp = ddc->timings1.t1; else temp = ddc->timings1.t2; if(temp & myhtiming[11-i].mask) { if((i == 0) || (myhhigh < myhtiming[11-i].rate)) myhhigh = myhtiming[11-i].rate; } } for(i = 0; i < STD_TIMINGS; i++) { if(ddc->timings2[i].hsize > 256) { htest = ddc->timings2[i].refresh * 1.05 * ddc->timings2[i].vsize / 1000.0; if(htest < myhlow) myhlow = htest; if(htest > myhhigh) myhhigh = htest; } } if((myhhigh > 0.0) && (myhlow > 0.0)) { mon->nHsync = 1; mon->hsync[0].lo = myhlow - 0.1; mon->hsync[0].hi = myhhigh; } } else { /* Vrefresh */ for(i = 0; i < 4; i++) { if(ddc->det_mon[i].type == DS_RANGES) { mon->nVrefresh = 1; mon->vrefresh[0].lo = ddc->det_mon[i].section.ranges.min_v; mon->vrefresh[0].hi = ddc->det_mon[i].section.ranges.max_v; if(mon->vrefresh[0].lo > 72 || mon->vrefresh[0].hi < 70) { if(ddc->timings1.t1 & 0x80) { mon->nVrefresh++; mon->vrefresh[1].lo = 71; mon->vrefresh[1].hi = 71; } } return; } } for(i = 0; i < 11; i++) { if(myvtiming[i].whichone == 1) temp = ddc->timings1.t1; else temp = ddc->timings1.t2; if(temp & myvtiming[i].mask) { if((i == 0) || (myvlow > myvtiming[i].rate)) myvlow = myvtiming[i].rate; } if(myvtiming[10-i].whichone == 1) temp = ddc->timings1.t1; else temp = ddc->timings1.t2; if(temp & myvtiming[10-i].mask) { if((i == 0) || (myvhigh < myvtiming[10-i].rate)) myvhigh = myvtiming[10-i].rate; } } for(i = 0; i < STD_TIMINGS; i++) { if(ddc->timings2[i].hsize > 256) { vtest = ddc->timings2[i].refresh; if(vtest < myvlow) myvlow = vtest; if(vtest > myvhigh) myvhigh = vtest; } } if((myvhigh > 0) && (myvlow > 0)) { mon->nVrefresh = 1; mon->vrefresh[0].lo = myvlow; mon->vrefresh[0].hi = myvhigh; } } } static Bool SiSAllowSyncOverride(SISPtr pSiS, Bool fromDDC) { if(!(pSiS->VBFlags2 & VB2_VIDEOBRIDGE)) return FALSE; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) { if((pSiS->VBFlags & CRT1_LCDA) && (!fromDDC)) return TRUE; } else { if((pSiS->VBFlags & CRT2_TV) || ((pSiS->VBFlags & CRT2_LCD) && (!fromDDC))) return TRUE; } return FALSE; } #endif #ifdef SISMERGED if(pSiS->MergedFB) { if((pSiS->VBFlags & CRT1_LCDA) && (!fromDDC)) return TRUE; return FALSE; } #endif if(!(pSiS->VBFlags & DISPTYPE_CRT1)) { if( (pSiS->VBFlags & CRT2_TV) || ((pSiS->VBFlags & CRT2_LCD) && (!fromDDC)) ) return TRUE; } else if((pSiS->VBFlags & CRT1_LCDA) && (!fromDDC)) return TRUE; return FALSE; } static Bool SiSCheckForH(float hsync, MonPtr monitor) { int i; for(i = 0; i < monitor->nHsync; i++) { if((hsync > monitor->hsync[i].lo * (1.0 - SYNC_TOLERANCE)) && (hsync < monitor->hsync[i].hi * (1.0 + SYNC_TOLERANCE))) break; } if(i == monitor->nHsync) return FALSE; return TRUE; } static Bool SiSCheckForV(float vrefresh, MonPtr monitor) { int i; for(i = 0; i < monitor->nVrefresh; i++) { if((vrefresh > monitor->vrefresh[i].lo * (1.0 - SYNC_TOLERANCE)) && (vrefresh < monitor->vrefresh[i].hi * (1.0 + SYNC_TOLERANCE))) break; } if(i == monitor->nVrefresh) return FALSE; return TRUE; } static Bool CheckAndOverruleH(ScrnInfoPtr pScrn, MonPtr monitor) { DisplayModePtr mode = monitor->Modes; float mymin = 30.0, mymax = 80.0, hsync; Bool doit = FALSE; for(hsync = mymin; hsync <= mymax; hsync += .5) { if(!SiSCheckForH(hsync, monitor)) doit = TRUE; } if(mode) { do { if(mode->type & M_T_BUILTIN) { hsync = (float)mode->Clock / (float)mode->HTotal; if(!SiSCheckForH(hsync, monitor)) { doit = TRUE; if(hsync < mymin) mymin = hsync; if(hsync > mymax) mymax = hsync; } } } while((mode = mode->next)); } if(doit) { monitor->nHsync = 1; monitor->hsync[0].lo = mymin; monitor->hsync[0].hi = mymax; return TRUE; } return FALSE; } static Bool CheckAndOverruleV(ScrnInfoPtr pScrn, MonPtr monitor) { DisplayModePtr mode = monitor->Modes; float mymin = 59.0, mymax = 61.0, vrefresh; Bool doit = FALSE, ret = FALSE; for(vrefresh = mymin; vrefresh <= mymax; vrefresh += 1.0) { if(!SiSCheckForV(vrefresh, monitor)) doit = TRUE; } if(mode) { do { if(mode->type & M_T_BUILTIN) { vrefresh = mode->Clock * 1000.0 / (mode->HTotal * mode->VTotal); if(mode->Flags & V_INTERLACE) vrefresh *= 2.0; if(mode->Flags & V_DBLSCAN) vrefresh /= 2.0; if(!SiSCheckForH(vrefresh, monitor)) { doit = TRUE; if(vrefresh < mymin) mymin = vrefresh; if(vrefresh > mymax) mymax = vrefresh; } } } while((mode = mode->next)); } if(doit) { monitor->nVrefresh = 1; monitor->vrefresh[0].lo = mymin; monitor->vrefresh[0].hi = mymax; ret = TRUE; } /* special for 640x400/320x200/@70Hz (VGA/IBM 720x480) */ if( (!SiSCheckForV(71, monitor)) && (monitor->nVrefresh < MAX_VREFRESH) ) { monitor->vrefresh[monitor->nVrefresh].lo = 71; monitor->vrefresh[monitor->nVrefresh].hi = 71; monitor->nVrefresh++; ret = TRUE; } return ret; } /* Some helper functions for MergedFB mode */ #ifdef SISMERGED /* Helper function for CRT2 monitor vrefresh/hsync options * (Code base from mga driver) */ static int SiSStrToRanges(range *r, char *s, int max) { float num = 0.0; int rangenum = 0; Bool gotdash = FALSE; Bool nextdash = FALSE; char *strnum = NULL; do { switch(*s) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '.': if(strnum == NULL) { strnum = s; gotdash = nextdash; nextdash = FALSE; } break; case '-': case ' ': case 0: if(strnum == NULL) break; sscanf(strnum, "%f", &num); strnum = NULL; if(gotdash) { r[rangenum - 1].hi = num; } else { r[rangenum].lo = num; r[rangenum].hi = num; rangenum++; } if(*s == '-') nextdash = (rangenum != 0); else if(rangenum >= max) return rangenum; break; default: return 0; } } while(*(s++) != 0); return rangenum; } /* Copy and link two modes (i, j) for mergedfb mode * (Code base taken from mga driver) * * - Copy mode i, merge j to copy of i, link the result to dest * - Link i and j in private record. * - If dest is NULL, return value is copy of i linked to itself. * - For mergedfb auto-config, we only check the dimension * against virtualX/Y, if they were user-provided. * - No special treatment required for CRTxxOffs. * - Provide fake dotclock in order to distinguish between similar * looking MetaModes (for RandR and VidMode extensions) * - Set unique VRefresh of dest mode for RandR */ static DisplayModePtr SiSCopyModeNLink(ScrnInfoPtr pScrn, DisplayModePtr dest, DisplayModePtr i, DisplayModePtr j, SiSScrn2Rel srel) { SISPtr pSiS = SISPTR(pScrn); DisplayModePtr mode; int dx = 0,dy = 0; if(!((mode = xalloc(sizeof(DisplayModeRec))))) return dest; memcpy(mode, i, sizeof(DisplayModeRec)); if(!((mode->Private = xalloc(sizeof(SiSMergedDisplayModeRec))))) { xfree(mode); return dest; } ((SiSMergedDisplayModePtr)mode->Private)->CRT1 = i; ((SiSMergedDisplayModePtr)mode->Private)->CRT2 = j; ((SiSMergedDisplayModePtr)mode->Private)->CRT2Position = srel; mode->PrivSize = 0; switch(srel) { case sisLeftOf: case sisRightOf: if(!(pScrn->display->virtualX)) { dx = i->HDisplay + j->HDisplay; } else { dx = min(pScrn->virtualX, i->HDisplay + j->HDisplay); } dx -= mode->HDisplay; if(!(pScrn->display->virtualY)) { dy = max(i->VDisplay, j->VDisplay); } else { dy = min(pScrn->virtualY, max(i->VDisplay, j->VDisplay)); } dy -= mode->VDisplay; break; case sisAbove: case sisBelow: if(!(pScrn->display->virtualY)) { dy = i->VDisplay + j->VDisplay; } else { dy = min(pScrn->virtualY, i->VDisplay + j->VDisplay); } dy -= mode->VDisplay; if(!(pScrn->display->virtualX)) { dx = max(i->HDisplay, j->HDisplay); } else { dx = min(pScrn->virtualX, max(i->HDisplay, j->HDisplay)); } dx -= mode->HDisplay; break; case sisClone: if(!(pScrn->display->virtualX)) { dx = max(i->HDisplay, j->HDisplay); } else { dx = min(pScrn->virtualX, max(i->HDisplay, j->HDisplay)); } dx -= mode->HDisplay; if(!(pScrn->display->virtualY)) { dy = max(i->VDisplay, j->VDisplay); } else { dy = min(pScrn->virtualY, max(i->VDisplay, j->VDisplay)); } dy -= mode->VDisplay; break; } mode->HDisplay += dx; mode->HSyncStart += dx; mode->HSyncEnd += dx; mode->HTotal += dx; mode->VDisplay += dy; mode->VSyncStart += dy; mode->VSyncEnd += dy; mode->VTotal += dy; mode->type = M_T_DEFAULT; #if XF86_VERSION_CURRENT >= XF86_VERSION_NUMERIC(4,2,99,2,0) /* Set up as user defined (ie fake that the mode has been named in the * Modes-list in the screen section; corrects cycling with CTRL-ALT-[-+] * when source mode has not been listed there.) */ mode->type |= M_T_USERDEF; #endif /* Set the VRefresh field (in order to make RandR use it for the rates). We * simply set this to the refresh rate for the CRT1 mode (since CRT2 will * mostly be LCD or TV anyway). */ mode->VRefresh = SiSCalcVRate(i); if( ((mode->HDisplay * ((pScrn->bitsPerPixel + 7) / 8) * mode->VDisplay) > pSiS->maxxfbmem) || (mode->HDisplay > 4088) || (mode->VDisplay > 4096) ) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Skipped \"%s\" (%dx%d), not enough video RAM or beyond hardware specs\n", mode->name, mode->HDisplay, mode->VDisplay); xfree(mode->Private); xfree(mode); return dest; } #ifdef SISXINERAMA if(srel != sisClone) { pSiS->AtLeastOneNonClone = TRUE; } #endif /* Now see if the resulting mode would be discarded as a "size" by the * RandR extension, and increase its clock by 1000 in case it does. */ if(dest) { DisplayModePtr t = dest; do { if((t->HDisplay == mode->HDisplay) && (t->VDisplay == mode->VDisplay) && ((int)(t->VRefresh + .5) == (int)(mode->VRefresh + .5))) { mode->VRefresh += 1000.0; } t = t->next; } while((t) && (t != dest)); } /* Provide a fake but unique DotClock in order to trick the vidmode * extension to allow selecting among a number of modes whose merged result * looks identical but consists of different modes for CRT1 and CRT2 */ mode->Clock = (int)(mode->VRefresh * 1000.0); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Merged \"%s\" (%dx%d) and \"%s\" (%dx%d) to %dx%d (%d)%s\n", i->name, i->HDisplay, i->VDisplay, j->name, j->HDisplay, j->VDisplay, mode->HDisplay, mode->VDisplay, (int)mode->VRefresh, (srel == sisClone) ? " (Clone)" : ""); mode->next = mode; mode->prev = mode; if(dest) { mode->next = dest->next; /* Insert node after "dest" */ dest->next->prev = mode; mode->prev = dest; dest->next = mode; } return mode; } /* Helper function to find a mode from a given name * (Code base taken from mga driver) */ static DisplayModePtr SiSGetModeFromName(char* str, DisplayModePtr i) { DisplayModePtr c = i; if(!i) return NULL; do { if(strcmp(str, c->name) == 0) return c; c = c->next; } while(c != i); return NULL; } static DisplayModePtr SiSFindWidestTallestMode(DisplayModePtr i, Bool tallest) { DisplayModePtr c = i, d = NULL; int max = 0; if(!i) return NULL; do { if(tallest) { if(c->VDisplay > max) { max = c->VDisplay; d = c; } } else { if(c->HDisplay > max) { max = c->HDisplay; d = c; } } c = c->next; } while(c != i); return d; } static void SiSFindWidestTallestCommonMode(DisplayModePtr i, DisplayModePtr j, Bool tallest, DisplayModePtr *a, DisplayModePtr *b) { DisplayModePtr c = i, d; int max = 0; Bool foundone; (*a) = (*b) = NULL; if(!i || !j) return; do { d = j; foundone = FALSE; do { if( (c->HDisplay == d->HDisplay) && (c->VDisplay == d->VDisplay) ) { foundone = TRUE; break; } d = d->next; } while(d != j); if(foundone) { if(tallest) { if(c->VDisplay > max) { max = c->VDisplay; (*a) = c; (*b) = d; } } else { if(c->HDisplay > max) { max = c->HDisplay; (*a) = c; (*b) = d; } } } c = c->next; } while(c != i); } static DisplayModePtr SiSGenerateModeListFromLargestModes(ScrnInfoPtr pScrn, DisplayModePtr i, DisplayModePtr j, SiSScrn2Rel srel) { #ifdef SISXINERAMA SISPtr pSiS = SISPTR(pScrn); #endif DisplayModePtr mode1 = NULL; DisplayModePtr mode2 = NULL; DisplayModePtr mode3 = NULL; DisplayModePtr mode4 = NULL; DisplayModePtr result = NULL; #ifdef SISXINERAMA pSiS->AtLeastOneNonClone = FALSE; #endif /* Now build a default list of MetaModes. * - Non-clone: If the user enabled NonRectangular, we use the * largest mode for each CRT1 and CRT2. If not, we use the largest * common mode for CRT1 and CRT2 (if available). Additionally, and * regardless if the above, we produce a clone mode consisting of * the largest common mode (if available) in order to use DGA. * - Clone: If the (global) CRT2Position is Clone, we use the * largest common mode if available, otherwise the first two modes * in each list. */ switch(srel) { case sisLeftOf: case sisRightOf: mode1 = SiSFindWidestTallestMode(i, FALSE); mode2 = SiSFindWidestTallestMode(j, FALSE); SiSFindWidestTallestCommonMode(i, j, FALSE, &mode3, &mode4); break; case sisAbove: case sisBelow: mode1 = SiSFindWidestTallestMode(i, TRUE); mode2 = SiSFindWidestTallestMode(j, TRUE); SiSFindWidestTallestCommonMode(i, j, TRUE, &mode3, &mode4); break; case sisClone: SiSFindWidestTallestCommonMode(i, j, FALSE, &mode3, &mode4); if(mode3 && mode4) { mode1 = mode3; mode2 = mode4; } else { mode1 = i; mode2 = j; } } if(srel != sisClone) { if(mode3 && mode4 && !pSiS->NonRect) { mode1 = mode3; mode2 = mode2; } } if(mode1 && mode2) { result = SiSCopyModeNLink(pScrn, result, mode1, mode2, srel); } if(srel != sisClone) { if(mode3 && mode4) { result = SiSCopyModeNLink(pScrn, result, mode3, mode4, sisClone); } } return result; } /* Generate the merged-fb mode modelist * (Taken from mga driver) */ static DisplayModePtr SiSGenerateModeListFromMetaModes(ScrnInfoPtr pScrn, char* str, DisplayModePtr i, DisplayModePtr j, SiSScrn2Rel srel) { #ifdef SISXINERAMA SISPtr pSiS = SISPTR(pScrn); #endif char* strmode = str; char modename[256]; Bool gotdash = FALSE; char gotsep = 0; SiSScrn2Rel sr; DisplayModePtr mode1 = NULL; DisplayModePtr mode2 = NULL; DisplayModePtr result = NULL; int myslen; #ifdef SISXINERAMA pSiS->AtLeastOneNonClone = FALSE; #endif do { switch(*str) { case 0: case '-': case '+': case ' ': case ',': case ';': if(strmode != str) { myslen = str - strmode; if(myslen > 255) myslen = 255; strncpy(modename, strmode, myslen); modename[myslen] = 0; if(gotdash) { if(mode1 == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Error parsing MetaModes parameter\n"); return NULL; } mode2 = SiSGetModeFromName(modename, j); if(!mode2) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Mode \"%s\" is not a supported mode for CRT2\n", modename); xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "\t(Skipping metamode \"%s%c%s\")\n", mode1->name, gotsep, modename); mode1 = NULL; gotsep = 0; } } else { mode1 = SiSGetModeFromName(modename, i); if(!mode1) { char* tmps = str; xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Mode \"%s\" is not a supported mode for CRT1\n", modename); while(*tmps == ' ' || *tmps == ';') tmps++; /* skip the next mode */ if(*tmps == '-' || *tmps == '+' || *tmps == ',') { tmps++; /* skip spaces */ while(*tmps == ' ' || *tmps == ';') tmps++; /* skip modename */ while(*tmps && *tmps != ' ' && *tmps != ';' && *tmps != '-' && *tmps != '+' && *tmps != ',') tmps++; myslen = tmps - strmode; if(myslen > 255) myslen = 255; strncpy(modename,strmode,myslen); modename[myslen] = 0; str = tmps - 1; } xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "\t(Skipping metamode \"%s\")\n", modename); mode1 = NULL; gotsep = 0; } } gotdash = FALSE; } strmode = str + 1; gotdash |= (*str == '-' || *str == '+' || *str == ','); if (*str == '-' || *str == '+' || *str == ',') gotsep = *str; if(*str != 0) break; /* Fall through otherwise */ default: if(!gotdash && mode1) { sr = srel; if(gotsep == '+') sr = sisClone; if(!mode2) { mode2 = SiSGetModeFromName(mode1->name, j); sr = sisClone; } if(!mode2) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Mode \"%s\" is not a supported mode for CRT2\n", mode1->name); xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "\t(Skipping metamode \"%s\")\n", modename); mode1 = NULL; } else { result = SiSCopyModeNLink(pScrn, result, mode1, mode2, sr); mode1 = NULL; mode2 = NULL; } gotsep = 0; } break; } } while(*(str++) != 0); return result; } static DisplayModePtr SiSGenerateModeList(ScrnInfoPtr pScrn, char* str, DisplayModePtr i, DisplayModePtr j, SiSScrn2Rel srel) { SISPtr pSiS = SISPTR(pScrn); if(str != NULL) { return(SiSGenerateModeListFromMetaModes(pScrn, str, i, j, srel)); } else { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "No MetaModes given, linking %s modes by default\n", (srel == sisClone) ? "largest common" : (pSiS->NonRect ? (((srel == sisLeftOf) || (srel == sisRightOf)) ? "widest" : "tallest") : (((srel == sisLeftOf) || (srel == sisRightOf)) ? "widest common" : "tallest common")) ); return(SiSGenerateModeListFromLargestModes(pScrn, i, j, srel)); } } static void SiSRecalcDefaultVirtualSize(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); DisplayModePtr mode, bmode; int maxh, maxv; static const char *str = "MergedFB: Virtual %s %d\n"; static const char *errstr = "Virtual %s to small for given CRT2Position offset\n"; mode = bmode = pScrn->modes; maxh = maxv = 0; do { if(mode->HDisplay > maxh) maxh = mode->HDisplay; if(mode->VDisplay > maxv) maxv = mode->VDisplay; mode = mode->next; } while(mode != bmode); maxh += pSiS->CRT1XOffs + pSiS->CRT2XOffs; maxv += pSiS->CRT1YOffs + pSiS->CRT2YOffs; if(!(pScrn->display->virtualX)) { if(maxh > 4088) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Virtual width with CRT2Position offset beyond hardware specs\n"); pSiS->CRT1XOffs = pSiS->CRT2XOffs = 0; maxh -= (pSiS->CRT1XOffs + pSiS->CRT2XOffs); } pScrn->virtualX = maxh; pScrn->displayWidth = maxh; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, str, "width", maxh); } else { if(maxh < pScrn->display->virtualX) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, errstr, "width"); pSiS->CRT1XOffs = pSiS->CRT2XOffs = 0; } } if(!(pScrn->display->virtualY)) { pScrn->virtualY = maxv; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, str, "height", maxv); } else { if(maxv < pScrn->display->virtualY) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, errstr, "height"); pSiS->CRT1YOffs = pSiS->CRT2YOffs = 0; } } } static void SiSMergedFBSetDpi(ScrnInfoPtr pScrn1, ScrnInfoPtr pScrn2, SiSScrn2Rel srel) { SISPtr pSiS = SISPTR(pScrn1); MessageType from = X_DEFAULT; xf86MonPtr DDC1 = (xf86MonPtr)(pScrn1->monitor->DDC); xf86MonPtr DDC2 = (xf86MonPtr)(pScrn2->monitor->DDC); int ddcWidthmm = 0, ddcHeightmm = 0; const char *dsstr = "MergedFB: Display dimensions: (%d, %d) mm\n"; /* This sets the DPI for MergedFB mode. The problem is that * this can never be exact, because the output devices may * have different dimensions. This function tries to compromise * through a few assumptions, and it just calculates an average DPI * value for both monitors. */ /* Given DisplaySize should regard BOTH monitors */ pScrn1->widthmm = pScrn1->monitor->widthmm; pScrn1->heightmm = pScrn1->monitor->heightmm; /* Get DDC display size; if only either CRT1 or CRT2 provided these, * assume equal dimensions for both, otherwise add dimensions */ if( (DDC1 && (DDC1->features.hsize > 0 && DDC1->features.vsize > 0)) && (DDC2 && (DDC2->features.hsize > 0 && DDC2->features.vsize > 0)) ) { ddcWidthmm = max(DDC1->features.hsize, DDC2->features.hsize) * 10; ddcHeightmm = max(DDC1->features.vsize, DDC2->features.vsize) * 10; switch(srel) { case sisLeftOf: case sisRightOf: ddcWidthmm = (DDC1->features.hsize + DDC2->features.hsize) * 10; break; case sisAbove: case sisBelow: ddcHeightmm = (DDC1->features.vsize + DDC2->features.vsize) * 10; default: break; } } else if(DDC1 && (DDC1->features.hsize > 0 && DDC1->features.vsize > 0)) { ddcWidthmm = DDC1->features.hsize * 10; ddcHeightmm = DDC1->features.vsize * 10; switch(srel) { case sisLeftOf: case sisRightOf: ddcWidthmm *= 2; break; case sisAbove: case sisBelow: ddcHeightmm *= 2; default: break; } } else if(DDC2 && (DDC2->features.hsize > 0 && DDC2->features.vsize > 0) ) { ddcWidthmm = DDC2->features.hsize * 10; ddcHeightmm = DDC2->features.vsize * 10; switch(srel) { case sisLeftOf: case sisRightOf: ddcWidthmm *= 2; break; case sisAbove: case sisBelow: ddcHeightmm *= 2; default: break; } } if(monitorResolution > 0) { /* Set command line given values (overrules given options) */ pScrn1->xDpi = monitorResolution; pScrn1->yDpi = monitorResolution; from = X_CMDLINE; } else if(pSiS->MergedFBXDPI) { /* Set option-wise given values (overrule DisplaySize) */ pScrn1->xDpi = pSiS->MergedFBXDPI; pScrn1->yDpi = pSiS->MergedFBYDPI; from = X_CONFIG; } else if(pScrn1->widthmm > 0 || pScrn1->heightmm > 0) { /* Set values calculated from given DisplaySize */ from = X_CONFIG; if(pScrn1->widthmm > 0) { pScrn1->xDpi = (int)((double)pScrn1->virtualX * 25.4 / pScrn1->widthmm); } if(pScrn1->heightmm > 0) { pScrn1->yDpi = (int)((double)pScrn1->virtualY * 25.4 / pScrn1->heightmm); } xf86DrvMsg(pScrn1->scrnIndex, from, dsstr, pScrn1->widthmm, pScrn1->heightmm); } else if(ddcWidthmm && ddcHeightmm) { /* Set values from DDC-provided display size */ from = X_PROBED; xf86DrvMsg(pScrn1->scrnIndex, from, dsstr, ddcWidthmm, ddcHeightmm ); pScrn1->widthmm = ddcWidthmm; pScrn1->heightmm = ddcHeightmm; if(pScrn1->widthmm > 0) { pScrn1->xDpi = (int)((double)pScrn1->virtualX * 25.4 / pScrn1->widthmm); } if(pScrn1->heightmm > 0) { pScrn1->yDpi = (int)((double)pScrn1->virtualY * 25.4 / pScrn1->heightmm); } } else { pScrn1->xDpi = pScrn1->yDpi = DEFAULT_DPI; } /* Sanity check */ if(pScrn1->xDpi > 0 && pScrn1->yDpi <= 0) pScrn1->yDpi = pScrn1->xDpi; if(pScrn1->yDpi > 0 && pScrn1->xDpi <= 0) pScrn1->xDpi = pScrn1->yDpi; pScrn2->xDpi = pScrn1->xDpi; pScrn2->yDpi = pScrn1->yDpi; xf86DrvMsg(pScrn1->scrnIndex, from, "MergedFB: DPI set to (%d, %d)\n", pScrn1->xDpi, pScrn1->yDpi); } /* Pseudo-Xinerama extension for MergedFB mode */ #ifdef SISXINERAMA static void SiSUpdateXineramaScreenInfo(ScrnInfoPtr pScrn1) { SISPtr pSiS = SISPTR(pScrn1); int crt1scrnnum = 0, crt2scrnnum = 1; int x1=0, x2=0, y1=0, y2=0, h1=0, h2=0, w1=0, w2=0; int realvirtX, realvirtY; DisplayModePtr currentMode, firstMode; Bool infochanged = FALSE; Bool usenonrect = pSiS->NonRect; const char *rectxine = "\t... setting up rectangular Xinerama layout\n"; pSiS->MBXNR1XMAX = pSiS->MBXNR1YMAX = pSiS->MBXNR2XMAX = pSiS->MBXNR2YMAX = 65536; pSiS->HaveNonRect = pSiS->HaveOffsRegions = FALSE; if(!pSiS->MergedFB) return; if(SiSnoPanoramiXExtension) return; if(!SiSXineramadataPtr) return; if(pSiS->CRT2IsScrn0) { crt1scrnnum = 1; crt2scrnnum = 0; } /* Attention: Usage of RandR may lead to virtual X and Y dimensions * actually smaller than our MetaModes. To avoid this, we calculate * the maxCRT fields here (and not somewhere else, like in CopyNLink) * * *** Note: RandR is disabled if one of CRTxxOffs is non-zero. */ /* "Real" virtual: Virtual without the Offset */ realvirtX = pScrn1->virtualX - pSiS->CRT1XOffs - pSiS->CRT2XOffs; realvirtY = pScrn1->virtualY - pSiS->CRT1YOffs - pSiS->CRT2YOffs; if((pSiS->SiSXineramaVX != pScrn1->virtualX) || (pSiS->SiSXineramaVY != pScrn1->virtualY)) { if(!(pScrn1->modes)) return; pSiS->maxCRT1_X1 = pSiS->maxCRT1_X2 = 0; pSiS->maxCRT1_Y1 = pSiS->maxCRT1_Y2 = 0; pSiS->maxCRT2_X1 = pSiS->maxCRT2_X2 = 0; pSiS->maxCRT2_Y1 = pSiS->maxCRT2_Y2 = 0; pSiS->maxClone_X1 = pSiS->maxClone_X2 = 0; pSiS->maxClone_Y1 = pSiS->maxClone_Y2 = 0; currentMode = firstMode = pScrn1->modes; do { DisplayModePtr p = currentMode->next; DisplayModePtr i = ((SiSMergedDisplayModePtr)currentMode->Private)->CRT1; DisplayModePtr j = ((SiSMergedDisplayModePtr)currentMode->Private)->CRT2; SiSScrn2Rel srel = ((SiSMergedDisplayModePtr)currentMode->Private)->CRT2Position; if((currentMode->HDisplay <= realvirtX) && (currentMode->VDisplay <= realvirtY) && (i->HDisplay <= realvirtX) && (j->HDisplay <= realvirtX) && (i->VDisplay <= realvirtY) && (j->VDisplay <= realvirtY)) { if(srel != sisClone) { if(pSiS->maxCRT1_X1 == i->HDisplay) { if(pSiS->maxCRT1_X2 < j->HDisplay) { pSiS->maxCRT1_X2 = j->HDisplay; /* Widest CRT2 mode displayed with widest CRT1 mode */ } } else if(pSiS->maxCRT1_X1 < i->HDisplay) { pSiS->maxCRT1_X1 = i->HDisplay; /* Widest CRT1 mode */ pSiS->maxCRT1_X2 = j->HDisplay; } if(pSiS->maxCRT2_X2 == j->HDisplay) { if(pSiS->maxCRT2_X1 < i->HDisplay) { pSiS->maxCRT2_X1 = i->HDisplay; /* Widest CRT1 mode displayed with widest CRT2 mode */ } } else if(pSiS->maxCRT2_X2 < j->HDisplay) { pSiS->maxCRT2_X2 = j->HDisplay; /* Widest CRT2 mode */ pSiS->maxCRT2_X1 = i->HDisplay; } if(pSiS->maxCRT1_Y1 == i->VDisplay) { /* Same as above, but tallest instead of widest */ if(pSiS->maxCRT1_Y2 < j->VDisplay) { pSiS->maxCRT1_Y2 = j->VDisplay; } } else if(pSiS->maxCRT1_Y1 < i->VDisplay) { pSiS->maxCRT1_Y1 = i->VDisplay; pSiS->maxCRT1_Y2 = j->VDisplay; } if(pSiS->maxCRT2_Y2 == j->VDisplay) { if(pSiS->maxCRT2_Y1 < i->VDisplay) { pSiS->maxCRT2_Y1 = i->VDisplay; } } else if(pSiS->maxCRT2_Y2 < j->VDisplay) { pSiS->maxCRT2_Y2 = j->VDisplay; pSiS->maxCRT2_Y1 = i->VDisplay; } } else { if(pSiS->maxClone_X1 < i->HDisplay) { pSiS->maxClone_X1 = i->HDisplay; } if(pSiS->maxClone_X2 < j->HDisplay) { pSiS->maxClone_X2 = j->HDisplay; } if(pSiS->maxClone_Y1 < i->VDisplay) { pSiS->maxClone_Y1 = i->VDisplay; } if(pSiS->maxClone_Y2 < j->VDisplay) { pSiS->maxClone_Y2 = j->VDisplay; } } } currentMode = p; } while((currentMode) && (currentMode != firstMode)); pSiS->SiSXineramaVX = pScrn1->virtualX; pSiS->SiSXineramaVY = pScrn1->virtualY; infochanged = TRUE; } if((usenonrect) && (pSiS->CRT2Position != sisClone) && pSiS->maxCRT1_X1) { switch(pSiS->CRT2Position) { case sisLeftOf: case sisRightOf: if((pSiS->maxCRT1_Y1 != realvirtY) && (pSiS->maxCRT2_Y2 != realvirtY)) { usenonrect = FALSE; } break; case sisAbove: case sisBelow: if((pSiS->maxCRT1_X1 != realvirtX) && (pSiS->maxCRT2_X2 != realvirtX)) { usenonrect = FALSE; } break; case sisClone: break; } if(infochanged && !usenonrect) { xf86DrvMsg(pScrn1->scrnIndex, X_INFO, "Virtual screen size does not match maximum display modes...\n"); xf86DrvMsg(pScrn1->scrnIndex, X_INFO, rectxine); } } else if(infochanged && usenonrect) { usenonrect = FALSE; xf86DrvMsg(pScrn1->scrnIndex, X_INFO, "Only clone modes available for this virtual screen size...\n"); xf86DrvMsg(pScrn1->scrnIndex, X_INFO, rectxine); } if(pSiS->maxCRT1_X1) { /* Means we have at least one non-clone mode */ switch(pSiS->CRT2Position) { case sisLeftOf: x1 = min(pSiS->maxCRT1_X2, pScrn1->virtualX - pSiS->maxCRT1_X1); if(x1 < 0) x1 = 0; y1 = pSiS->CRT1YOffs; w1 = pScrn1->virtualX - x1; h1 = realvirtY; if((usenonrect) && (pSiS->maxCRT1_Y1 != realvirtY)) { h1 = pSiS->MBXNR1YMAX = pSiS->maxCRT1_Y1; pSiS->NonRectDead.x0 = x1; pSiS->NonRectDead.x1 = x1 + w1 - 1; pSiS->NonRectDead.y0 = y1 + h1; pSiS->NonRectDead.y1 = pScrn1->virtualY - 1; pSiS->HaveNonRect = TRUE; } x2 = 0; y2 = pSiS->CRT2YOffs; w2 = max(pSiS->maxCRT2_X2, pScrn1->virtualX - pSiS->maxCRT2_X1); if(w2 > pScrn1->virtualX) w2 = pScrn1->virtualX; h2 = realvirtY; if((usenonrect) && (pSiS->maxCRT2_Y2 != realvirtY)) { h2 = pSiS->MBXNR2YMAX = pSiS->maxCRT2_Y2; pSiS->NonRectDead.x0 = x2; pSiS->NonRectDead.x1 = x2 + w2 - 1; pSiS->NonRectDead.y0 = y2 + h2; pSiS->NonRectDead.y1 = pScrn1->virtualY - 1; pSiS->HaveNonRect = TRUE; } break; case sisRightOf: x1 = 0; y1 = pSiS->CRT1YOffs; w1 = max(pSiS->maxCRT1_X1, pScrn1->virtualX - pSiS->maxCRT1_X2); if(w1 > pScrn1->virtualX) w1 = pScrn1->virtualX; h1 = realvirtY; if((usenonrect) && (pSiS->maxCRT1_Y1 != realvirtY)) { h1 = pSiS->MBXNR1YMAX = pSiS->maxCRT1_Y1; pSiS->NonRectDead.x0 = x1; pSiS->NonRectDead.x1 = x1 + w1 - 1; pSiS->NonRectDead.y0 = y1 + h1; pSiS->NonRectDead.y1 = pScrn1->virtualY - 1; pSiS->HaveNonRect = TRUE; } x2 = min(pSiS->maxCRT2_X1, pScrn1->virtualX - pSiS->maxCRT2_X2); if(x2 < 0) x2 = 0; y2 = pSiS->CRT2YOffs; w2 = pScrn1->virtualX - x2; h2 = realvirtY; if((usenonrect) && (pSiS->maxCRT2_Y2 != realvirtY)) { h2 = pSiS->MBXNR2YMAX = pSiS->maxCRT2_Y2; pSiS->NonRectDead.x0 = x2; pSiS->NonRectDead.x1 = x2 + w2 - 1; pSiS->NonRectDead.y0 = y2 + h2; pSiS->NonRectDead.y1 = pScrn1->virtualY - 1; pSiS->HaveNonRect = TRUE; } break; case sisAbove: x1 = pSiS->CRT1XOffs; y1 = min(pSiS->maxCRT1_Y2, pScrn1->virtualY - pSiS->maxCRT1_Y1); if(y1 < 0) y1 = 0; w1 = realvirtX; h1 = pScrn1->virtualY - y1; if((usenonrect) && (pSiS->maxCRT1_X1 != realvirtX)) { w1 = pSiS->MBXNR1XMAX = pSiS->maxCRT1_X1; pSiS->NonRectDead.x0 = x1 + w1; pSiS->NonRectDead.x1 = pScrn1->virtualX - 1; pSiS->NonRectDead.y0 = y1; pSiS->NonRectDead.y1 = y1 + h1 - 1; pSiS->HaveNonRect = TRUE; } x2 = pSiS->CRT2XOffs; y2 = 0; w2 = realvirtX; h2 = max(pSiS->maxCRT2_Y2, pScrn1->virtualY - pSiS->maxCRT2_Y1); if(h2 > pScrn1->virtualY) h2 = pScrn1->virtualY; if((usenonrect) && (pSiS->maxCRT2_X2 != realvirtX)) { w2 = pSiS->MBXNR2XMAX = pSiS->maxCRT2_X2; pSiS->NonRectDead.x0 = x2 + w2; pSiS->NonRectDead.x1 = pScrn1->virtualX - 1; pSiS->NonRectDead.y0 = y2; pSiS->NonRectDead.y1 = y2 + h2 - 1; pSiS->HaveNonRect = TRUE; } break; case sisBelow: x1 = pSiS->CRT1XOffs; y1 = 0; w1 = realvirtX; h1 = max(pSiS->maxCRT1_Y1, pScrn1->virtualY - pSiS->maxCRT1_Y2); if(h1 > pScrn1->virtualY) h1 = pScrn1->virtualY; if((usenonrect) && (pSiS->maxCRT1_X1 != realvirtX)) { w1 = pSiS->MBXNR1XMAX = pSiS->maxCRT1_X1; pSiS->NonRectDead.x0 = x1 + w1; pSiS->NonRectDead.x1 = pScrn1->virtualX - 1; pSiS->NonRectDead.y0 = y1; pSiS->NonRectDead.y1 = y1 + h1 - 1; pSiS->HaveNonRect = TRUE; } x2 = pSiS->CRT2XOffs; y2 = min(pSiS->maxCRT2_Y1, pScrn1->virtualY - pSiS->maxCRT2_Y2); if(y2 < 0) y2 = 0; w2 = realvirtX; h2 = pScrn1->virtualY - y2; if((usenonrect) && (pSiS->maxCRT2_X2 != realvirtX)) { w2 = pSiS->MBXNR2XMAX = pSiS->maxCRT2_X2; pSiS->NonRectDead.x0 = x2 + w2; pSiS->NonRectDead.x1 = pScrn1->virtualX - 1; pSiS->NonRectDead.y0 = y2; pSiS->NonRectDead.y1 = y2 + h2 - 1; pSiS->HaveNonRect = TRUE; } default: break; } switch(pSiS->CRT2Position) { case sisLeftOf: case sisRightOf: if(pSiS->CRT1YOffs) { pSiS->OffDead1.x0 = x1; pSiS->OffDead1.x1 = x1 + w1 - 1; pSiS->OffDead1.y0 = 0; pSiS->OffDead1.y1 = y1 - 1; pSiS->OffDead2.x0 = x2; pSiS->OffDead2.x1 = x2 + w2 - 1; pSiS->OffDead2.y0 = y2 + h2; pSiS->OffDead2.y1 = pScrn1->virtualY - 1; pSiS->HaveOffsRegions = TRUE; } else if(pSiS->CRT2YOffs) { pSiS->OffDead1.x0 = x2; pSiS->OffDead1.x1 = x2 + w2 - 1; pSiS->OffDead1.y0 = 0; pSiS->OffDead1.y1 = y2 - 1; pSiS->OffDead2.x0 = x1; pSiS->OffDead2.x1 = x1 + w1 - 1; pSiS->OffDead2.y0 = y1 + h1; pSiS->OffDead2.y1 = pScrn1->virtualY - 1; pSiS->HaveOffsRegions = TRUE; } break; case sisAbove: case sisBelow: if(pSiS->CRT1XOffs) { pSiS->OffDead1.x0 = x2 + w2; pSiS->OffDead1.x1 = pScrn1->virtualX - 1; pSiS->OffDead1.y0 = y2; pSiS->OffDead1.y1 = y2 + h2 - 1; pSiS->OffDead2.x0 = 0; pSiS->OffDead2.x1 = x1 - 1; pSiS->OffDead2.y0 = y1; pSiS->OffDead2.y1 = y1 + h1 - 1; pSiS->HaveOffsRegions = TRUE; } else if(pSiS->CRT2XOffs) { pSiS->OffDead1.x0 = x1 + w1; pSiS->OffDead1.x1 = pScrn1->virtualX - 1; pSiS->OffDead1.y0 = y1; pSiS->OffDead1.y1 = y1 + h1 - 1; pSiS->OffDead2.x0 = 0; pSiS->OffDead2.x1 = x2 - 1; pSiS->OffDead2.y0 = y2; pSiS->OffDead2.y1 = y2 + h2 - 1; pSiS->HaveOffsRegions = TRUE; } default: break; } } else { /* Only clone-modes left */ x1 = x2 = 0; y1 = y2 = 0; w1 = w2 = max(pSiS->maxClone_X1, pSiS->maxClone_X2); h1 = h2 = max(pSiS->maxClone_Y1, pSiS->maxClone_Y2); } SiSXineramadataPtr[crt1scrnnum].x = x1; SiSXineramadataPtr[crt1scrnnum].y = y1; SiSXineramadataPtr[crt1scrnnum].width = w1; SiSXineramadataPtr[crt1scrnnum].height = h1; SiSXineramadataPtr[crt2scrnnum].x = x2; SiSXineramadataPtr[crt2scrnnum].y = y2; SiSXineramadataPtr[crt2scrnnum].width = w2; SiSXineramadataPtr[crt2scrnnum].height = h2; if(infochanged) { xf86DrvMsg(pScrn1->scrnIndex, X_INFO, "Pseudo-Xinerama: CRT1 (Screen %d) (%d,%d)-(%d,%d)\n", crt1scrnnum, x1, y1, w1+x1-1, h1+y1-1); xf86DrvMsg(pScrn1->scrnIndex, X_INFO, "Pseudo-Xinerama: CRT2 (Screen %d) (%d,%d)-(%d,%d)\n", crt2scrnnum, x2, y2, w2+x2-1, h2+y2-1); if(pSiS->HaveNonRect) { xf86DrvMsg(pScrn1->scrnIndex, X_INFO, "Pseudo-Xinerama: Inaccessible area (%d,%d)-(%d,%d)\n", pSiS->NonRectDead.x0, pSiS->NonRectDead.y0, pSiS->NonRectDead.x1, pSiS->NonRectDead.y1); } if(pSiS->HaveOffsRegions) { xf86DrvMsg(pScrn1->scrnIndex, X_INFO, "Pseudo-Xinerama: Inaccessible offset area (%d,%d)-(%d,%d)\n", pSiS->OffDead1.x0, pSiS->OffDead1.y0, pSiS->OffDead1.x1, pSiS->OffDead1.y1); xf86DrvMsg(pScrn1->scrnIndex, X_INFO, "Pseudo-Xinerama: Inaccessible offset area (%d,%d)-(%d,%d)\n", pSiS->OffDead2.x0, pSiS->OffDead2.y0, pSiS->OffDead2.x1, pSiS->OffDead2.y1); } if(pSiS->HaveNonRect || pSiS->HaveOffsRegions) { xf86DrvMsg(pScrn1->scrnIndex, X_INFO, "Mouse restriction for inaccessible areas is %s\n", pSiS->MouseRestrictions ? "enabled" : "disabled"); } } } /* Proc */ int SiSProcXineramaQueryVersion(ClientPtr client) { xPanoramiXQueryVersionReply rep; register int n; REQUEST_SIZE_MATCH(xPanoramiXQueryVersionReq); rep.type = X_Reply; rep.length = 0; rep.sequenceNumber = client->sequence; rep.majorVersion = SIS_XINERAMA_MAJOR_VERSION; rep.minorVersion = SIS_XINERAMA_MINOR_VERSION; if(client->swapped) { swaps(&rep.sequenceNumber, n); swapl(&rep.length, n); swaps(&rep.majorVersion, n); swaps(&rep.minorVersion, n); } WriteToClient(client, sizeof(xPanoramiXQueryVersionReply), (char *)&rep); return (client->noClientException); } int SiSProcXineramaGetState(ClientPtr client) { REQUEST(xPanoramiXGetStateReq); WindowPtr pWin; xPanoramiXGetStateReply rep; register int n; REQUEST_SIZE_MATCH(xPanoramiXGetStateReq); pWin = LookupWindow(stuff->window, client); if(!pWin) return BadWindow; rep.type = X_Reply; rep.length = 0; rep.sequenceNumber = client->sequence; rep.state = !SiSnoPanoramiXExtension; if(client->swapped) { swaps (&rep.sequenceNumber, n); swapl (&rep.length, n); swaps (&rep.state, n); } WriteToClient(client, sizeof(xPanoramiXGetStateReply), (char *)&rep); return client->noClientException; } int SiSProcXineramaGetScreenCount(ClientPtr client) { REQUEST(xPanoramiXGetScreenCountReq); WindowPtr pWin; xPanoramiXGetScreenCountReply rep; register int n; REQUEST_SIZE_MATCH(xPanoramiXGetScreenCountReq); pWin = LookupWindow(stuff->window, client); if(!pWin) return BadWindow; rep.type = X_Reply; rep.length = 0; rep.sequenceNumber = client->sequence; rep.ScreenCount = SiSXineramaNumScreens; if(client->swapped) { swaps(&rep.sequenceNumber, n); swapl(&rep.length, n); swaps(&rep.ScreenCount, n); } WriteToClient(client, sizeof(xPanoramiXGetScreenCountReply), (char *)&rep); return client->noClientException; } int SiSProcXineramaGetScreenSize(ClientPtr client) { REQUEST(xPanoramiXGetScreenSizeReq); WindowPtr pWin; xPanoramiXGetScreenSizeReply rep; register int n; REQUEST_SIZE_MATCH(xPanoramiXGetScreenSizeReq); pWin = LookupWindow (stuff->window, client); if(!pWin) return BadWindow; rep.type = X_Reply; rep.length = 0; rep.sequenceNumber = client->sequence; rep.width = SiSXineramadataPtr[stuff->screen].width; rep.height = SiSXineramadataPtr[stuff->screen].height; if(client->swapped) { swaps(&rep.sequenceNumber, n); swapl(&rep.length, n); swaps(&rep.width, n); swaps(&rep.height, n); } WriteToClient(client, sizeof(xPanoramiXGetScreenSizeReply), (char *)&rep); return client->noClientException; } int SiSProcXineramaIsActive(ClientPtr client) { xXineramaIsActiveReply rep; REQUEST_SIZE_MATCH(xXineramaIsActiveReq); rep.type = X_Reply; rep.length = 0; rep.sequenceNumber = client->sequence; rep.state = !SiSnoPanoramiXExtension; if(client->swapped) { register int n; swaps(&rep.sequenceNumber, n); swapl(&rep.length, n); swapl(&rep.state, n); } WriteToClient(client, sizeof(xXineramaIsActiveReply), (char *) &rep); return client->noClientException; } int SiSProcXineramaQueryScreens(ClientPtr client) { xXineramaQueryScreensReply rep; REQUEST_SIZE_MATCH(xXineramaQueryScreensReq); rep.type = X_Reply; rep.sequenceNumber = client->sequence; rep.number = (SiSnoPanoramiXExtension) ? 0 : SiSXineramaNumScreens; rep.length = rep.number * sz_XineramaScreenInfo >> 2; if(client->swapped) { register int n; swaps(&rep.sequenceNumber, n); swapl(&rep.length, n); swapl(&rep.number, n); } WriteToClient(client, sizeof(xXineramaQueryScreensReply), (char *)&rep); if(!SiSnoPanoramiXExtension) { xXineramaScreenInfo scratch; int i; for(i = 0; i < SiSXineramaNumScreens; i++) { scratch.x_org = SiSXineramadataPtr[i].x; scratch.y_org = SiSXineramadataPtr[i].y; scratch.width = SiSXineramadataPtr[i].width; scratch.height = SiSXineramadataPtr[i].height; if(client->swapped) { register int n; swaps(&scratch.x_org, n); swaps(&scratch.y_org, n); swaps(&scratch.width, n); swaps(&scratch.height, n); } WriteToClient(client, sz_XineramaScreenInfo, (char *)&scratch); } } return client->noClientException; } static int SiSProcXineramaDispatch(ClientPtr client) { REQUEST(xReq); switch (stuff->data) { case X_PanoramiXQueryVersion: return SiSProcXineramaQueryVersion(client); case X_PanoramiXGetState: return SiSProcXineramaGetState(client); case X_PanoramiXGetScreenCount: return SiSProcXineramaGetScreenCount(client); case X_PanoramiXGetScreenSize: return SiSProcXineramaGetScreenSize(client); case X_XineramaIsActive: return SiSProcXineramaIsActive(client); case X_XineramaQueryScreens: return SiSProcXineramaQueryScreens(client); } return BadRequest; } /* SProc */ static int SiSSProcXineramaQueryVersion (ClientPtr client) { REQUEST(xPanoramiXQueryVersionReq); register int n; swaps(&stuff->length,n); REQUEST_SIZE_MATCH (xPanoramiXQueryVersionReq); return SiSProcXineramaQueryVersion(client); } static int SiSSProcXineramaGetState(ClientPtr client) { REQUEST(xPanoramiXGetStateReq); register int n; swaps (&stuff->length, n); REQUEST_SIZE_MATCH(xPanoramiXGetStateReq); return SiSProcXineramaGetState(client); } static int SiSSProcXineramaGetScreenCount(ClientPtr client) { REQUEST(xPanoramiXGetScreenCountReq); register int n; swaps (&stuff->length, n); REQUEST_SIZE_MATCH(xPanoramiXGetScreenCountReq); return SiSProcXineramaGetScreenCount(client); } static int SiSSProcXineramaGetScreenSize(ClientPtr client) { REQUEST(xPanoramiXGetScreenSizeReq); register int n; swaps (&stuff->length, n); REQUEST_SIZE_MATCH(xPanoramiXGetScreenSizeReq); return SiSProcXineramaGetScreenSize(client); } static int SiSSProcXineramaIsActive(ClientPtr client) { REQUEST(xXineramaIsActiveReq); register int n; swaps (&stuff->length, n); REQUEST_SIZE_MATCH(xXineramaIsActiveReq); return SiSProcXineramaIsActive(client); } static int SiSSProcXineramaQueryScreens(ClientPtr client) { REQUEST(xXineramaQueryScreensReq); register int n; swaps (&stuff->length, n); REQUEST_SIZE_MATCH(xXineramaQueryScreensReq); return SiSProcXineramaQueryScreens(client); } int SiSSProcXineramaDispatch(ClientPtr client) { REQUEST(xReq); switch (stuff->data) { case X_PanoramiXQueryVersion: return SiSSProcXineramaQueryVersion(client); case X_PanoramiXGetState: return SiSSProcXineramaGetState(client); case X_PanoramiXGetScreenCount: return SiSSProcXineramaGetScreenCount(client); case X_PanoramiXGetScreenSize: return SiSSProcXineramaGetScreenSize(client); case X_XineramaIsActive: return SiSSProcXineramaIsActive(client); case X_XineramaQueryScreens: return SiSSProcXineramaQueryScreens(client); } return BadRequest; } static void SiSXineramaResetProc(ExtensionEntry* extEntry) { /* Called by CloseDownExtensions() */ if(SiSXineramadataPtr) { Xfree(SiSXineramadataPtr); SiSXineramadataPtr = NULL; } } static void SiSXineramaExtensionInit(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); Bool success = FALSE; if(!(SiSXineramadataPtr)) { if(!pSiS->MergedFB) { SiSnoPanoramiXExtension = TRUE; pSiS->MouseRestrictions = FALSE; return; } #ifdef PANORAMIX if(!noPanoramiXExtension) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Xinerama active, not initializing SiS Pseudo-Xinerama\n"); SiSnoPanoramiXExtension = TRUE; pSiS->MouseRestrictions = FALSE; return; } #endif if(SiSnoPanoramiXExtension) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "SiS Pseudo-Xinerama disabled\n"); pSiS->MouseRestrictions = FALSE; return; } if(pSiS->CRT2Position == sisClone) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Running MergedFB in Clone mode, SiS Pseudo-Xinerama disabled\n"); SiSnoPanoramiXExtension = TRUE; pSiS->MouseRestrictions = FALSE; return; } if(!(pSiS->AtLeastOneNonClone)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Only Clone modes defined, SiS Pseudo-Xinerama disabled\n"); SiSnoPanoramiXExtension = TRUE; pSiS->MouseRestrictions = FALSE; return; } SiSXineramaNumScreens = 2; while(SiSXineramaGeneration != serverGeneration) { pSiS->XineramaExtEntry = AddExtension(PANORAMIX_PROTOCOL_NAME, 0,0, SiSProcXineramaDispatch, SiSSProcXineramaDispatch, SiSXineramaResetProc, StandardMinorOpcode); if(!pSiS->XineramaExtEntry) break; if(!(SiSXineramadataPtr = (SiSXineramaData *) xcalloc(SiSXineramaNumScreens, sizeof(SiSXineramaData)))) break; SiSXineramaGeneration = serverGeneration; success = TRUE; } if(!success) { SISErrorLog(pScrn, "Failed to initialize SiS Pseudo-Xinerama extension\n"); SiSnoPanoramiXExtension = TRUE; pSiS->MouseRestrictions = FALSE; return; } xf86DrvMsg(pScrn->scrnIndex, X_INFO, "SiS Pseudo-Xinerama extension initialized\n"); pSiS->SiSXineramaVX = 0; pSiS->SiSXineramaVY = 0; } SiSUpdateXineramaScreenInfo(pScrn); } #endif /* End of PseudoXinerama */ static void SiSFreeCRT2Structs(SISPtr pSiS) { if(pSiS->CRT2pScrn) { if(pSiS->CRT2pScrn->modes) { while(pSiS->CRT2pScrn->modes) xf86DeleteMode(&pSiS->CRT2pScrn->modes, pSiS->CRT2pScrn->modes); } if(pSiS->CRT2pScrn->monitor) { if(pSiS->CRT2pScrn->monitor->Modes) { while(pSiS->CRT2pScrn->monitor->Modes) xf86DeleteMode(&pSiS->CRT2pScrn->monitor->Modes, pSiS->CRT2pScrn->monitor->Modes); } if(pSiS->CRT2pScrn->monitor->DDC) xfree(pSiS->CRT2pScrn->monitor->DDC); xfree(pSiS->CRT2pScrn->monitor); } xfree(pSiS->CRT2pScrn); pSiS->CRT2pScrn = NULL; } } #endif /* End of MergedFB helpers */ static xf86MonPtr SiSInternalDDC(ScrnInfoPtr pScrn, int crtno) { SISPtr pSiS = SISPTR(pScrn); xf86MonPtr pMonitor = NULL; UShort temp = 0xffff, temp1, i, realcrtno = crtno; UChar buffer[256]; /* If CRT1 is off, skip DDC */ if((pSiS->CRT1off) && (!crtno)) return NULL; if(crtno) { if(pSiS->VBFlags & CRT2_LCD) realcrtno = 1; else if(pSiS->VBFlags & CRT2_VGA) realcrtno = 2; else return NULL; if(pSiS->SiS_Pr->DDCPortMixup) realcrtno = 0; } else { /* If CRT1 is LCDA, skip DDC (except 301C: DDC allowed, but uses CRT2 port!) */ if(pSiS->VBFlags & CRT1_LCDA) { if(pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE) realcrtno = 1; else return NULL; } } i = 3; /* Number of retrys */ do { temp1 = SiS_HandleDDC(pSiS->SiS_Pr, pSiS->VBFlags, pSiS->VGAEngine, realcrtno, 0, &buffer[0], pSiS->VBFlags2); if((temp1) && (temp1 != 0xffff)) temp = temp1; } while((temp == 0xffff) && i--); if(temp != 0xffff) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "CRT%d DDC supported\n", crtno + 1); xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "CRT%d DDC level: %s%s%s%s\n", crtno + 1, (temp & 0x1a) ? "" : "[none of the supported]", (temp & 0x02) ? "2 " : "", (temp & 0x08) ? "D&P" : "", (temp & 0x10) ? "FPDI-2" : ""); if(temp & 0x02) { i = 5; /* Number of retrys */ do { temp = SiS_HandleDDC(pSiS->SiS_Pr, pSiS->VBFlags, pSiS->VGAEngine, realcrtno, 1, &buffer[0], pSiS->VBFlags2); } while((temp) && i--); if(!temp) { if((pMonitor = xf86InterpretEDID(pScrn->scrnIndex, &buffer[0]))) { int tempvgagamma = 0, templcdgamma = 0; if(buffer[0x14] & 0x80) { templcdgamma = (buffer[0x17] + 100) * 10; } else { tempvgagamma = (buffer[0x17] + 100) * 10;; } if(crtno == 0) { if(tempvgagamma) pSiS->CRT1VGAMonitorGamma = tempvgagamma; /* LCD never via (demanded) CRT1 DDC port */ } else { if(tempvgagamma) pSiS->CRT2VGAMonitorGamma = tempvgagamma; if(templcdgamma) pSiS->CRT2LCDMonitorGamma = templcdgamma; } return(pMonitor); } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "CRT%d DDC EDID corrupt\n", crtno + 1); } } else if(temp == 0xFFFE) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "CRT%d DDC data is from wrong device type (%s)\n", crtno + 1, (realcrtno == 1) ? "analog instead of digital" : "digital instead of analog"); } else { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "CRT%d DDC reading failed\n", crtno + 1); } } else if(temp & 0x18) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "DDC for VESA D&P and FPDI-2 not supported yet.\n"); } } else { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "CRT%d DDC probing failed\n", crtno + 1); } return(NULL); } static xf86MonPtr SiSDoPrivateDDC(ScrnInfoPtr pScrn, int *crtnum) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) { *crtnum = 1; return(SiSInternalDDC(pScrn, 0)); } else { *crtnum = 2; return(SiSInternalDDC(pScrn, 1)); } } else #endif if((pSiS->CRT1off) || (!pSiS->CRT1Detected)) { *crtnum = 2; return(SiSInternalDDC(pScrn, 1)); } else { *crtnum = 1; return(SiSInternalDDC(pScrn, 0)); } } static void SiSFindAspect(ScrnInfoPtr pScrn, xf86MonPtr pMonitor, int crtnum) { SISPtr pSiS = SISPTR(pScrn); int UseWide = 0; int aspect = 0; Bool fromdim = FALSE; if((pSiS->VGAEngine == SIS_315_VGA) && (!DIGITAL(pMonitor->features.input_type))) { if(pMonitor->features.hsize && pMonitor->features.vsize) { aspect = (pMonitor->features.hsize * 1000) / pMonitor->features.vsize; if(aspect >= 1400) UseWide = 1; fromdim = TRUE; } else if((PREFERRED_TIMING_MODE(pMonitor->features.msc)) && (pMonitor->det_mon[0].type == DT)) { aspect = (pMonitor->det_mon[0].section.d_timings.h_active * 1000) / pMonitor->det_mon[0].section.d_timings.v_active; if(aspect >= 1400) UseWide = 1; } if(aspect) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "According to %s, CRT%d aspect ratio is %.2f:1 (%s)\n", fromdim ? "DDC size" : "preferred mode", crtnum, (float)aspect / 1000.0, UseWide ? "wide" : "normal"); } else { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Unable to determine CRT%d aspect ratio, assuming \"normal\"\n", crtnum); } } if((crtnum == 1) && (pSiS->SiS_Pr->SiS_UseWide == -1)) { pSiS->SiS_Pr->SiS_UseWide = UseWide; } else if((crtnum == 2) && (pSiS->SiS_Pr->SiS_UseWideCRT2 == -1)) { pSiS->SiS_Pr->SiS_UseWideCRT2 = UseWide; } } static Bool SiSMakeOwnModeList(ScrnInfoPtr pScrn, Bool acceptcustommodes, Bool includelcdmodes, Bool isfordvi, Bool *havecustommodes, Bool fakecrt2modes, Bool IsForCRT2) { DisplayModePtr tempmode, delmode, mymodes; if((mymodes = SiSBuildBuiltInModeList(pScrn, includelcdmodes, isfordvi, fakecrt2modes, IsForCRT2))) { if(!acceptcustommodes) { while(pScrn->monitor->Modes) xf86DeleteMode(&pScrn->monitor->Modes, pScrn->monitor->Modes); pScrn->monitor->Modes = mymodes; } else { delmode = pScrn->monitor->Modes; while(delmode) { if(delmode->type & M_T_DEFAULT) { tempmode = delmode->next; xf86DeleteMode(&pScrn->monitor->Modes, delmode); delmode = tempmode; } else { delmode = delmode->next; } } /* Link default modes AFTER user ones */ if((tempmode = pScrn->monitor->Modes)) { *havecustommodes = TRUE; while(tempmode) { if(!tempmode->next) break; else tempmode = tempmode->next; } tempmode->next = mymodes; mymodes->prev = tempmode; } else { pScrn->monitor->Modes = mymodes; } #if 0 pScrn->monitor->Modes = mymodes; while(mymodes) { if(!mymodes->next) break; else mymodes = mymodes->next; } mymodes->next = tempmode; if(tempmode) { tempmode->prev = mymodes; } #endif } return TRUE; } else return FALSE; } static void SiSPrintModes(ScrnInfoPtr pScrn) { DisplayModePtr p; float hsync, refresh = 0.0; char *desc, *desc2, *prefix, *uprefix, *output; xf86DrvMsg(pScrn->scrnIndex, pScrn->virtualFrom, "Virtual size is %dx%d " "(pitch %d)\n", pScrn->virtualX, pScrn->virtualY, pScrn->displayWidth); if((p = pScrn->modes) == NULL) return; do { desc = desc2 = ""; uprefix = " "; prefix = "Mode"; output = "For CRT device: "; if(p->HSync > 0.0) hsync = p->HSync; else if (p->HTotal > 0) hsync = (float)p->Clock / (float)p->HTotal; else hsync = 0.0; refresh = 0.0; if(p->VRefresh > 0.0) refresh = p->VRefresh; else if (p->HTotal > 0 && p->VTotal > 0) { refresh = p->Clock * 1000.0 / p->HTotal / p->VTotal; if(p->Flags & V_INTERLACE) refresh *= 2.0; if(p->Flags & V_DBLSCAN) refresh /= 2.0; if(p->VScan > 1) refresh /= p->VScan; } if(p->Flags & V_INTERLACE) desc = " (I)"; if(p->Flags & V_DBLSCAN) desc = " (D)"; if(p->VScan > 1) desc2 = " (VScan)"; #ifdef M_T_USERDEF if(p->type & M_T_USERDEF) uprefix = "*"; #endif if(p->type & M_T_BUILTIN) { prefix = "Built-in mode"; output = ""; } else if (p->type & M_T_DEFAULT) { prefix = "Default mode"; } else { output = ""; } xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "%s%s \"%s\" (%dx%d) (%s%.1f MHz, %.1f kHz, %.1f Hz%s%s)\n", uprefix, prefix, p->name, p->HDisplay, p->VDisplay, output, p->Clock / 1000.0, hsync, refresh, desc, desc2); p = p->next; } while (p != NULL && p != pScrn->modes); } Bool SISDetermineLCDACap(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); if( ((pSiS->ChipType == SIS_650) || (pSiS->ChipType == SIS_315PRO) || (pSiS->ChipType >= SIS_661)) && (pSiS->ChipType != XGI_20) && (pSiS->VBFlags2 & VB2_SISLCDABRIDGE) && (pSiS->VESA != 1) ) { return TRUE; } return FALSE; } void SISSaveDetectedDevices(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); /* Backup detected CRT2 devices */ pSiS->detectedCRT2Devices = pSiS->VBFlags & (CRT2_LCD|CRT2_TV|CRT2_VGA|TV_AVIDEO|TV_SVIDEO| TV_SCART|TV_HIVISION|TV_YPBPR); } static Bool SISCheckBIOS(SISPtr pSiS, UShort mypciid, UShort mypcivendor, int biossize) { UShort romptr, pciid; if(!pSiS->BIOS) return FALSE; if((pSiS->BIOS[0] != 0x55) || (pSiS->BIOS[1] != 0xaa)) return FALSE; romptr = pSiS->BIOS[0x18] | (pSiS->BIOS[0x19] << 8); if(romptr > (biossize - 8)) return FALSE; if((pSiS->BIOS[romptr] != 'P') || (pSiS->BIOS[romptr+1] != 'C') || (pSiS->BIOS[romptr+2] != 'I') || (pSiS->BIOS[romptr+3] != 'R')) return FALSE; pciid = pSiS->BIOS[romptr+4] | (pSiS->BIOS[romptr+5] << 8); if(pciid != mypcivendor) return FALSE; pciid = pSiS->BIOS[romptr+6] | (pSiS->BIOS[romptr+7] << 8); if(pciid != mypciid) return FALSE; return TRUE; } static void SiS_LoadInitVBE(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); /* Don't load the VBE module for secondary * cards which sisfb POSTed. We don't want * int10 to overwrite our set up (such as * disabled a0000 memory address decoding). * We don't need the VBE anyway because * the card will never be in text mode, * and we can restore graphics modes just * perfectly. */ if( !pSiS->Primary && pSiS->sisfbcardposted) return; if(pSiS->pVbe) return; if(xf86LoadSubModule(pScrn, "vbe")) { xf86LoaderReqSymLists(vbeSymbols, NULL); #if XF86_VERSION_CURRENT < XF86_VERSION_NUMERIC(4,2,99,0,0) pSiS->pVbe = VBEInit(pSiS->pInt, pSiS->pEnt->index); #else pSiS->pVbe = VBEExtendedInit(pSiS->pInt, pSiS->pEnt->index, SET_BIOS_SCRATCH | RESTORE_BIOS_SCRATCH); #endif } if(!pSiS->pVbe) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Failed to load/initialize vbe module\n"); } } #ifdef SIS_PC_PLATFORM static void SiS_MapVGAMem(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); /* Map 64k VGA window for saving/restoring CGA fonts */ pSiS->VGAMapSize = 0x10000; pSiS->VGAMapPhys = 0; /* Default */ if((!pSiS->Primary) || (!pSiS->VGADecodingEnabled)) { /* If card is secondary or if a0000-address decoding * is disabled, set Phys to beginning of our video RAM. */ pSiS->VGAMapPhys = PCI_REGION_BASE(pSiS->PciInfo, 0, REGION_MEM); } if(!SiSVGAMapMem(pScrn)) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Failed to map VGA memory (0x%lx), can't save/restore console fonts\n", pSiS->VGAMapPhys); } } #endif static void SiS_CheckKernelFB(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int fd, i; CARD32 sisfbinfosize = 0, sisfbversion; sisfb_info *mysisfbinfo; char name[16]; pSiS->donttrustpdc = FALSE; pSiS->sisfbpdc = 0xff; pSiS->sisfbpdca = 0xff; pSiS->sisfblcda = 0xff; pSiS->sisfbscalelcd = -1; pSiS->sisfbspecialtiming = CUT_NONE; pSiS->sisfb_haveemi = FALSE; pSiS->sisfbfound = FALSE; pSiS->sisfb_tvposvalid = FALSE; pSiS->sisfbdevname[0] = 0; pSiS->sisfb_havelock = FALSE; pSiS->sisfbHaveNewHeapDef = FALSE; pSiS->sisfbHeapSize = 0; pSiS->sisfbVideoOffset = 0; pSiS->sisfbxSTN = FALSE; pSiS->sisfbcanpost = FALSE; /* (Old) sisfb can't POST card */ pSiS->sisfbcardposted = TRUE; /* If (old) sisfb is running, card must have been POSTed */ pSiS->sisfbprimary = FALSE; /* (Old) sisfb doesn't know */ if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { i = 0; do { if(i <= 7) { sprintf(name, "/dev/fb%1d", i); } else { sprintf(name, "/dev/fb/%1d", (i - 8)); } if((fd = open(name, O_RDONLY)) != -1) { Bool gotit = FALSE; if(!ioctl(fd, SISFB_GET_INFO_SIZE, &sisfbinfosize)) { if((mysisfbinfo = xalloc(sisfbinfosize))) { if(!ioctl(fd, (SISFB_GET_INFO | (sisfbinfosize << 16)), mysisfbinfo)) { gotit = TRUE; } else { xfree(mysisfbinfo); mysisfbinfo = NULL; } } } else { if((mysisfbinfo = xalloc(sizeof(*mysisfbinfo) + 16))) { if(!ioctl(fd, SISFB_GET_INFO_OLD, mysisfbinfo)) { gotit = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Possibly old version of sisfb detected. Please update.\n"); } else { xfree(mysisfbinfo); mysisfbinfo = NULL; } } } if(gotit) { if(mysisfbinfo->sisfb_id == SISFB_ID) { sisfbversion = (mysisfbinfo->sisfb_version << 16) | (mysisfbinfo->sisfb_revision << 8) | (mysisfbinfo->sisfb_patchlevel); if(sisfbversion >= SISFB_VERSION(1, 5, 8)) { /* Added PCI bus/slot/func into in sisfb Version 1.5.08. * Check this to make sure we run on the same card as sisfb */ if((mysisfbinfo->sisfb_pcibus == pSiS->PciBus) && (mysisfbinfo->sisfb_pcislot == pSiS->PciDevice) && (mysisfbinfo->sisfb_pcifunc == pSiS->PciFunc)) { pSiS->sisfbfound = TRUE; } } else pSiS->sisfbfound = TRUE; if(pSiS->sisfbfound) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "%s: SiS kernel fb driver (sisfb) %d.%d.%d detected (PCI:%02d:%02d.%d)\n", &name[5], mysisfbinfo->sisfb_version, mysisfbinfo->sisfb_revision, mysisfbinfo->sisfb_patchlevel, pSiS->PciBus, pSiS->PciDevice, pSiS->PciFunc); /* Added version/rev/pl in sisfb 1.4.0 */ if(mysisfbinfo->sisfb_version == 0) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Old version of sisfb found. Please update.\n"); } /* Basically, we can't trust the pdc register if sisfb is loaded */ pSiS->donttrustpdc = TRUE; pSiS->sisfbHeapStart = mysisfbinfo->heapstart; if(sisfbversion >= SISFB_VERSION(1, 7, 20)) { pSiS->sisfbHeapSize = mysisfbinfo->sisfb_heapsize; pSiS->sisfbVideoOffset = mysisfbinfo->sisfb_videooffset; pSiS->sisfbHaveNewHeapDef = TRUE; pSiS->sisfbFSTN = mysisfbinfo->sisfb_curfstn; pSiS->sisfbDSTN = mysisfbinfo->sisfb_curdstn; pSiS->sisfbxSTN = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "sisfb: memory heap at %dKB, size %dKB, viewport at %dKB\n", (int)pSiS->sisfbHeapStart, (int)pSiS->sisfbHeapSize, (int)pSiS->sisfbVideoOffset/1024); } else { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "sisfb: memory heap at %dKB\n", (int)pSiS->sisfbHeapStart); } xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "sisfb: using video mode 0x%02x\n", mysisfbinfo->fbvidmode); pSiS->OldMode = mysisfbinfo->fbvidmode; if(sisfbversion >= SISFB_VERSION(1, 5, 6)) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "sisfb: using %s, reserved %dK\n", (mysisfbinfo->sisfb_caps & 0x40) ? "SiS300 series Turboqueue" : (mysisfbinfo->sisfb_caps & 0x20) ? "SiS315/330/340 series AGP command queue" : (mysisfbinfo->sisfb_caps & 0x10) ? "SiS315/330/340 series VRAM command queue" : (mysisfbinfo->sisfb_caps & 0x08) ? "SiS315/330/340 series MMIO mode" : "no command queue", (int)mysisfbinfo->sisfb_tqlen); } if(sisfbversion >= SISFB_VERSION(1, 5, 10)) { /* We can trust the pdc value if sisfb is of recent version */ if(pSiS->VGAEngine == SIS_300_VGA) pSiS->donttrustpdc = FALSE; } if(sisfbversion >= SISFB_VERSION(1, 5, 11)) { if(pSiS->VGAEngine == SIS_300_VGA) { /* As of 1.5.11, sisfb saved the register for us (300 series) */ pSiS->sisfbpdc = mysisfbinfo->sisfb_lcdpdc; if(!pSiS->sisfbpdc) pSiS->sisfbpdc = 0xff; } } if(sisfbversion >= SISFB_VERSION(1, 5, 14)) { if(pSiS->VGAEngine == SIS_315_VGA) { pSiS->sisfblcda = mysisfbinfo->sisfb_lcda; } } if(sisfbversion >= SISFB_VERSION(1, 6, 13)) { pSiS->sisfbscalelcd = mysisfbinfo->sisfb_scalelcd; pSiS->sisfbspecialtiming = mysisfbinfo->sisfb_specialtiming; } if(sisfbversion >= SISFB_VERSION(1, 6, 16)) { if(pSiS->VGAEngine == SIS_315_VGA) { pSiS->donttrustpdc = FALSE; pSiS->sisfbpdc = mysisfbinfo->sisfb_lcdpdc; if(sisfbversion >= SISFB_VERSION(1, 6, 24)) { pSiS->sisfb_haveemi = mysisfbinfo->sisfb_haveemi ? TRUE : FALSE; pSiS->sisfb_haveemilcd = TRUE; /* will match most cases */ pSiS->sisfb_emi30 = mysisfbinfo->sisfb_emi30; pSiS->sisfb_emi31 = mysisfbinfo->sisfb_emi31; pSiS->sisfb_emi32 = mysisfbinfo->sisfb_emi32; pSiS->sisfb_emi33 = mysisfbinfo->sisfb_emi33; } if(sisfbversion >= SISFB_VERSION(1, 6, 25)) { pSiS->sisfb_haveemilcd = mysisfbinfo->sisfb_haveemilcd ? TRUE : FALSE; } if(sisfbversion >= SISFB_VERSION(1, 6, 31)) { pSiS->sisfbpdca = mysisfbinfo->sisfb_lcdpdca; } else { if(pSiS->sisfbpdc) { pSiS->sisfbpdca = (pSiS->sisfbpdc & 0xf0) >> 3; pSiS->sisfbpdc = (pSiS->sisfbpdc & 0x0f) << 1; } else { pSiS->sisfbpdca = pSiS->sisfbpdc = 0xff; } } } } if(sisfbversion >= SISFB_VERSION(1, 7, 0)) { pSiS->sisfb_havelock = TRUE; if(sisfbversion >= SISFB_VERSION(1, 7, 1)) { pSiS->sisfb_tvxpos = mysisfbinfo->sisfb_tvxpos; pSiS->sisfb_tvypos = mysisfbinfo->sisfb_tvypos; pSiS->sisfb_tvposvalid = TRUE; } } if(sisfbversion >= SISFB_VERSION(1, 8, 7)) { pSiS->sisfbcanpost = (mysisfbinfo->sisfb_can_post) ? TRUE : FALSE; pSiS->sisfbcardposted = (mysisfbinfo->sisfb_card_posted) ? TRUE : FALSE; pSiS->sisfbprimary = (mysisfbinfo->sisfb_was_boot_device) ? TRUE : FALSE; /* Validity check */ if(!pSiS->sisfbcardposted) { pSiS->sisfbprimary = FALSE; } } } } xfree(mysisfbinfo); mysisfbinfo = NULL; } close (fd); } i++; } while((i <= 15) && (!pSiS->sisfbfound)); if(pSiS->sisfbfound) { strncpy(pSiS->sisfbdevname, name, 15); } else { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "sisfb not found\n"); } } if(!pSiS->sisfbfound) { pSiS->sisfbcardposted = FALSE; } } static void SiSPseudo(ScrnInfoPtr pScrn) { } /* PreInit() * * Mandatory */ static Bool SISPreInit(ScrnInfoPtr pScrn, int flags) { SISPtr pSiS; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = NULL; #endif MessageType from; UChar usScratchCR17, usScratchCR32, usScratchCR63; UChar usScratchSR1F, srlockReg, crlockReg; unsigned int i; int pix24flags, temp; ClockRangePtr clockRanges; xf86MonPtr pMonitor = NULL; Bool didddc2, fromDDC, crt1freqoverruled = FALSE; UChar CR5F, tempreg; #if defined(SISMERGED) || defined(SISDUALHEAD) DisplayModePtr first, p, n; #endif #ifdef SISMERGED Bool crt2freqoverruled = FALSE; #endif static const char *ddcsstr = "CRT%d DDC monitor info: *******************************************\n"; static const char *ddcestr = "End of CRT%d DDC monitor info *************************************\n"; static const char *subshstr = "Substituting missing CRT%d monitor HSync range by DDC data\n"; static const char *subsvstr = "Substituting missing CRT%d monitor VRefresh range by DDC data\n"; static const char *saneh = "Correcting %s CRT%d monitor HSync range\n"; static const char *sanev = "Correcting %s CRT%d monitor VRefresh range\n"; #ifdef SISMERGED static const char *mergednocrt1 = "CRT1 not detected or forced off. %s.\n"; static const char *mergednocrt2 = "No CRT2 output selected or no video bridge detected. %s.\n"; static const char *mergeddisstr = "MergedFB mode disabled"; static const char *modesforstr = "Modes for CRT%d: **************************************************\n"; static const char *crtsetupstr = "*************************** CRT%d setup ***************************\n"; static const char *crt2monname = "CRT2"; #endif #if defined(SISDUALHEAD) || defined(SISMERGED) static const char *notsuitablestr = "Not using mode \"%s\" (not suitable for %s mode)\n"; #endif if(flags & PROBE_DETECT) { vbeInfoPtr pVbe; if(xf86LoadSubModule(pScrn, "vbe")) { int index = xf86GetEntityInfo(pScrn->entityList[0])->index; #if XF86_VERSION_CURRENT < XF86_VERSION_NUMERIC(4,2,99,0,0) if((pVbe = VBEInit(NULL, index))) #else if((pVbe = VBEExtendedInit(NULL, index, 0))) #endif { ConfiguredMonitor = vbeDoEDID(pVbe, NULL); vbeFree(pVbe); } } return TRUE; } /* * Note: This function is only called once at server startup, and * not at the start of each server generation. This means that * only things that are persistent across server generations can * be initialised here. xf86Screens[] is the array of all screens, * (pScrn is a pointer to one of these). Privates allocated using * xf86AllocateScrnInfoPrivateIndex() are too, and should be used * for data that must persist across server generations. * * Per-generation data should be allocated with * AllocateScreenPrivateIndex() from the ScreenInit() function. */ /* Check the number of entities, and fail if it isn't one. */ if(pScrn->numEntities != 1) { SISErrorLog(pScrn, "Number of entities is not 1\n"); return FALSE; } /* Due to the liberal license terms this is needed for * keeping the copyright notice readable and intact in * binary distributions. Removing this is a copyright * infringement. Please read the license terms above. */ xf86DrvMsg(pScrn->scrnIndex, X_INFO, "SiS driver (%d/%02d/%02d-%d, compiled for " SISMYSERVERNAME " %d.%d.%d.%d)\n", SISDRIVERVERSIONYEAR + 2000, SISDRIVERVERSIONMONTH, SISDRIVERVERSIONDAY, SISDRIVERREVISION, #ifdef XORG_VERSION_CURRENT XORG_VERSION_MAJOR, XORG_VERSION_MINOR, XORG_VERSION_PATCH, XORG_VERSION_SNAP #else XF86_VERSION_MAJOR, XF86_VERSION_MINOR, XF86_VERSION_PATCH, XF86_VERSION_SNAP #endif ); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Copyright (C) 2001-2005 Thomas Winischhofer and others\n"); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "*** See http://www.winischhofer.at/linuxsisvga.shtml\n"); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "*** for documentation and updates.\n"); #ifdef XORG_VERSION_CURRENT #if 0 /* no prototype yet */ if(xorgGetVersion() != XORG_VERSION_CURRENT) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "This driver binary is not compiled for this version of " SISMYSERVERNAME "\n"); } #endif #else #if XF86_VERSION_CURRENT >= XF86_VERSION_NUMERIC(4,2,99,0,0) if(xf86GetVersion() != XF86_VERSION_CURRENT) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "This driver binary is not compiled for this version of " SISMYSERVERNAME "\n"); } #endif #endif /* Allocate the SISRec driverPrivate */ if(!SISGetRec(pScrn)) { SISErrorLog(pScrn, "Could not allocate memory for pSiS private\n"); return FALSE; } pSiS = SISPTR(pScrn); pSiS->pScrn = pScrn; pSiS->pInt = NULL; /* Save PCI Domain Base */ #if XF86_VERSION_CURRENT < XF86_VERSION_NUMERIC(4,2,99,0,0) pSiS->IODBase = 0; #else pSiS->IODBase = pScrn->domainIOBase; #endif /* Get the entity, and make sure it is PCI. */ pSiS->pEnt = xf86GetEntityInfo(pScrn->entityList[0]); if(pSiS->pEnt->location.type != BUS_PCI) { SISErrorLog(pScrn, "Entity's bus type is not PCI\n"); goto my_error_0; } #ifdef SISDUALHEAD /* Allocate an entity private if necessary */ if(xf86IsEntityShared(pScrn->entityList[0])) { pSiSEnt = xf86GetEntityPrivate(pScrn->entityList[0], SISEntityIndex)->ptr; pSiS->entityPrivate = pSiSEnt; /* If something went wrong, quit here */ if((pSiSEnt->DisableDual) || (pSiSEnt->ErrorAfterFirst)) { SISErrorLog(pScrn, "First head encountered fatal error, aborting...\n"); goto my_error_0; } } #endif /* Find the PCI info for this screen */ pSiS->PciInfo = xf86GetPciInfoForEntity(pSiS->pEnt->index); pSiS->PciBus = PCI_CFG_BUS(pSiS->PciInfo); /*SIS_PCI_BUS(pSiS->PciInfo);*/ pSiS->PciDevice = PCI_CFG_DEV(pSiS->PciInfo); /*SIS_PCI_DEVICE(pSiS->PciInfo);*/ pSiS->PciFunc = PCI_CFG_FUNC(pSiS->PciInfo); /*SIS_PCI_FUNC(pSiS->PciInfo);*/ pSiS->PciTag = pciTag(PCI_DEV_BUS(pSiS->PciInfo), PCI_DEV_DEV(pSiS->PciInfo), PCI_DEV_FUNC(pSiS->PciInfo)); #ifdef SIS_NEED_MAP_IOP /********************************************/ /* THIS IS BROKEN AND WON'T WORK */ /* Reasons: */ /* 1) MIPS and ARM have no i/o ports but */ /* use memory mapped i/o only. The inX/outX */ /* macros in compiler.h are smart enough to */ /* add "IOPortBase" to the port number, but */ /* "IOPortBase" is never initialized. */ /* 2) IOPortBase is declared in compiler.h */ /* itself. So until somebody fixes all */ /* modules that #include compiler.h to set */ /* IOPortBase, vga support for MIPS and ARM */ /* is unusable. */ /* (In this driver this is solvable because */ /* we have our own vgaHW routines. However, */ /* we use /dev/port for now instead.) */ /********************************************/ pSiS->IOPAddress = pSiS->IODBase + pSiS->PciInfo->ioBase[2]; if(!SISMapIOPMem(pScrn)) { SISErrorLog(pScrn, "Could not map I/O port area at 0x%x\n", pSiS->IOPAddress); goto my_error_0; } else { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "I/O port area mapped to %p, size 128\n", pSiS->IOPBase); #if defined(__mips__) || defined(__arm32__) /* inX/outX macros on these use IOPortBase as offset */ /* This is entirely skrewed. */ IOPortBase = (unsigned int)pSiS->IOPBase; #endif } #endif /* Set up i/o port access (for non-x86) */ #ifdef SISUSEDEVPORT if((sisdevport = open("/dev/port", O_RDWR, 0)) == -1) { SISErrorLog(pScrn, "Failed to open /dev/port for read/write\n"); goto my_error_0; } pSiS->sisdevportopen = TRUE; #endif /* * Set the Chipset and ChipRev, allowing config file entries to * override. DANGEROUS! */ { SymTabRec *myChipsets = SISChipsets; if(PCI_DEV_VENDOR_ID(pSiS->PciInfo) == PCI_VENDOR_XGI) { myChipsets = XGIChipsets; } if(pSiS->pEnt->device->chipset && *pSiS->pEnt->device->chipset) { pScrn->chipset = pSiS->pEnt->device->chipset; pSiS->Chipset = xf86StringToToken(myChipsets, pScrn->chipset); } else if(pSiS->pEnt->device->chipID >= 0) { pSiS->Chipset = pSiS->pEnt->device->chipID; pScrn->chipset = (char *)xf86TokenToString(myChipsets, pSiS->Chipset); xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "ChipID override: 0x%04X\n", pSiS->Chipset); } else { pSiS->Chipset = PCI_DEV_DEVICE_ID(pSiS->PciInfo); pScrn->chipset = (char *)xf86TokenToString(myChipsets, pSiS->Chipset); } } if(pSiS->pEnt->device->chipRev >= 0) { pSiS->ChipRev = pSiS->pEnt->device->chipRev; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "ChipRev override: %d\n", pSiS->ChipRev); } else { pSiS->ChipRev = PCI_DEV_REVISION(pSiS->PciInfo); } /* * This shouldn't happen because such problems should be caught in * SISProbe(), but check it just in case the user has overridden them. */ if(pScrn->chipset == NULL) { SISErrorLog(pScrn, "ChipID 0x%04X is not recognised\n", pSiS->Chipset); goto my_error_0; } if(pSiS->Chipset < 0) { SISErrorLog(pScrn, "Chipset \"%s\" is not recognised\n", pScrn->chipset); goto my_error_0; } pSiS->SiS6326Flags = 0; /* Determine VGA engine generation */ switch(pSiS->Chipset) { case PCI_CHIP_SIS300: case PCI_CHIP_SIS540: case PCI_CHIP_SIS630: /* 630 + 730 */ pSiS->VGAEngine = SIS_300_VGA; break; case PCI_CHIP_SIS315H: case PCI_CHIP_SIS315: case PCI_CHIP_SIS315PRO: case PCI_CHIP_SIS550: case PCI_CHIP_SIS650: /* 650 + 740 */ case PCI_CHIP_SIS330: case PCI_CHIP_SIS660: /* 660, 661, 741, 760, 761, 670(?), 770 */ case PCI_CHIP_SIS340: case PCI_CHIP_XGIXG20: case PCI_CHIP_XGIXG40: pSiS->VGAEngine = SIS_315_VGA; break; case PCI_CHIP_SIS530: pSiS->VGAEngine = SIS_530_VGA; break; case PCI_CHIP_SIS6326: /* Determine SiS6326 revision. According to SiS the differences are: * Chip name Chip type TV-Out MPEG II decoder * 6326 AGP Rev. G0/H0 no no * 6326 DVD Rev. D2 yes yes * 6326 Rev. Cx yes yes */ xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Chipset is SiS6326 %s (revision 0x%02x)\n", (pSiS->ChipRev == 0xaf) ? "(Ax)" : ((pSiS->ChipRev == 0x0a) ? "AGP (G0)" : ((pSiS->ChipRev == 0x0b) ? "AGP (H0)" : (((pSiS->ChipRev & 0xf0) == 0xd0) ? "DVD (Dx/H0)" : (((pSiS->ChipRev & 0xf0) == 0x90) ? "(9x)" : (((pSiS->ChipRev & 0xf0) == 0xc0) ? "(Cx)" : "(unknown)"))))), pSiS->ChipRev); if((pSiS->ChipRev != 0x0a) && (pSiS->ChipRev != 0x0b)) { pSiS->SiS6326Flags |= SIS6326_HASTV; } /* fall through */ default: pSiS->VGAEngine = SIS_OLD_VGA; } /* We don't know about the current mode yet */ pSiS->OldMode = 0; /* Determine whether this is the primary or a secondary * display adapter. And right here the problem starts: * On machines with integrated SiS chipsets, the system BIOS * usually sets VGA_EN on all PCI-to-PCI bridges in the system * (of which there usually are two: PCI and AGP). This and * the fact that any PCI card POSTed by sisfb naturally has * its PCI resources enabled, leads to X assuming that * there are more than one "primary" cards in the system. * In this case, X treats ALL cards as "secondary" - * which by no means is desireable. If sisfb is running, * we can determine which card really is "primary" (in * terms of if it's the one that occupies the A0000 area * etc.) in a better way (Linux 2.6.12 or later). See below. */ if(!(pSiS->Primary = xf86IsPrimaryPci(pSiS->PciInfo))) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, SISMYSERVERNAME " assumes this adapter to be secondary\n"); } /* Now check if sisfb is running, and if so, retrieve * all possible info from it. This also resets all * sisfb_* entries in pSiS regardless of the chipset. */ SiS_CheckKernelFB(pScrn); /* Now for that primary/secondary mess: Linux kernel * 2.6.12 and later knows what card is primary, and so * does any recent version of sisfb. XFree86/X.org takes * all adapters as "secondary" if more than one card's * memory and i/o resources are enabled, and more than * one PCI bridge in the system has VGA_EN set at server * start. So, let's start thinking: What is this * primary/secondary classification needed for anyway? * (This list might be incomplete for the entire server * infrastructure, but it's complete as regards the driver's * purposes of primary/secondary classification.) * 1) VGA/console font restoring: Here it's irrelevant * whether more than one card's resources are enabled * at server start or not. Relevant is whether the card * occupies the A0000 area at this time. Assuming (?) * that this does not change during machine up-time, * it suffices to know which device was the boot video * device (as determined by Linux 2.6.12 and later). * Also, this is only relevant if the card is in text * mode; if it's in graphics mode, fonts aren't saved * or restored anyway. * sisfb tells us if that card is considered the boot * video device. The hardware registers tell us if * the card's A0000 address decoding is enabled, and if * the card currently is in text mode. These three bits * of information are enough to decide on whether or not * to save/restore fonts. * 2) POSTing. Same here. Relevant is only whether or not * the card has been POSTed once before. POSTing cards * on every server start is pretty ugly, especially * if a framebuffer driver is already handling it. * SiS/XGI cards POSTed by sisfb can coexist well with other * active adapters. So we trust sisfb's information more * than X's (especially as we only use this information for * console font restoring and eventual POSTing.) * What we still need is a way to find out about all this if * sisfb is not running.... */ if(!pSiS->Primary && pSiS->sisfbprimary) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "sisfb reports this adapter to be primary. Seems more reliable.\n"); pSiS->Primary = TRUE; } /* If the card is "secondary" and has not been * POSTed by sisfb, POST it now through int10. * For cards POSTed by sisfb, we definitely don't * want that as it messes up our set up (eg. the * disabled A0000 area). * The int10 module decides on its own if the * card is primary or secondary. Since it uses * the generic technique described above, and since * for "secondary" cards it needs a real PCI BIOS * ROM, and since integrated chips don't have such * a PCI BIOS ROM, int10 will naturally fail to * find/read the BIOS on such machines. Great. * Using the integrated graphics as "secondary" * (which it will be as soon as X finds more than * one card's mem and i/o resources enabled, and more * than one PCI bridge's VGA_EN bit set during server * start) will therefore prevent us from restoring * the mode using the VBE. That means real fun if * the integrated chip is set up to use the video * bridge output for text mode (which is something * the driver doesn't really support since it's done * pretty much differently on every machine.) */ #if !defined(__alpha__) if(!pSiS->Primary) { if(!pSiS->sisfbcardposted) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Initializing adapter through int10\n"); if(xf86LoadSubModule(pScrn, "int10")) { xf86LoaderReqSymLists(int10Symbols, NULL); pSiS->pInt = xf86InitInt10(pSiS->pEnt->index); } else { SISErrorLog(pScrn, "Failed to load int10 module\n"); } } else { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Adapter already initialized by sisfb\n"); } } #endif /* Get the address of our relocated IO registers. * These are enabled by the hardware during cold boot, and * by the BIOS. So we can pretty much rely on that these * are enabled. */ pSiS->RelIO = (SISIOADDRESS)(PCI_REGION_BASE(pSiS->PciInfo, 2, REGION_IO) + pSiS->IODBase); xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Relocated I/O registers at 0x%lX\n", (ULong)pSiS->RelIO); /* Unlock extended registers */ sisSaveUnlockExtRegisterLock(pSiS, &srlockReg, &crlockReg); /* Is a0000 memory address decoding enabled? */ pSiS->VGADecodingEnabled = TRUE; switch(pSiS->VGAEngine) { case SIS_OLD_VGA: /* n/a */ break; case SIS_530_VGA: inSISIDXREG(SISSR, 0x3d, tempreg); if(tempreg & 0x04) pSiS->VGADecodingEnabled = FALSE; break; case SIS_300_VGA: case SIS_315_VGA: inSISIDXREG(SISSR, 0x20, tempreg); if(tempreg & 0x04) pSiS->VGADecodingEnabled = FALSE; break; } if(!pSiS->VGADecodingEnabled) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Standard VGA (0xA0000) memory address decoding is disabled\n"); } #ifdef SIS_PC_PLATFORM /* Map 64k VGA window for saving/restoring CGA fonts. * For secondary cards or if A0000 address decoding * is disabled, this will map the beginning of the * linear (PCI) video RAM instead. */ SiS_MapVGAMem(pScrn); #endif /* Set operating state */ /* 1. memory */ /* [ResUnusedOpr: Resource decoded by hw, but not used] * [ResDisableOpr: Resource is not decoded by hw] * So, if a0000 memory decoding is disabled, one could * argue that we may say so, too. Hm. Quite likely that * the VBE (via int10) will eventually enable it. So we * cowardly say unused instead. */ xf86SetOperatingState(resVgaMem, pSiS->pEnt->index, ResUnusedOpr); /* 2. i/o */ /* Although we only use the relocated i/o ports, the hardware * also decodes the standard VGA port range. This could in * theory be disabled, but I don't dare to do this; in case of * a server crash, the card would be entirely dead. Also, this * would prevent int10 and the VBE from working at all. Generic * access control through the PCI configuration registers does * nicely anyway. */ xf86SetOperatingState(resVgaIo, pSiS->pEnt->index, ResUnusedOpr); /* Operations for which memory access is required */ pScrn->racMemFlags = RAC_FB | RAC_COLORMAP | RAC_CURSOR | RAC_VIEWPORT; /* Operations for which I/O access is required */ pScrn->racIoFlags = RAC_COLORMAP | RAC_CURSOR | RAC_VIEWPORT; /* Load ramdac module */ if(!xf86LoadSubModule(pScrn, "ramdac")) { SISErrorLog(pScrn, "Could not load ramdac module\n"); goto my_error_1; } xf86LoaderReqSymLists(ramdacSymbols, NULL); /* Set pScrn->monitor */ pScrn->monitor = pScrn->confScreen->monitor; /* Reset some entries */ pSiS->SiSFastVidCopy = SiSVidCopyGetDefault(); pSiS->SiSFastMemCopy = SiSVidCopyGetDefault(); pSiS->SiSFastVidCopyFrom = SiSVidCopyGetDefault(); pSiS->SiSFastMemCopyFrom = SiSVidCopyGetDefault(); pSiS->SiSFastVidCopyDone = FALSE; #ifdef SIS_USE_XAA pSiS->RenderCallback = NULL; #endif #ifdef SIS_USE_EXA pSiS->ExaRenderCallback = NULL; #endif pSiS->InitAccel = SiSPseudo; pSiS->SyncAccel = SiSPseudo; pSiS->FillRect = NULL; pSiS->BlitRect = NULL; /* Always do a ValidMode() inside Switchmode() */ pSiS->skipswitchcheck = FALSE; /* Determine chipset and its capabilities in detail */ pSiS->ChipFlags = 0; pSiS->SiS_SD_Flags = pSiS->SiS_SD2_Flags = 0; pSiS->SiS_SD3_Flags = pSiS->SiS_SD4_Flags = 0; pSiS->HWCursorMBufNum = pSiS->HWCursorCBufNum = 0; pSiS->NeedFlush = FALSE; pSiS->NewCRLayout = FALSE; pSiS->mmioSize = 64; switch(pSiS->Chipset) { case PCI_CHIP_SIS530: pSiS->ChipType = SIS_530; break; case PCI_CHIP_SIS300: pSiS->ChipType = SIS_300; pSiS->SiS_SD_Flags |= SiS_SD_IS300SERIES; break; case PCI_CHIP_SIS540: pSiS->ChipType = SIS_540; pSiS->SiS_SD_Flags |= SiS_SD_IS300SERIES; break; case PCI_CHIP_SIS630: /* 630 + 730 */ pSiS->ChipType = SIS_630; if(sis_pci_read_host_bridge_u32(0x00) == 0x07301039) { pSiS->ChipType = SIS_730; } pSiS->SiS_SD_Flags |= SiS_SD_IS300SERIES; break; case PCI_CHIP_SIS315H: pSiS->ChipType = SIS_315H; pSiS->ChipFlags |= (SiSCF_315Core | SiSCF_MMIOPalette); pSiS->SiS_SD_Flags |= SiS_SD_IS315SERIES; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORTXVHUESAT; pSiS->myCR63 = 0x63; break; case PCI_CHIP_SIS315: /* Override for simplicity */ pSiS->Chipset = PCI_CHIP_SIS315H; pSiS->ChipType = SIS_315; pSiS->ChipFlags |= (SiSCF_315Core | SiSCF_MMIOPalette); pSiS->SiS_SD_Flags |= SiS_SD_IS315SERIES; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORTXVHUESAT; pSiS->myCR63 = 0x63; break; case PCI_CHIP_SIS315PRO: /* Override for simplicity */ pSiS->Chipset = PCI_CHIP_SIS315H; pSiS->ChipType = SIS_315PRO; pSiS->ChipFlags |= (SiSCF_315Core | SiSCF_MMIOPalette); pSiS->SiS_SD_Flags |= SiS_SD_IS315SERIES; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORTXVHUESAT; pSiS->myCR63 = 0x63; break; case PCI_CHIP_SIS550: pSiS->ChipType = SIS_550; pSiS->ChipFlags |= (SiSCF_Integrated | SiSCF_MMIOPalette); pSiS->SiS_SD_Flags |= SiS_SD_IS315SERIES; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORTXVHUESAT; pSiS->myCR63 = 0x63; break; case PCI_CHIP_SIS650: /* 650 + 740 */ pSiS->ChipType = SIS_650; if(sis_pci_read_host_bridge_u32(0x00) == 0x07401039) { pSiS->ChipType = SIS_740; } pSiS->ChipFlags |= (SiSCF_Integrated | SiSCF_Real256ECore | SiSCF_MMIOPalette); pSiS->SiS_SD_Flags |= SiS_SD_IS315SERIES; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORTXVHUESAT; pSiS->myCR63 = 0x63; break; case PCI_CHIP_SIS330: pSiS->ChipType = SIS_330; pSiS->ChipFlags |= (SiSCF_XabreCore | SiSCF_MMIOPalette); pSiS->SiS_SD_Flags |= SiS_SD_IS330SERIES; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORTXVHUESAT; pSiS->SiS_SD3_Flags |= SiS_SD3_CRT1SATGAIN; /* FIXME ? */ pSiS->myCR63 = 0x53; /* sic! */ break; case PCI_CHIP_SIS660: /* 660, 661, 741, 760, 761, 670(?) */ { ULong hpciid = sis_pci_read_host_bridge_u32(0x00); switch(hpciid) { case 0x06601039: pSiS->ChipType = SIS_660; pSiS->ChipFlags |= SiSCF_Ultra256Core; pSiS->NeedFlush = TRUE; break; case 0x07601039: pSiS->ChipType = SIS_760; pSiS->ChipFlags |= SiSCF_Ultra256Core; pSiS->NeedFlush = TRUE; break; case 0x07611039: pSiS->ChipType = SIS_761; pSiS->ChipFlags |= SiSCF_Ultra256Core; pSiS->NeedFlush = TRUE; break; case 0x07701039: pSiS->ChipType = SIS_770; pSiS->ChipFlags |= SiSCF_Ultra256Core; pSiS->NeedFlush = TRUE; break; case 0x07411039: pSiS->ChipType = SIS_741; pSiS->ChipFlags |= SiSCF_Real256ECore; break; case 0x06611039: default: pSiS->ChipType = SIS_661; pSiS->ChipFlags |= SiSCF_Real256ECore; break; case 0x06701039: pSiS->ChipType = SIS_670; pSiS->ChipFlags |= SiSCF_Real256ECore; } /* Detection could also be done by CR5C & 0xf8: * 0x10 = 661 (CR5F & 0xc0: 0x00 both A0 and A1) * 0x80 = 760 (CR5F & 0xc0: 0x00 A0, 0x40 A1) * 0x90 = 741 (CR5F & 0xc0: 0x00 A0,A1 0x40 A2) * other: 660 (CR5F & 0xc0: 0x00 A0 0x40 A1) (DOA?) */ pSiS->ChipFlags |= (SiSCF_Integrated | SiSCF_MMIOPalette); pSiS->SiS_SD_Flags |= SiS_SD_IS330SERIES; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORTXVHUESAT; pSiS->SiS_SD3_Flags |= SiS_SD3_CRT1SATGAIN; pSiS->myCR63 = 0x53; /* sic! */ pSiS->NewCRLayout = TRUE; } break; case PCI_CHIP_SIS340: pSiS->ChipType = SIS_340; pSiS->ChipFlags |= (SiSCF_XabreCore | SiSCF_MMIOPalette); pSiS->SiS_SD_Flags |= SiS_SD_IS340SERIES; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORTXVHUESAT; pSiS->SiS_SD3_Flags |= SiS_SD3_CRT1SATGAIN; pSiS->myCR63 = 0x53; pSiS->NewCRLayout = TRUE; break; case PCI_CHIP_XGIXG20: pSiS->ChipType = XGI_20; pSiS->ChipFlags |= (SiSCF_XabreCore | SiSCF_MMIOPalette | SiSCF_IsXGI); pSiS->SiS_SD2_Flags |= (SiS_SD2_NOOVERLAY | SiS_SD2_ISXGI); pSiS->myCR63 = 0x53; pSiS->NewCRLayout = TRUE; break; case PCI_CHIP_XGIXG40: pSiS->ChipType = XGI_40; pSiS->ChipFlags |= (SiSCF_XabreCore | SiSCF_MMIOPalette | SiSCF_IsXGI); pSiS->SiS_SD2_Flags |= (SiS_SD2_SUPPORTXVHUESAT | SiS_SD2_ISXGI); pSiS->SiS_SD3_Flags |= SiS_SD3_CRT1SATGAIN; pSiS->myCR63 = 0x53; pSiS->NewCRLayout = TRUE; if(pSiS->ChipRev == 2) pSiS->ChipFlags |= SiSCF_IsXGIV3; break; default: pSiS->ChipType = SIS_OLD; break; } /* * Now back to real business: Figure out the depth, bpp, etc. * Set SupportConvert... flags since we use the fb layer which * supports this conversion. (24to32 seems not implemented though) * Additionally, determine the size of the HWCursor memory area. */ switch(pSiS->VGAEngine) { case SIS_300_VGA: pSiS->CursorSize = 4096; pix24flags = Support32bppFb; break; case SIS_315_VGA: pSiS->CursorSize = 16384; pix24flags = Support32bppFb; break; case SIS_530_VGA: pSiS->CursorSize = 2048; pix24flags = Support32bppFb | Support24bppFb | SupportConvert32to24; break; default: pSiS->CursorSize = 2048; pix24flags = Support24bppFb | SupportConvert32to24 | PreferConvert32to24; break; } #ifdef SISDUALHEAD /* In case of Dual Head, we need to determine if we are the "master" head or * the "slave" head. In order to do that, we set PrimInit to DONE in the * shared entity at the end of the first initialization. The second * initialization then knows that some things have already been done. THIS * ALWAYS ASSUMES THAT THE FIRST DEVICE INITIALIZED IS THE MASTER! */ if(xf86IsEntityShared(pScrn->entityList[0])) { if(pSiSEnt->lastInstance > 0) { if(!xf86IsPrimInitDone(pScrn->entityList[0])) { /* First Head (always CRT2) */ pSiS->SecondHead = FALSE; pSiSEnt->pScrn_1 = pScrn; pSiSEnt->CRT1ModeNo = pSiSEnt->CRT2ModeNo = -1; pSiSEnt->CRT2ModeSet = FALSE; pSiS->DualHeadMode = TRUE; pSiSEnt->DisableDual = FALSE; pSiSEnt->BIOS = NULL; pSiSEnt->ROM661New = FALSE; pSiSEnt->HaveXGIBIOS = FALSE; pSiSEnt->SiS_Pr = NULL; pSiSEnt->RenderAccelArray = NULL; pSiSEnt->SiSFastVidCopy = pSiSEnt->SiSFastMemCopy = NULL; pSiSEnt->SiSFastVidCopyFrom = pSiSEnt->SiSFastMemCopyFrom = NULL; } else { /* Second Head (always CRT1) */ pSiS->SecondHead = TRUE; pSiSEnt->pScrn_2 = pScrn; pSiS->DualHeadMode = TRUE; } } else { /* Only one screen in config file - disable dual head mode */ pSiS->SecondHead = FALSE; pSiS->DualHeadMode = FALSE; pSiSEnt->DisableDual = TRUE; } } else { /* Entity is not shared - disable dual head mode */ pSiS->SecondHead = FALSE; pSiS->DualHeadMode = FALSE; } #endif /* Save the name of our Device section for SiSCtrl usage */ { int ttt = 0; GDevPtr device = xf86GetDevFromEntity(pScrn->entityList[0], pScrn->entityInstanceList[0]); if(device && device->identifier) { if((ttt = strlen(device->identifier)) > 31) ttt = 31; strncpy(&pSiS->devsectname[0], device->identifier, 31); } pSiS->devsectname[ttt] = 0; } pSiS->ForceCursorOff = FALSE; /* Allocate SiS_Private (for mode switching code) and initialize it */ pSiS->SiS_Pr = NULL; #ifdef SISDUALHEAD if(pSiSEnt) { if(pSiSEnt->SiS_Pr) pSiS->SiS_Pr = pSiSEnt->SiS_Pr; } #endif if(!pSiS->SiS_Pr) { if(!(pSiS->SiS_Pr = xnfcalloc(sizeof(struct SiS_Private), 1))) { SISErrorLog(pScrn, "Could not allocate memory for SiS_Pr structure\n"); goto my_error_1; } #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->SiS_Pr = pSiS->SiS_Pr; #endif memset(pSiS->SiS_Pr, 0, sizeof(struct SiS_Private)); pSiS->SiS_Pr->PciTag = pSiS->PciTag; pSiS->SiS_Pr->ChipType = pSiS->ChipType; pSiS->SiS_Pr->ChipRevision = pSiS->ChipRev; pSiS->SiS_Pr->SiS_Backup70xx = 0xff; pSiS->SiS_Pr->SiS_CHOverScan = -1; pSiS->SiS_Pr->SiS_ChSW = FALSE; pSiS->SiS_Pr->SiS_CustomT = CUT_NONE; pSiS->SiS_Pr->SiS_UseWide = -1; pSiS->SiS_Pr->SiS_UseWideCRT2 = -1; pSiS->SiS_Pr->SiS_TVBlue = -1; pSiS->SiS_Pr->PanelSelfDetected = FALSE; pSiS->SiS_Pr->UsePanelScaler = -1; pSiS->SiS_Pr->CenterScreen = -1; pSiS->SiS_Pr->CRT1UsesCustomMode = FALSE; pSiS->SiS_Pr->PDC = pSiS->SiS_Pr->PDCA = -1; pSiS->SiS_Pr->LVDSHL = -1; pSiS->SiS_Pr->HaveEMI = FALSE; pSiS->SiS_Pr->HaveEMILCD = FALSE; pSiS->SiS_Pr->OverruleEMI = FALSE; pSiS->SiS_Pr->SiS_SensibleSR11 = FALSE; if(pSiS->ChipType >= SIS_661) { pSiS->SiS_Pr->SiS_SensibleSR11 = TRUE; } pSiS->SiS_Pr->SiS_MyCR63 = pSiS->myCR63; pSiS->SiS_Pr->DDCPortMixup = FALSE; } /* Copy IO address to SiS_Pr and init the structure for * routines inside init.c/init301.c */ pSiS->SiS_Pr->IOAddress = (SISIOADDRESS)(pSiS->RelIO + 0x30); SiSRegInit(pSiS->SiS_Pr, pSiS->RelIO + 0x30); /* The following identifies the old chipsets. This is only * partly used since the really old chips are not supported, * but I keep it here for future use. * 205, 215 and 225 are to be treated the same way, 201 and 202 * are different. */ if(pSiS->VGAEngine == SIS_OLD_VGA || pSiS->VGAEngine == SIS_530_VGA) { switch(pSiS->Chipset) { case PCI_CHIP_SG86C201: pSiS->oldChipset = OC_SIS86201; break; case PCI_CHIP_SG86C202: pSiS->oldChipset = OC_SIS86202; break; case PCI_CHIP_SG86C205: inSISIDXREG(SISSR, 0x10, tempreg); if(tempreg & 0x80) pSiS->oldChipset = OC_SIS6205B; else pSiS->oldChipset = (pSiS->ChipRev == 0x11) ? OC_SIS6205C : OC_SIS6205A; break; case PCI_CHIP_SIS82C204: pSiS->oldChipset = OC_SIS82204; break; case 0x6225: pSiS->oldChipset = OC_SIS6225; break; case PCI_CHIP_SIS5597: pSiS->oldChipset = OC_SIS5597; break; case PCI_CHIP_SIS6326: pSiS->oldChipset = OC_SIS6326; break; case PCI_CHIP_SIS530: if(sis_pci_read_host_bridge_u32(0x00) == 0x06201039) { pSiS->oldChipset = OC_SIS620; } else { if((pSiS->ChipRev & 0x0f) < 0x0a) pSiS->oldChipset = OC_SIS530A; else pSiS->oldChipset = OC_SIS530B; } break; default: pSiS->oldChipset = OC_UNKNOWN; } } if(!xf86SetDepthBpp(pScrn, 0, 0, 0, pix24flags)) { SISErrorLog(pScrn, "xf86SetDepthBpp() error\n"); goto my_error_1; } /* Check that the returned depth is one we support */ temp = 0; switch(pScrn->depth) { case 8: case 16: case 24: break; case 15: if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { temp = 1; } break; default: temp = 1; } if(temp) { SISErrorLog(pScrn, "Given color depth (%d) is not supported by this driver/chipset\n", pScrn->depth); goto my_error_1; } xf86PrintDepthBpp(pScrn); if( (((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) && (pScrn->bitsPerPixel == 24)) || ((pSiS->VGAEngine == SIS_OLD_VGA) && (pScrn->bitsPerPixel == 32)) ) { SISErrorLog(pScrn, "Framebuffer bpp %d not supported for this chipset\n", pScrn->bitsPerPixel); goto my_error_1; } /* Get the depth24 pixmap format */ if(pScrn->depth == 24 && pix24bpp == 0) { pix24bpp = xf86GetBppFromDepth(pScrn, 24); } /* * This must happen after pScrn->display has been set because * xf86SetWeight references it. */ if(pScrn->depth > 8) { /* The defaults are OK for us */ rgb zeros = {0, 0, 0}; if(!xf86SetWeight(pScrn, zeros, zeros)) { SISErrorLog(pScrn, "xf86SetWeight() error\n"); goto my_error_1; } else { Bool ret = FALSE; switch(pScrn->depth) { case 15: if((pScrn->weight.red != 5) || (pScrn->weight.green != 5) || (pScrn->weight.blue != 5)) ret = TRUE; break; case 16: if((pScrn->weight.red != 5) || (pScrn->weight.green != 6) || (pScrn->weight.blue != 5)) ret = TRUE; break; case 24: if((pScrn->weight.red != 8) || (pScrn->weight.green != 8) || (pScrn->weight.blue != 8)) ret = TRUE; break; } if(ret) { SISErrorLog(pScrn, "RGB weight %d%d%d at depth %d not supported by hardware\n", (int)pScrn->weight.red, (int)pScrn->weight.green, (int)pScrn->weight.blue, pScrn->depth); goto my_error_1; } } } /* Set the current layout parameters */ pSiS->CurrentLayout.bitsPerPixel = pScrn->bitsPerPixel; pSiS->CurrentLayout.depth = pScrn->depth; /* (Inside this function, we can use pScrn's contents anyway) */ if(!xf86SetDefaultVisual(pScrn, -1)) { SISErrorLog(pScrn, "xf86SetDefaultVisual() error\n"); goto my_error_1; } else { /* We don't support DirectColor at > 8bpp */ if(pScrn->depth > 8 && pScrn->defaultVisual != TrueColor) { SISErrorLog(pScrn, "Given default visual (%s) is not supported at depth %d\n", xf86GetVisualName(pScrn->defaultVisual), pScrn->depth); goto my_error_1; } } #ifdef SISDUALHEAD /* Due to palette & timing problems we don't support 8bpp in DHM */ if((pSiS->DualHeadMode) && (pScrn->bitsPerPixel <= 8)) { SISErrorLog(pScrn, "Color depth %d not supported in Dual Head mode.\n", pScrn->bitsPerPixel); goto my_error_1; } #endif /* Read BIOS for 300/315/330/340 series customization */ pSiS->SiS_Pr->VirtualRomBase = NULL; pSiS->BIOS = NULL; pSiS->SiS_Pr->UseROM = FALSE; pSiS->ROM661New = FALSE; pSiS->HaveXGIBIOS = FALSE; if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { #ifdef SISDUALHEAD if(pSiSEnt) { if(pSiSEnt->BIOS) { pSiS->BIOS = pSiSEnt->BIOS; pSiS->SiS_Pr->VirtualRomBase = pSiS->BIOS; pSiS->ROM661New = pSiSEnt->ROM661New; pSiS->HaveXGIBIOS = pSiSEnt->HaveXGIBIOS; } } #endif if(!pSiS->BIOS) { if(!(pSiS->BIOS = xcalloc(1, BIOS_SIZE))) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Could not allocate memory for video BIOS image\n"); } else { UShort mypciid = pSiS->Chipset; UShort mypcivendor = (pSiS->ChipFlags & SiSCF_IsXGI) ? PCI_VENDOR_XGI : PCI_VENDOR_SIS; Bool found = FALSE, readpci = FALSE; int biossize = BIOS_SIZE; switch(pSiS->ChipType) { case SIS_315: mypciid = PCI_CHIP_SIS315; readpci = TRUE; break; case SIS_315PRO: mypciid = PCI_CHIP_SIS315PRO; readpci = TRUE; break; case SIS_300: case SIS_315H: case SIS_330: case SIS_340: case XGI_40: readpci = TRUE; break; case XGI_20: readpci = TRUE; biossize = 0x8000; break; } #if XSERVER_LIBPCIACCESS if(readpci) { pSiS->PciInfo->rom_size = biossize; pci_device_read_rom(pSiS->PciInfo, pSiS->BIOS); if(SISCheckBIOS(pSiS, mypciid, mypcivendor, biossize)) { found = TRUE; } } #else if(readpci) { xf86ReadPciBIOS(0, pSiS->PciTag, 0, pSiS->BIOS, biossize); if(SISCheckBIOS(pSiS, mypciid, mypcivendor, biossize)) { found = TRUE; } } if(!found) { ULong segstart; for(segstart = BIOS_BASE; segstart < 0x000f0000; segstart += 0x00001000) { #if XF86_VERSION_CURRENT < XF86_VERSION_NUMERIC(4,2,99,0,0) if(xf86ReadBIOS(segstart, 0, pSiS->BIOS, biossize) != biossize) continue; #else if(xf86ReadDomainMemory(pSiS->PciTag, segstart, biossize, pSiS->BIOS) != biossize) continue; #endif if(!SISCheckBIOS(pSiS, mypciid, mypcivendor, biossize)) continue; found = TRUE; break; } } #endif if(found) { UShort romptr = pSiS->BIOS[0x16] | (pSiS->BIOS[0x17] << 8); pSiS->SiS_Pr->VirtualRomBase = pSiS->BIOS; if(pSiS->ChipFlags & SiSCF_IsXGI) { pSiS->HaveXGIBIOS = pSiS->SiS_Pr->SiS_XGIROM = TRUE; pSiS->SiS_Pr->UseROM = FALSE; if(pSiS->ChipFlags & SiSCF_IsXGIV3) { if(!(pSiS->BIOS[0x1d1] & 0x01)) { pSiS->SiS_Pr->DDCPortMixup = TRUE; } } } else { pSiS->ROM661New = SiSDetermineROMLayout661(pSiS->SiS_Pr); } xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Video BIOS version \"%7s\" found (%s data layout)\n", &pSiS->BIOS[romptr], pSiS->ROM661New ? "new SiS" : (pSiS->HaveXGIBIOS ? "XGI" : "old SiS")); if(pSiS->SiS_Pr->DDCPortMixup) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "*** Buggy XGI V3XT card detected: If VGA and DVI are connected at the\n"); xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "*** same time, BIOS and driver will be unable to detect DVI connection.\n"); } #ifdef SISDUALHEAD if(pSiSEnt) { pSiSEnt->BIOS = pSiS->BIOS; pSiSEnt->ROM661New = pSiS->ROM661New; pSiSEnt->HaveXGIBIOS = pSiS->HaveXGIBIOS; } #endif } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Could not find/read video BIOS\n"); xfree(pSiS->BIOS); pSiS->BIOS = NULL; } } } if(!(pSiS->ChipFlags & SiSCF_IsXGI)) { if(pSiS->BIOS) pSiS->SiS_Pr->UseROM = TRUE; else pSiS->SiS_Pr->UseROM = FALSE; } } /* Evaluate options */ SiSOptions(pScrn); #ifdef SISMERGED /* Due to palette & timing problems we don't support 8bpp in MFBM */ if((pSiS->MergedFB) && (pScrn->bitsPerPixel <= 8)) { SISErrorLog(pScrn, "MergedFB: Color depth %d not supported, %s\n", pScrn->bitsPerPixel, mergeddisstr); pSiS->MergedFB = pSiS->MergedFBAuto = FALSE; } #endif /* Probe CPU features */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiS->CPUFlags = pSiSEnt->CPUFlags; } #endif if(!pSiS->CPUFlags) { pSiS->CPUFlags = SiSGetCPUFlags(pScrn); pSiS->CPUFlags |= SIS_CPUFL_FLAG; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) pSiSEnt->CPUFlags = pSiS->CPUFlags; #endif } /* We use a programamble clock */ pScrn->progClock = TRUE; /* Set the bits per RGB for 8bpp mode */ if(pScrn->depth == 8) pScrn->rgbBits = 8; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(!pSiS->SecondHead) { /* Copy some option settings to entity private */ pSiSEnt->HWCursor = pSiS->HWCursor; pSiSEnt->NoAccel = pSiS->NoAccel; pSiSEnt->useEXA = pSiS->useEXA; pSiSEnt->restorebyset = pSiS->restorebyset; pSiSEnt->OptROMUsage = pSiS->OptROMUsage; pSiSEnt->OptUseOEM = pSiS->OptUseOEM; pSiSEnt->TurboQueue = pSiS->TurboQueue; pSiSEnt->forceCRT1 = pSiS->forceCRT1; pSiSEnt->ForceCRT1Type = pSiS->ForceCRT1Type; pSiSEnt->CRT1TypeForced = pSiS->CRT1TypeForced; pSiSEnt->ForceCRT2Type = pSiS->ForceCRT2Type; pSiSEnt->ForceTVType = pSiS->ForceTVType; pSiSEnt->ForceYPbPrType = pSiS->ForceYPbPrType; pSiSEnt->ForceYPbPrAR = pSiS->ForceYPbPrAR; pSiSEnt->UsePanelScaler = pSiS->UsePanelScaler; pSiSEnt->CenterLCD = pSiS->CenterLCD; pSiSEnt->DSTN = pSiS->DSTN; pSiSEnt->FSTN = pSiS->FSTN; pSiSEnt->OptTVStand = pSiS->OptTVStand; pSiSEnt->NonDefaultPAL = pSiS->NonDefaultPAL; pSiSEnt->NonDefaultNTSC = pSiS->NonDefaultNTSC; pSiSEnt->chtvtype = pSiS->chtvtype; pSiSEnt->OptTVOver = pSiS->OptTVOver; pSiSEnt->OptTVSOver = pSiS->OptTVSOver; pSiSEnt->chtvlumabandwidthcvbs = pSiS->chtvlumabandwidthcvbs; pSiSEnt->chtvlumabandwidthsvideo = pSiS->chtvlumabandwidthsvideo; pSiSEnt->chtvlumaflickerfilter = pSiS->chtvlumaflickerfilter; pSiSEnt->chtvchromabandwidth = pSiS->chtvchromabandwidth; pSiSEnt->chtvchromaflickerfilter = pSiS->chtvchromaflickerfilter; pSiSEnt->chtvtextenhance = pSiS->chtvtextenhance; pSiSEnt->chtvcontrast = pSiS->chtvcontrast; pSiSEnt->chtvcvbscolor = pSiS->chtvcvbscolor; pSiSEnt->sistvedgeenhance = pSiS->sistvedgeenhance; pSiSEnt->sistvantiflicker = pSiS->sistvantiflicker; pSiSEnt->sistvsaturation = pSiS->sistvsaturation; pSiSEnt->sistvcfilter = pSiS->sistvcfilter; pSiSEnt->sistvyfilter = pSiS->sistvyfilter; pSiSEnt->sistvcolcalibc = pSiS->sistvcolcalibc; pSiSEnt->sistvcolcalibf = pSiS->sistvcolcalibf; pSiSEnt->tvxpos = pSiS->tvxpos; pSiSEnt->tvypos = pSiS->tvypos; pSiSEnt->tvxscale = pSiS->tvxscale; pSiSEnt->tvyscale = pSiS->tvyscale; pSiSEnt->siscrt1satgain = pSiS->siscrt1satgain; pSiSEnt->crt1satgaingiven = pSiS->crt1satgaingiven; pSiSEnt->CRT1gamma = pSiS->CRT1gamma; pSiSEnt->CRT1gammaGiven = pSiS->CRT1gammaGiven; pSiSEnt->XvGammaRed = pSiS->XvGammaRed; pSiSEnt->XvGammaGreen = pSiS->XvGammaGreen; pSiSEnt->XvGammaBlue = pSiS->XvGammaBlue; pSiSEnt->XvGamma = pSiS->XvGamma; pSiSEnt->XvGammaGiven = pSiS->XvGammaGiven; pSiSEnt->CRT2gamma = pSiS->CRT2gamma; pSiSEnt->XvOnCRT2 = pSiS->XvOnCRT2; pSiSEnt->AllowHotkey = pSiS->AllowHotkey; pSiSEnt->enablesisctrl = pSiS->enablesisctrl; pSiSEnt->SenseYPbPr = pSiS->SenseYPbPr; pSiSEnt->XvUseMemcpy = pSiS->XvUseMemcpy; pSiSEnt->BenchMemCpy = pSiS->BenchMemCpy; #ifdef SIS_CP SIS_CP_DRIVER_COPYOPTIONSENT #endif } else { /* We always use same cursor type on both screens */ pSiS->HWCursor = pSiSEnt->HWCursor; /* We need identical NoAccel setting */ pSiS->NoAccel = pSiSEnt->NoAccel; pSiS->useEXA = pSiSEnt->useEXA; pSiS->TurboQueue = pSiSEnt->TurboQueue; pSiS->restorebyset = pSiSEnt->restorebyset; pSiS->AllowHotkey = pSiS->AllowHotkey; pSiS->OptROMUsage = pSiSEnt->OptROMUsage; pSiS->OptUseOEM = pSiSEnt->OptUseOEM; pSiS->forceCRT1 = pSiSEnt->forceCRT1; pSiS->nocrt2ddcdetection = FALSE; pSiS->forcecrt2redetection = FALSE; pSiS->ForceCRT1Type = pSiSEnt->ForceCRT1Type; pSiS->ForceCRT2Type = pSiSEnt->ForceCRT2Type; pSiS->CRT1TypeForced = pSiSEnt->CRT1TypeForced; pSiS->UsePanelScaler = pSiSEnt->UsePanelScaler; pSiS->CenterLCD = pSiSEnt->CenterLCD; pSiS->DSTN = pSiSEnt->DSTN; pSiS->FSTN = pSiSEnt->FSTN; pSiS->OptTVStand = pSiSEnt->OptTVStand; pSiS->NonDefaultPAL = pSiSEnt->NonDefaultPAL; pSiS->NonDefaultNTSC = pSiSEnt->NonDefaultNTSC; pSiS->chtvtype = pSiSEnt->chtvtype; pSiS->ForceTVType = pSiSEnt->ForceTVType; pSiS->ForceYPbPrType = pSiSEnt->ForceYPbPrType; pSiS->ForceYPbPrAR = pSiSEnt->ForceYPbPrAR; pSiS->OptTVOver = pSiSEnt->OptTVOver; pSiS->OptTVSOver = pSiSEnt->OptTVSOver; pSiS->chtvlumabandwidthcvbs = pSiSEnt->chtvlumabandwidthcvbs; pSiS->chtvlumabandwidthsvideo = pSiSEnt->chtvlumabandwidthsvideo; pSiS->chtvlumaflickerfilter = pSiSEnt->chtvlumaflickerfilter; pSiS->chtvchromabandwidth = pSiSEnt->chtvchromabandwidth; pSiS->chtvchromaflickerfilter = pSiSEnt->chtvchromaflickerfilter; pSiS->chtvcvbscolor = pSiSEnt->chtvcvbscolor; pSiS->chtvtextenhance = pSiSEnt->chtvtextenhance; pSiS->chtvcontrast = pSiSEnt->chtvcontrast; pSiS->sistvedgeenhance = pSiSEnt->sistvedgeenhance; pSiS->sistvantiflicker = pSiSEnt->sistvantiflicker; pSiS->sistvsaturation = pSiSEnt->sistvsaturation; pSiS->sistvcfilter = pSiSEnt->sistvcfilter; pSiS->sistvyfilter = pSiSEnt->sistvyfilter; pSiS->sistvcolcalibc = pSiSEnt->sistvcolcalibc; pSiS->sistvcolcalibf = pSiSEnt->sistvcolcalibf; pSiS->tvxpos = pSiSEnt->tvxpos; pSiS->tvypos = pSiSEnt->tvypos; pSiS->tvxscale = pSiSEnt->tvxscale; pSiS->tvyscale = pSiSEnt->tvyscale; pSiS->SenseYPbPr = pSiSEnt->SenseYPbPr; if(!pSiS->CRT1gammaGiven) { if(pSiSEnt->CRT1gammaGiven) pSiS->CRT1gamma = pSiSEnt->CRT1gamma; } pSiS->CRT2gamma = pSiSEnt->CRT2gamma; if(!pSiS->XvGammaGiven) { if(pSiSEnt->XvGammaGiven) { pSiS->XvGamma = pSiSEnt->XvGamma; pSiS->XvGammaRed = pSiS->XvGammaRedDef = pSiSEnt->XvGammaRed; pSiS->XvGammaGreen = pSiS->XvGammaGreenDef = pSiSEnt->XvGammaGreen; pSiS->XvGammaBlue = pSiS->XvGammaBlueDef = pSiSEnt->XvGammaBlue; } } if(!pSiS->crt1satgaingiven) { if(pSiSEnt->crt1satgaingiven) pSiS->siscrt1satgain = pSiSEnt->siscrt1satgain; } pSiS->XvOnCRT2 = pSiSEnt->XvOnCRT2; pSiS->enablesisctrl = pSiSEnt->enablesisctrl; pSiS->XvUseMemcpy = pSiSEnt->XvUseMemcpy; pSiS->BenchMemCpy = pSiSEnt->BenchMemCpy; /* Copy gamma brightness to Ent (sic!) for Xinerama */ pSiSEnt->GammaBriR = pSiS->GammaBriR; pSiSEnt->GammaBriG = pSiS->GammaBriG; pSiSEnt->GammaBriB = pSiS->GammaBriB; pSiSEnt->NewGammaBriR = pSiS->NewGammaBriR; pSiSEnt->NewGammaBriG = pSiS->NewGammaBriG; pSiSEnt->NewGammaBriB = pSiS->NewGammaBriB; pSiSEnt->NewGammaConR = pSiS->NewGammaConR; pSiSEnt->NewGammaConG = pSiS->NewGammaConG; pSiSEnt->NewGammaConB = pSiS->NewGammaConB; #ifdef SIS_CP SIS_CP_DRIVER_COPYOPTIONS #endif } } #endif /* Handle UseROMData, NoOEM and UsePanelScaler options */ if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { from = X_PROBED; if(pSiS->OptROMUsage == 0) { pSiS->SiS_Pr->UseROM = FALSE; from = X_CONFIG; xf86DrvMsg(pScrn->scrnIndex, from, "Video ROM data usage is disabled\n"); } if(!pSiS->OptUseOEM) { xf86DrvMsg(pScrn->scrnIndex, from, "Internal OEM LCD/TV/VGA2 data usage is disabled\n"); } pSiS->SiS_Pr->UsePanelScaler = pSiS->UsePanelScaler; pSiS->SiS_Pr->CenterScreen = pSiS->CenterLCD; } /* Do some HW configuration detection (memory amount & type, clock, etc) */ SiSSetup(pScrn); /* Get framebuffer address */ if(pSiS->pEnt->device->MemBase != 0) { /* * XXX Should check that the config file value matches one of the * PCI base address values. */ pSiS->FbAddress = pSiS->pEnt->device->MemBase; from = X_CONFIG; } else { pSiS->FbAddress = PCI_REGION_BASE(pSiS->PciInfo, 0, REGION_MEM) & 0xFFFFFFF0; from = X_PROBED; } #ifdef SISDUALHEAD if(pSiS->DualHeadMode) xf86DrvMsg(pScrn->scrnIndex, from, "Global linear framebuffer at 0x%lX\n", (ULong)pSiS->FbAddress); else #endif xf86DrvMsg(pScrn->scrnIndex, from, "Linear framebuffer at 0x%lX\n", (ULong)pSiS->FbAddress); pSiS->realFbAddress = pSiS->FbAddress; /* Get MMIO address */ if(pSiS->pEnt->device->IOBase != 0) { /* * XXX Should check that the config file value matches one of the * PCI base address values. */ pSiS->IOAddress = pSiS->pEnt->device->IOBase; from = X_CONFIG; } else { pSiS->IOAddress = PCI_REGION_BASE(pSiS->PciInfo, 1, REGION_MEM) & 0xFFFFFFF0; from = X_PROBED; } xf86DrvMsg(pScrn->scrnIndex, from, "MMIO registers at 0x%lX (size %ldK)\n", (ULong)pSiS->IOAddress, pSiS->mmioSize); /* Register the PCI-assigned resources */ if(xf86RegisterResources(pSiS->pEnt->index, NULL, ResExclusive)) { SISErrorLog(pScrn, "PCI resource conflicts detected\n"); #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->ErrorAfterFirst = TRUE; #endif sisRestoreExtRegisterLock(pSiS,srlockReg,crlockReg); if(pSiS->pInt) xf86FreeInt10(pSiS->pInt); SISFreeRec(pScrn); return FALSE; } from = X_PROBED; if(pSiS->pEnt->device->videoRam != 0) { if(pSiS->Chipset == PCI_CHIP_SIS6326) { pScrn->videoRam = pSiS->pEnt->device->videoRam; from = X_CONFIG; } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Option \"VideoRAM\" ignored\n"); } } pSiS->RealVideoRam = pScrn->videoRam; if((pSiS->Chipset == PCI_CHIP_SIS6326) && (pScrn->videoRam > 4096) && (from != X_CONFIG)) { pScrn->videoRam = 4096; xf86DrvMsg(pScrn->scrnIndex, from, "SiS6326: Detected %d KB VideoRAM, limiting to %d KB\n", pSiS->RealVideoRam, pScrn->videoRam); } else { xf86DrvMsg(pScrn->scrnIndex, from, "VideoRAM: %d KB\n", pScrn->videoRam); } if((pSiS->Chipset == PCI_CHIP_SIS6326) && (pScrn->videoRam > 4096)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "SiS6326 engines do not support more than 4096KB RAM, therefore\n"); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "TurboQueue, HWCursor, 2D acceleration and XVideo are disabled.\n"); pSiS->TurboQueue = FALSE; pSiS->HWCursor = FALSE; pSiS->NoXvideo = TRUE; pSiS->NoAccel = TRUE; } pSiS->FbMapSize = pSiS->availMem = pScrn->videoRam * 1024; /* Calculate real availMem according to Accel/TurboQueue and * HWCursur setting. Also, initialize some variables used * in other modules. */ pSiS->cursorOffset = 0; pSiS->CurARGBDest = NULL; pSiS->CurMonoSrc = NULL; pSiS->CurFGCol = pSiS->CurBGCol = 0; pSiS->FbBaseOffset = 0; switch(pSiS->VGAEngine) { case SIS_300_VGA: pSiS->TurboQueueLen = 512; if(pSiS->TurboQueue) { pSiS->availMem -= (pSiS->TurboQueueLen*1024); pSiS->cursorOffset = 512; } if(pSiS->HWCursor) { pSiS->availMem -= pSiS->CursorSize; if(pSiS->OptUseColorCursor) pSiS->availMem -= pSiS->CursorSize; } pSiS->CmdQueLenMask = 0xFFFF; pSiS->CmdQueLenFix = 0; pSiS->cursorBufferNum = 0; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->cursorBufferNum = 0; #endif break; case SIS_315_VGA: #ifdef SISVRAMQ /* VRAM queue */ pSiS->cmdQueueSizeMask = pSiS->cmdQueueSize - 1; /* VRAM Command Queue is variable (in therory) */ pSiS->cmdQueueOffset = (pScrn->videoRam * 1024) - pSiS->cmdQueueSize; pSiS->cmdQueueLen = 0; pSiS->cmdQueueSize_div2 = pSiS->cmdQueueSize / 2; pSiS->cmdQueueSize_div4 = pSiS->cmdQueueSize / 4; pSiS->cmdQueueSize_4_3 = (pSiS->cmdQueueSize / 4) * 3; pSiS->availMem -= pSiS->cmdQueueSize; pSiS->cursorOffset = (pSiS->cmdQueueSize / 1024); /* Set up shared pointer to current offset */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) pSiS->cmdQ_SharedWritePort = &(pSiSEnt->cmdQ_SharedWritePort_2D); else #endif pSiS->cmdQ_SharedWritePort = &(pSiS->cmdQ_SharedWritePort_2D); #else /* MMIO */ if(pSiS->TurboQueue) { pSiS->availMem -= (512*1024); /* MMIO Command Queue is 512k (variable in theory) */ pSiS->cursorOffset = 512; } #endif if(pSiS->HWCursor) { pSiS->availMem -= (pSiS->CursorSize * 2); if(pSiS->OptUseColorCursor) pSiS->availMem -= (pSiS->CursorSize * 2); } pSiS->cursorBufferNum = 0; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->cursorBufferNum = 0; #endif if((pSiS->SiS76xLFBSize) && (pSiS->SiS76xUMASize)) { pSiS->availMem -= pSiS->SiS76xUMASize; pSiS->FbBaseOffset = pSiS->SiS76xUMASize; } break; default: /* cursorOffset not used in cursor functions for 530 and * older chips, because the cursor is *above* the TQ. * On 5597 and older revisions of the 6326, the TQ is * max 32K, on newer 6326 revisions and the 530 either 30 * (or 32?) or 62K (or 64?). However, to make sure, we * use only 30K (or 32?), but reduce the available memory * by 64, and locate the TQ at the beginning of this last * 64K block. (We do this that way even when using the * HWCursor, because the cursor only takes 2K and the * queue does not seem to last that far anyway.) * The TQ must be located at 32KB boundaries. */ if(pSiS->RealVideoRam < 3072) { if(pSiS->TurboQueue) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Not enough video RAM for TurboQueue. TurboQueue disabled\n"); pSiS->TurboQueue = FALSE; } } pSiS->CmdQueMaxLen = 32; if(pSiS->TurboQueue) { pSiS->availMem -= (64*1024); pSiS->CmdQueMaxLen = 900; /* To make sure; should be 992 */ } else if(pSiS->HWCursor) { pSiS->availMem -= pSiS->CursorSize; } if(pSiS->Chipset == PCI_CHIP_SIS530) { /* Check if Flat Panel is enabled */ inSISIDXREG(SISSR, 0x0e, tempreg); if(!(tempreg & 0x04)) pSiS->availMem -= pSiS->CursorSize; /* Set up mask for MMIO register */ pSiS->CmdQueLenMask = (pSiS->TurboQueue) ? 0x1FFF : 0x00FF; } else { /* TQ is never used on 6326/5597, because the accelerator * always Syncs. So this is just cosmentic work. (And I * am not even sure that 0x7fff is correct. MMIO 0x83a8 * holds 0xec0 if (30k) TQ is enabled, 0x20 if TQ disabled. * The datasheet has no real explanation on the queue length * if the TQ is enabled. Not syncing and waiting for a * suitable queue length instead does not work. */ pSiS->CmdQueLenMask = (pSiS->TurboQueue) ? 0x7FFF : 0x003F; } /* This is to be subtracted from MMIO queue length register contents * for getting the real Queue length. */ pSiS->CmdQueLenFix = (pSiS->TurboQueue) ? 32 : 0; } #ifdef SISDUALHEAD /* In dual head mode, we share availMem equally - so align it * to 8KB; this way, the address of the FB of the second * head is aligned to 4KB for mapping. */ if(pSiS->DualHeadMode) pSiS->availMem &= 0xFFFFE000; #endif /* Check MaxXFBMem setting */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { /* 1. Since DRI is not supported in dual head mode, we * don't need the MaxXFBMem setting - ignore it. */ if(pSiS->maxxfbmem) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "MaxXFBMem ignored in Dual Head mode\n"); } pSiS->maxxfbmem = pSiS->availMem; } else #endif if((pSiS->sisfbHeapStart) || (pSiS->sisfbHaveNewHeapDef)) { /* * 2. We have memory layout info from sisfb - ignore MaxXFBMem */ if(pSiS->maxxfbmem) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Got memory layout info from sisfb, ignoring MaxXFBMem option\n"); } if((pSiS->FbBaseOffset) && (!pSiS->sisfbHaveNewHeapDef)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Incompatible sisfb version detected, DRI disabled\n"); pSiS->loadDRI = FALSE; pSiS->maxxfbmem = pSiS->availMem; } else { if(pSiS->FbBaseOffset) { /* Revert our changes to FbBaseOffset and availMem; use sisfb's info */ pSiS->availMem += pSiS->FbBaseOffset; pSiS->FbBaseOffset = 0; } if(pSiS->sisfbVideoOffset) { /* a. DRI heap BELOW framebuffer */ pSiS->FbBaseOffset = pSiS->sisfbVideoOffset; pSiS->availMem -= pSiS->FbBaseOffset; pSiS->maxxfbmem = pSiS->availMem; } else { /* b. DRI heap ABOVE framebuffer (traditional layout) */ if(pSiS->availMem < (pSiS->sisfbHeapStart * 1024)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Internal error - sisfb memory layout corrupt\n"); pSiS->loadDRI = FALSE; pSiS->maxxfbmem = pSiS->availMem; } else { pSiS->maxxfbmem = pSiS->sisfbHeapStart * 1024; } } } } else if(pSiS->maxxfbmem) { /* * 3. No sisfb, but user gave "MaxXFBMem" */ if(pSiS->FbBaseOffset) { /* a. DRI heap BELOW framebuffer */ if(pSiS->maxxfbmem > (pSiS->availMem + pSiS->FbBaseOffset - pSiS->SiS76xUMASize)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Invalid MaxXFBMem setting\n"); pSiS->maxxfbmem = pSiS->availMem; } else { /* Revert our changes */ pSiS->availMem += pSiS->FbBaseOffset; /* Use user's MaxXFBMem setting */ pSiS->FbBaseOffset = pSiS->availMem - pSiS->maxxfbmem; pSiS->availMem -= pSiS->FbBaseOffset; } } else { /* b. DRI heap ABOVE framebuffer (traditional layout) */ if(pSiS->maxxfbmem > pSiS->availMem) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Invalid MaxXFBMem setting.\n"); pSiS->maxxfbmem = pSiS->availMem; } } } else { /* * 4. No MaxXFBMem, no sisfb: Use all memory */ pSiS->maxxfbmem = pSiS->availMem; /* ... except on chipsets, for which DRI is * supported: If DRI is enabled, we now limit * ourselves to a reasonable default: */ if(pSiS->loadDRI) { if(pSiS->FbBaseOffset) { /* a. DRI heap BELOW framebuffer */ /* See how much UMA and LFB memory we have, * and calculate a reasonable default. We * use more vram for ourselves because these * chips are eg. capable of larger Xv * overlays, etc. */ unsigned long total = (pSiS->SiS76xLFBSize + pSiS->SiS76xUMASize) / 1024; unsigned long mymax; if(total <= 16384) /* <= 16MB: Use 8MB for X */ mymax = 8192 * 1024; else if(total <= 32768) /* <= 32MB: Use 16MB for X */ mymax = 16384 * 1024; else /* Otherwise: Use 20MB for X */ mymax = 20 * 1024 * 1024; /* availMem is right now adjusted to not use the UMA * area. Make sure that our default doesn't reach * into the UMA area either. */ if(pSiS->availMem > mymax) { /* Write our default to maxxfbmem */ pSiS->maxxfbmem = mymax; /* Revert our changes to availMem */ pSiS->availMem += pSiS->FbBaseOffset; /* Use our default setting */ pSiS->FbBaseOffset = pSiS->availMem - pSiS->maxxfbmem; pSiS->availMem -= pSiS->FbBaseOffset; } } else { /* b. DRI heap ABOVE framebuffer (traditional layout) */ /* See how much video memory we have, and calculate * a reasonable default. * Since DRI is pointless with less than 4MB of total * video RAM, we disable it in that case. */ if(pScrn->videoRam <= 4096) pSiS->loadDRI = FALSE; else if(pScrn->videoRam <= 8192) /* <= 8MB: Use 4MB for X */ pSiS->maxxfbmem = 4096 * 1024; else if(pScrn->videoRam <= 16384) /* <= 16MB: Use 8MB for X */ pSiS->maxxfbmem = 8192 * 1024; #ifdef SISMERGED /* Otherwise: --- */ else if(pSiS->MergedFB) { if(pScrn->videoRam <= 65536) pSiS->maxxfbmem = 16384 * 1024; /* If MergedFB and <=64MB, use 16MB for X */ else pSiS->maxxfbmem = 20 * 1024 * 1024; /* If MergedFB and > 64MB, use 20MB for X */ } #endif else if(pSiS->VGAEngine == SIS_315_VGA) { if(pScrn->videoRam <= 65536) pSiS->maxxfbmem = 16384 * 1024; /* On >=315 series and <=64MB, use 16MB */ else pSiS->maxxfbmem = 20 * 1024 * 1024; /* On >=315 series and > 64MB, use 20MB */ } else pSiS->maxxfbmem = 12288 * 1024; /* On <315 series, use 12MB */ /* A final check */ if(pSiS->maxxfbmem > pSiS->availMem) { pSiS->maxxfbmem = pSiS->availMem; pSiS->loadDRI = FALSE; } } } } xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Using %dK of framebuffer memory at offset %dK\n", pSiS->maxxfbmem / 1024, pSiS->FbBaseOffset / 1024); /* Find out about sub-classes of some chipsets and check * if the chipset supports two video overlays */ if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA || pSiS->Chipset == PCI_CHIP_SIS530 || pSiS->Chipset == PCI_CHIP_SIS6326 || pSiS->Chipset == PCI_CHIP_SIS5597) { pSiS->hasTwoOverlays = FALSE; switch(pSiS->Chipset) { case PCI_CHIP_SIS300: case PCI_CHIP_SIS540: /* ? (If not, need to add the SwitchCRT Xv attribute!) */ case PCI_CHIP_SIS630: case PCI_CHIP_SIS550: pSiS->hasTwoOverlays = TRUE; pSiS->SiS_SD_Flags |= SiS_SD_SUPPORT2OVL; break; case PCI_CHIP_SIS315PRO: pSiS->ChipFlags |= SiSCF_LARGEOVERLAY; break; case PCI_CHIP_SIS330: pSiS->ChipFlags |= (SiSCF_CRT2HWCKaputt | SiSCF_LARGEOVERLAY); break; case PCI_CHIP_SIS340: case PCI_CHIP_XGIXG40: /* Verified: only 1 overlay */ pSiS->ChipFlags |= SiSCF_LARGEOVERLAY; break; case PCI_CHIP_SIS650: { UChar tempreg1, tempreg2; static const char *id650str[] = { "650", "650", "650", "650", "650 A0 AA", "650 A2 CA", "650", "650", "M650 A0", "M650 A1 AA","651 A0 AA", "651 A1 AA", "M650", "65?", "651", "65?" }; pSiS->ChipFlags |= SiSCF_LARGEOVERLAY; if(pSiS->ChipType == SIS_650) { inSISIDXREG(SISCR, 0x5f, CR5F); CR5F &= 0xf0; andSISIDXREG(SISCR, 0x5c, 0x07); inSISIDXREG(SISCR, 0x5c, tempreg1); tempreg1 &= 0xf8; orSISIDXREG(SISCR, 0x5c, 0xf8); inSISIDXREG(SISCR, 0x5c, tempreg2); tempreg2 &= 0xf8; if((!tempreg1) || (tempreg2)) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "SiS650 revision ID %x (%s)\n", CR5F, id650str[CR5F >> 4]); if(CR5F & 0x80) { pSiS->hasTwoOverlays = TRUE; /* M650 or 651 */ pSiS->SiS_SD_Flags |= SiS_SD_SUPPORT2OVL; } switch(CR5F) { case 0xa0: case 0xb0: case 0xe0: pSiS->ChipFlags |= SiSCF_Is651; break; case 0x80: case 0x90: case 0xc0: pSiS->ChipFlags |= SiSCF_IsM650; break; } } else { pSiS->hasTwoOverlays = TRUE; pSiS->SiS_SD_Flags |= SiS_SD_SUPPORT2OVL; switch(CR5F) { case 0x90: inSISIDXREG(SISCR, 0x5c, tempreg1); tempreg1 &= 0xf8; switch(tempreg1) { case 0x00: pSiS->ChipFlags |= SiSCF_IsM652; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "SiSM652 revision ID %x\n", CR5F); break; case 0x40: pSiS->ChipFlags |= SiSCF_IsM653; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "SiSM653 revision ID %x\n", CR5F); break; default: pSiS->ChipFlags |= SiSCF_IsM650; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "SiSM650 revision ID %x\n", CR5F); break; } break; case 0xb0: pSiS->ChipFlags |= SiSCF_Is652; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "SiS652 revision ID %x\n", CR5F); break; default: pSiS->ChipFlags |= SiSCF_IsM650; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "SiSM650 revision ID %x\n", CR5F); break; } } } break; } case PCI_CHIP_SIS660: { pSiS->ChipFlags |= SiSCF_LARGEOVERLAY; pSiS->hasTwoOverlays = TRUE; pSiS->SiS_SD_Flags |= SiS_SD_SUPPORT2OVL; /* 760/761: - UMA only: one/two overlays - dotclock dependent - UMA+LFB: two overlays if video data in LFB - LFB only: two overlays If UMA only: Must switch between one/two overlays on the fly (done in PostSetMode()) If LFB+UMA: We use LFB memory only and leave UMA to an eventually written DRI driver. */ break; } } if(!(pSiS->SiS_SD2_Flags & SiS_SD2_NOOVERLAY)) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Hardware supports %s video overlay%s\n", pSiS->hasTwoOverlays ? "two" : "one", pSiS->hasTwoOverlays ? "s" : ""); } if(pSiS->SiS_SD2_Flags & SiS_SD2_SUPPORT760OO) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "\n\tDear SiS76x user, your machine is using a shared memory framebuffer.\n" "\tDue to hardware limitations of the SiS chip in combination with the\n" "\tAMD CPU, video overlay support is very limited on this machine. If you\n" "\texperience flashing lines in the video and/or the graphics display\n" "\tduring video playback, reduce the color depth and/or the resolution\n" "\tand/or the refresh rate. Alternatively, use the video blitter.\n"); } } /* Backup VB connection and CRT1 on/off register */ if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { inSISIDXREG(SISSR, 0x1f, pSiS->oldSR1F); inSISIDXREG(SISCR, 0x17, pSiS->oldCR17); inSISIDXREG(SISCR, 0x32, pSiS->oldCR32); inSISIDXREG(SISCR, 0x36, pSiS->oldCR36); inSISIDXREG(SISCR, 0x37, pSiS->oldCR37); if(pSiS->VGAEngine == SIS_315_VGA) { inSISIDXREG(SISCR, pSiS->myCR63, pSiS->oldCR63); } pSiS->postVBCR32 = pSiS->oldCR32; } /* There are some machines out there which require a special * setup of the GPIO registers in order to make the Chrontel * work. Try to find out if we're running on such a machine. * Furthermore, there is some highly customized hardware, * which requires some non-standard LVDS timing. Since the * vendors don't seem to care about PCI subsystem ID's we * need to find out using the BIOS version and date strings. */ pSiS->SiS_Pr->SiS_ChSW = FALSE; if(pSiS->Chipset == PCI_CHIP_SIS630) { int i = 0; do { if(mychswtable[i].subsysVendor == PCI_SUB_VENDOR_ID(pSiS->PciInfo) && mychswtable[i].subsysCard == PCI_SUB_DEVICE_ID(pSiS->PciInfo)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "PCI subsystem ID found in list for Chrontel/GPIO setup:\n"); xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "\tVendor/Card: %s %s (ID %04x)\n", mychswtable[i].vendorName, mychswtable[i].cardName, PCI_SUB_DEVICE_ID(pSiS->PciInfo)); pSiS->SiS_Pr->SiS_ChSW = TRUE; break; } i++; } while(mychswtable[i].subsysVendor != 0); } if(pSiS->SiS_Pr->SiS_CustomT == CUT_NONE) { int i = 0, j; UShort bversptr = 0; Bool footprint; CARD32 chksum = 0; if(pSiS->SiS_Pr->UseROM) { bversptr = pSiS->BIOS[0x16] | (pSiS->BIOS[0x17] << 8); for(i=0; i<32768; i++) chksum += pSiS->BIOS[i]; } i = 0; do { if( (SiS_customttable[i].chipID == pSiS->ChipType) && ((!strlen(SiS_customttable[i].biosversion)) || (pSiS->SiS_Pr->UseROM && (!strncmp(SiS_customttable[i].biosversion, (char *)&pSiS->BIOS[bversptr], strlen(SiS_customttable[i].biosversion))))) && ((!strlen(SiS_customttable[i].biosdate)) || (pSiS->SiS_Pr->UseROM && (!strncmp(SiS_customttable[i].biosdate, (char *)&pSiS->BIOS[0x2c], strlen(SiS_customttable[i].biosdate))))) && ((!SiS_customttable[i].bioschksum) || (pSiS->SiS_Pr->UseROM && (SiS_customttable[i].bioschksum == chksum))) && (SiS_customttable[i].pcisubsysvendor == PCI_SUB_VENDOR_ID(pSiS->PciInfo)) && (SiS_customttable[i].pcisubsyscard == PCI_SUB_DEVICE_ID(pSiS->PciInfo)) ) { footprint = TRUE; for(j=0; j<5; j++) { if(SiS_customttable[i].biosFootprintAddr[j]) { if(pSiS->SiS_Pr->UseROM) { if(pSiS->BIOS[SiS_customttable[i].biosFootprintAddr[j]] != SiS_customttable[i].biosFootprintData[j]) footprint = FALSE; } else footprint = FALSE; } } if(footprint) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Identified %s %s, special timing applies\n", SiS_customttable[i].vendorName, SiS_customttable[i].cardName); pSiS->SiS_Pr->SiS_CustomT = SiS_customttable[i].SpecialID; break; } } i++; } while(SiS_customttable[i].chipID); } /* Handle ForceCRT1 option */ if(pSiS->forceCRT1 != -1) { if(pSiS->forceCRT1) pSiS->CRT1off = 0; else pSiS->CRT1off = 1; } else pSiS->CRT1off = -1; /* Detect video bridge and sense TV/VGA2 */ SISVGAPreInit(pScrn); /* Detect CRT1 (via DDC1 and DDC2, hence via VGA port; regardless of LCDA) */ SISCRT1PreInit(pScrn); /* Detect LCD (connected via CRT2, regardless of LCDA) and LCD resolution */ SISLCDPreInit(pScrn, FALSE); /* LCDA only supported under these conditions: */ if(pSiS->ForceCRT1Type == CRT1_LCDA) { if(!SISDetermineLCDACap(pScrn)) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Chipset/Video bridge does not support LCD-via-CRT1\n"); pSiS->ForceCRT1Type = CRT1_VGA; } else if(!(pSiS->VBFlags & CRT2_LCD)) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "No digital LCD panel found, LCD-via-CRT1 disabled\n"); pSiS->ForceCRT1Type = CRT1_VGA; } } /* Setup SD flags */ pSiS->SiS_SD_Flags |= SiS_SD_ADDLSUPFLAG; pSiS->SiS_SD2_Flags |= SiS_SD2_MERGEDUCLOCK; pSiS->SiS_SD2_Flags |= SiS_SD2_USEVBFLAGS2; pSiS->SiS_SD2_Flags |= SiS_SD2_VBINVB2ONLY; pSiS->SiS_SD2_Flags |= SiS_SD2_HAVESD34; pSiS->SiS_SD2_Flags |= SiS_SD2_NEWGAMMABRICON; pSiS->SiS_SD3_Flags |= SiS_SD3_MFBALLOWOFFCL; if(pSiS->VBFlags2 & VB2_VIDEOBRIDGE) { pSiS->SiS_SD2_Flags |= SiS_SD2_VIDEOBRIDGE; if(pSiS->VBFlags2 & VB2_SISBRIDGE) { pSiS->SiS_SD2_Flags |= ( SiS_SD2_SISBRIDGE | SiS_SD2_SUPPORTGAMMA2 ); if(pSiS->VBFlags2 & VB2_SISLVDSBRIDGE) { pSiS->SiS_SD2_Flags |= ( SiS_SD2_LCDLVDS | SiS_SD2_SUPPORTLCD ); } else if(pSiS->VBFlags2 & VB2_SISTMDSBRIDGE) { if(!(pSiS->VBFlags2 & VB2_30xBDH)) { pSiS->SiS_SD2_Flags |= ( SiS_SD2_LCDTMDS | SiS_SD2_SUPPORTLCD ); } else if(pSiS->VBFlags & CRT2_LCD) { pSiS->SiS_SD2_Flags |= ( SiS_SD2_THIRDPARTYLVDS | SiS_SD2_SUPPORTLCD ); } } } else if(pSiS->VBFlags2 & VB2_LVDS) { pSiS->SiS_SD2_Flags |= ( SiS_SD2_THIRDPARTYLVDS | SiS_SD2_SUPPORTLCD ); } if(pSiS->VBFlags2 & (VB2_SISTVBRIDGE | VB2_CHRONTEL)) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTTV; if(pSiS->VBFlags2 & VB2_SISBRIDGE) { pSiS->SiS_SD2_Flags |= ( SiS_SD2_SUPPORTTVTYPE | SiS_SD2_SUPPORTTVSIZE ); if(!(pSiS->VBFlags2 & VB2_301)) { pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPTVSAT; } else { pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPTVEDGE; } } } } #ifdef ENABLE_YPBPR if((pSiS->VGAEngine == SIS_315_VGA) && (pSiS->VBFlags2 & VB2_SISYPBPRBRIDGE)) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTYPBPR; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORT625I; pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPORT625P; if(pSiS->VBFlags2 & VB2_SISYPBPRARBRIDGE) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTYPBPRAR; } } if(pSiS->VBFlags2 & VB2_SISHIVISIONBRIDGE) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTHIVISION; } #endif if((pSiS->VGAEngine != SIS_300_VGA) || (!(pSiS->VBFlags2 & VB2_TRUMPION))) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTSCALE; if((pSiS->VBFlags2 & VB2_SISTMDSBRIDGE) && (!(pSiS->VBFlags2 & VB2_30xBDH))) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTCENTER; } } #ifdef SISDUALHEAD if(!pSiS->DualHeadMode) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTREDETECT; } #endif #ifndef SISCHECKOSSSE pSiS->SiS_SD2_Flags |= SiS_SD2_NEEDUSESSE; #endif #ifdef TWDEBUG /* FOR TESTING */ pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTYPBPRAR; xf86DrvMsg(0, X_INFO, "TEST: Support Aspect Ratio\n"); #endif /* Detect CRT2-TV and PAL/NTSC mode */ SISTVPreInit(pScrn, FALSE); /* Detect CRT2-VGA */ SISCRT2PreInit(pScrn, FALSE); /* Backup detected CRT2 devices */ SISSaveDetectedDevices(pScrn); if(!(pSiS->SiS_SD_Flags & SiS_SD_SUPPORTYPBPR)) { if((pSiS->ForceTVType != -1) && (pSiS->ForceTVType & TV_YPBPR)) { pSiS->ForceTVType = -1; xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "YPbPr TV output not supported\n"); } } if(!(pSiS->SiS_SD_Flags & SiS_SD_SUPPORTHIVISION)) { if((pSiS->ForceTVType != -1) && (pSiS->ForceTVType & TV_HIVISION)) { pSiS->ForceTVType = -1; xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "HiVision TV output not supported\n"); } } if((pSiS->VBFlags2 & VB2_SISTVBRIDGE) || ((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->ChrontelType == CHRONTEL_701x))) { pSiS->SiS_SD_Flags |= (SiS_SD_SUPPORTPALMN | SiS_SD_SUPPORTNTSCJ); } if((pSiS->VBFlags2 & VB2_SISTVBRIDGE) || ((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->ChrontelType == CHRONTEL_700x))) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTTVPOS; } if(pSiS->VBFlags2 & VB2_SISVGA2BRIDGE) { pSiS->SiS_SD_Flags |= (SiS_SD_SUPPORTSCART | SiS_SD_SUPPORTVGA2); } if(pSiS->VBFlags2 & VB2_CHRONTEL) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTOVERSCAN; pSiS->SiS_SD2_Flags |= SiS_SD2_CHRONTEL; if(pSiS->ChrontelType == CHRONTEL_700x) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTSOVER; } } /* Determine if chipset LCDA-capable */ pSiS->SiS_SD_Flags &= ~SiS_SD_SUPPORTLCDA; if(SISDetermineLCDACap(pScrn)) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTLCDA; } /* Default to LCDA if LCD detected and * - TV detected (hence default to LCDA+TV), or * - in single head mode, on LCD panels with xres > 1600 * (Don't do this in MergedFB or DHM; LCDA and CRT1/VGA * are mutually exclusive; if no TV is detected, the * code below will default to VGA+LCD, so LCD is driven * via CRT2.) * (TODO: This might need some modification for the * 307 bridges, if these are capable of driving * LCDs > 1600 via channel B) */ if((pSiS->SiS_SD_Flags & SiS_SD_SUPPORTLCDA) && (pSiS->VBFlags & CRT2_LCD) && (pSiS->SiS_Pr->SiS_CustomT != CUT_UNKNOWNLCD)) { if((!pSiS->CRT1TypeForced) && (pSiS->ForceCRT2Type == CRT2_DEFAULT)) { if(pSiS->VBFlags & CRT2_TV) { /* If both LCD and TV present, default to LCDA+TV */ pSiS->ForceCRT1Type = CRT1_LCDA; pSiS->ForceCRT2Type = CRT2_TV; } else if(pSiS->LCDwidth > 1600) { /* If LCD is > 1600, default to LCDA if we don't need CRT1/VGA for other head */ Bool NeedCRT1VGA = FALSE; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) NeedCRT1VGA = TRUE; #endif #ifdef SISMERGED if(pSiS->MergedFB && (!pSiS->MergedFBAuto || pSiS->CRT1Detected)) NeedCRT1VGA = TRUE; #endif if(!NeedCRT1VGA) { pSiS->ForceCRT1Type = CRT1_LCDA; } } } } /* Set up pseudo-panel if LCDA forced on TMDS bridges */ if(pSiS->SiS_SD_Flags & SiS_SD_SUPPORTLCDA) { if(pSiS->ForceCRT1Type == CRT1_LCDA) { if(pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE) { if(!(pSiS->VBLCDFlags)) { SiSSetupPseudoPanel(pScrn); pSiS->detectedCRT2Devices |= CRT2_LCD; } } else if(!(pSiS->VBLCDFlags)) { pSiS->ForceCRT1Type = CRT1_VGA; } } } else { pSiS->ForceCRT1Type = CRT1_VGA; } pSiS->VBFlags |= pSiS->ForceCRT1Type; #ifdef TWDEBUG xf86DrvMsg(0, X_INFO, "SDFlags %lx\n", pSiS->SiS_SD_Flags); #endif /* Eventually overrule detected CRT2 type * If no type forced, use the detected devices in the order TV->LCD->VGA2 * Since the Chrontel 7005 sometimes delivers wrong detection results, * we use a different order on such machines (LCD->TV) */ if(pSiS->ForceCRT2Type == CRT2_DEFAULT) { if((pSiS->VBFlags & CRT2_TV) && (!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VGAEngine == SIS_300_VGA)))) pSiS->ForceCRT2Type = CRT2_TV; else if((pSiS->VBFlags & CRT2_LCD) && (pSiS->ForceCRT1Type == CRT1_VGA)) pSiS->ForceCRT2Type = CRT2_LCD; else if(pSiS->VBFlags & CRT2_TV) pSiS->ForceCRT2Type = CRT2_TV; else if((pSiS->VBFlags & CRT2_VGA) && (pSiS->ForceCRT1Type == CRT1_VGA)) pSiS->ForceCRT2Type = CRT2_VGA; } switch(pSiS->ForceCRT2Type) { case CRT2_TV: pSiS->VBFlags &= ~(CRT2_LCD | CRT2_VGA); if(pSiS->VBFlags2 & (VB2_SISTVBRIDGE | VB2_CHRONTEL)) { pSiS->VBFlags |= CRT2_TV; } else { pSiS->VBFlags &= ~(CRT2_TV); xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Hardware does not support TV output\n"); } break; case CRT2_LCD: pSiS->VBFlags &= ~(CRT2_TV | CRT2_VGA); if((pSiS->VBFlags2 & VB2_VIDEOBRIDGE) && (pSiS->VBLCDFlags)) { pSiS->VBFlags |= CRT2_LCD; } else if((pSiS->VBFlags2 & VB2_SISTMDSBRIDGE) && (!(pSiS->VBFlags2 & VB2_30xBDH))) { SiSSetupPseudoPanel(pScrn); pSiS->detectedCRT2Devices |= CRT2_LCD; } else { pSiS->VBFlags &= ~(CRT2_LCD); xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Can't force CRT2 to LCD, no LCD detected\n"); } break; case CRT2_VGA: pSiS->VBFlags &= ~(CRT2_TV | CRT2_LCD); if(pSiS->VBFlags2 & VB2_SISVGA2BRIDGE) { pSiS->VBFlags |= CRT2_VGA; } else { pSiS->VBFlags &= ~(CRT2_VGA); xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Hardware does not support secondary VGA\n"); } break; default: pSiS->VBFlags &= ~(CRT2_TV | CRT2_LCD | CRT2_VGA); } /* Setup gamma (the cmap layer needs this to be initialised) */ /* (Do this after evaluating options) */ { Gamma zeros = {0.0, 0.0, 0.0}; xf86SetGamma(pScrn, zeros); } #ifdef SISDUALHEAD if((!pSiS->DualHeadMode) || (pSiS->SecondHead)) { #endif xf86DrvMsg(pScrn->scrnIndex, pSiS->CRT1gammaGiven ? X_CONFIG : X_INFO, "%samma correction is %s\n", (pSiS->VBFlags2 & VB2_VIDEOBRIDGE) ? "CRT1 g" : "G", pSiS->CRT1gamma ? "enabled" : "disabled"); if((pSiS->VGAEngine == SIS_315_VGA) && (!(pSiS->NoXvideo)) && (!(pSiS->SiS_SD2_Flags & SiS_SD2_NOOVERLAY))) { xf86DrvMsg(pScrn->scrnIndex, pSiS->XvGammaGiven ? X_CONFIG : X_INFO, "Separate Xv gamma correction %sis %s\n", (pSiS->VBFlags2 & VB2_VIDEOBRIDGE) ? "for CRT1 " : "", pSiS->XvGamma ? "enabled" : "disabled"); if(pSiS->XvGamma) { xf86DrvMsg(pScrn->scrnIndex, pSiS->XvGammaGiven ? X_CONFIG : X_INFO, "Xv gamma correction: %.3f %.3f %.3f\n", (float)((float)pSiS->XvGammaRed / 1000), (float)((float)pSiS->XvGammaGreen / 1000), (float)((float)pSiS->XvGammaBlue / 1000)); if(!pSiS->CRT1gamma) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Xv gamma correction requires %samma correction enabled\n", (pSiS->VBFlags2 & VB2_VIDEOBRIDGE) ? "CRT1 g" : "G"); } } } #ifdef SISDUALHEAD } #endif #ifdef SISDUALHEAD if(pSiS->DualHeadMode) pSiS->CRT2SepGamma = FALSE; #endif #ifdef SISDUALHEAD if((!pSiS->DualHeadMode) || (!pSiS->SecondHead)) #endif { Bool isDH = FALSE; if(pSiS->CRT2gamma) { if( ((pSiS->VGAEngine != SIS_300_VGA) && (pSiS->VGAEngine != SIS_315_VGA)) || (!(pSiS->VBFlags2 & VB2_SISBRIDGE)) ) { if(pSiS->VBFlags2 & VB2_VIDEOBRIDGE) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "CRT2 gamma correction not supported by hardware\n"); } pSiS->CRT2gamma = pSiS->CRT2SepGamma = FALSE; } else if((pSiS->VBFlags2 & VB2_30xBDH) && (pSiS->VBFlags & CRT2_LCD)) { isDH = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "CRT2 gamma correction not supported for LCD\n"); /* But leave it on, will be caught in LoadPalette */ } } if(pSiS->VBFlags2 & VB2_SISBRIDGE) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "CRT2 gamma correction is %s%s%s\n", pSiS->CRT2gamma ? "enabled" : "disabled", isDH ? " (for TV and VGA2) " : "", pSiS->CRT2SepGamma ? " (separate from CRT1)" : ""); } } /* Eventually overrule TV Type (SVIDEO, COMPOSITE, SCART, HIVISION, YPBPR) */ if(pSiS->VBFlags2 & VB2_SISTVBRIDGE) { if(pSiS->ForceTVType != -1) { pSiS->VBFlags &= ~(TV_INTERFACE); if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) { pSiS->VBFlags &= ~(TV_CHSCART | TV_CHYPBPR525I); } pSiS->VBFlags |= pSiS->ForceTVType; if(pSiS->VBFlags & TV_YPBPR) { pSiS->VBFlags &= ~(TV_STANDARD); pSiS->VBFlags &= ~(TV_YPBPRAR); pSiS->VBFlags |= pSiS->ForceYPbPrType; pSiS->VBFlags |= pSiS->ForceYPbPrAR; } } } /* Handle ForceCRT1 option (part 2) */ pSiS->CRT1changed = FALSE; if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { usScratchCR17 = pSiS->oldCR17; usScratchCR63 = pSiS->oldCR63; usScratchSR1F = pSiS->oldSR1F; usScratchCR32 = pSiS->postVBCR32; if(pSiS->VESA != 1) { /* Copy forceCRT1 option to CRT1off if option is given */ #ifdef SISDUALHEAD /* In DHM, handle this option only for master head, not the slave */ if( (pSiS->forceCRT1 != -1) && (!(pSiS->DualHeadMode && pSiS->SecondHead)) ) { #else if(pSiS->forceCRT1 != -1) { #endif xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "CRT1 detection overruled by ForceCRT1 option\n"); if(pSiS->forceCRT1) { pSiS->CRT1off = 0; if(pSiS->VGAEngine == SIS_300_VGA) { if(!(usScratchCR17 & 0x80)) pSiS->CRT1changed = TRUE; } else { if(usScratchCR63 & 0x40) pSiS->CRT1changed = TRUE; } usScratchCR17 |= 0x80; usScratchCR32 |= 0x20; usScratchCR63 &= ~0x40; usScratchSR1F &= ~0xc0; } else { if( ! ( (pScrn->bitsPerPixel == 8) && ( (pSiS->VBFlags2 & (VB2_LVDS | VB2_CHRONTEL)) || ((pSiS->VBFlags2 & VB2_30xBDH) && (pSiS->VBFlags & CRT2_LCD)) ) ) ) { pSiS->CRT1off = 1; if(pSiS->VGAEngine == SIS_300_VGA) { if(usScratchCR17 & 0x80) pSiS->CRT1changed = TRUE; } else { if(!(usScratchCR63 & 0x40)) pSiS->CRT1changed = TRUE; } usScratchCR32 &= ~0x20; /* We must not actually switch off CRT1 before we changed the mode! */ } } /* Here we can write to CR17 even on 315 series as we only ENABLE * the bit here */ outSISIDXREG(SISCR, 0x17, usScratchCR17); if(pSiS->VGAEngine == SIS_315_VGA) { outSISIDXREG(SISCR, pSiS->myCR63, usScratchCR63); } outSISIDXREG(SISCR, 0x32, usScratchCR32); if(pSiS->CRT1changed) { outSISIDXREG(SISSR, 0x00, 0x01); /* Synchronous Reset */ usleep(10000); outSISIDXREG(SISSR, 0x00, 0x03); /* End Reset */ xf86DrvMsg(pScrn->scrnIndex, X_INFO, "CRT1 status changed by ForceCRT1 option\n"); } outSISIDXREG(SISSR, 0x1f, usScratchSR1F); } } /* Store the new VB connection register contents for later mode changes */ pSiS->newCR32 = usScratchCR32; } /* Check if CRT1 used (or needed; this eg. if no CRT2 detected) */ if(pSiS->VBFlags2 & VB2_VIDEOBRIDGE) { /* No CRT2 output? Then we NEED CRT1! * We also need CRT1 if depth = 8 and bridge=LVDS|301B-DH */ if( (!(pSiS->VBFlags & (CRT2_VGA | CRT2_LCD | CRT2_TV))) || ( (pScrn->bitsPerPixel == 8) && ( (pSiS->VBFlags2 & (VB2_LVDS | VB2_CHRONTEL)) || ((pSiS->VBFlags2 & VB2_30xBDH) && (pSiS->VBFlags & CRT2_LCD)) ) ) ) { pSiS->CRT1off = 0; } /* No CRT2 output? Then we can't use Xv on CRT2 */ if(!(pSiS->VBFlags & (CRT2_VGA | CRT2_LCD | CRT2_TV))) { pSiS->XvOnCRT2 = FALSE; } } else { /* no video bridge? */ /* Then we NEED CRT1... */ pSiS->CRT1off = 0; /* ... and can't use CRT2 for Xv output */ pSiS->XvOnCRT2 = FALSE; } /* LCDA? Then we don't switch off CRT1 */ if(pSiS->VBFlags & CRT1_LCDA) pSiS->CRT1off = 0; /* Handle TVStandard option */ if((pSiS->NonDefaultPAL != -1) || (pSiS->NonDefaultNTSC != -1)) { if( (!(pSiS->VBFlags2 & VB2_SISTVBRIDGE)) && (!((pSiS->VBFlags2 & VB2_CHRONTEL)) && (pSiS->ChrontelType == CHRONTEL_701x)) ) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "PALM, PALN and NTSCJ not supported on this hardware\n"); pSiS->NonDefaultPAL = pSiS->NonDefaultNTSC = -1; pSiS->VBFlags &= ~(TV_PALN | TV_PALM | TV_NTSCJ); pSiS->SiS_SD_Flags &= ~(SiS_SD_SUPPORTPALMN | SiS_SD_SUPPORTNTSCJ); } } if(pSiS->OptTVStand != -1) { if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { if( (!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & (TV_CHSCART | TV_CHYPBPR525I)))) && (!(pSiS->VBFlags & (TV_HIVISION | TV_YPBPR))) ) { pSiS->VBFlags &= ~(TV_PAL | TV_NTSC | TV_PALN | TV_PALM | TV_NTSCJ); if(pSiS->OptTVStand) { pSiS->VBFlags |= TV_PAL; if(pSiS->NonDefaultPAL == 1) pSiS->VBFlags |= TV_PALM; else if(!pSiS->NonDefaultPAL) pSiS->VBFlags |= TV_PALN; } else { pSiS->VBFlags |= TV_NTSC; if(pSiS->NonDefaultNTSC == 1) pSiS->VBFlags |= TV_NTSCJ; } } else { pSiS->OptTVStand = pSiS->NonDefaultPAL = -1; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Option TVStandard ignored for YPbPr, HiVision and Chrontel-SCART\n"); } } else if(pSiS->Chipset == PCI_CHIP_SIS6326) { pSiS->SiS6326Flags &= ~SIS6326_TVPAL; if(pSiS->OptTVStand) pSiS->SiS6326Flags |= SIS6326_TVPAL; } } if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { /* Default to PAL */ if(pSiS->VBFlags & (TV_SVIDEO | TV_AVIDEO)) { if(!(pSiS->VBFlags & (TV_PAL | TV_NTSC))) { pSiS->VBFlags &= ~(TV_PAL | TV_NTSC | TV_PALN | TV_PALM | TV_NTSCJ); pSiS->VBFlags |= TV_PAL; } } /* SCART only supported for PAL */ if((pSiS->VBFlags2 & VB2_SISBRIDGE) && (pSiS->VBFlags & TV_SCART)) { pSiS->VBFlags &= ~(TV_NTSC | TV_PALN | TV_PALM | TV_NTSCJ); pSiS->VBFlags |= TV_PAL; pSiS->OptTVStand = 1; pSiS->NonDefaultPAL = pSiS->NonDefaultNTSC = -1; } } #ifdef SIS_CP SIS_CP_DRIVER_RECONFIGOPT #endif if((pSiS->Chipset == PCI_CHIP_SIS6326) && (pSiS->SiS6326Flags & SIS6326_HASTV)) { if(pSiS->sis6326tvplug != -1) { pSiS->SiS6326Flags &= ~(SIS6326_TVSVIDEO | SIS6326_TVCVBS); pSiS->SiS6326Flags |= SIS6326_TVDETECTED; if(pSiS->sis6326tvplug == 1) pSiS->SiS6326Flags |= SIS6326_TVCVBS; else pSiS->SiS6326Flags |= SIS6326_TVSVIDEO; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "SiS6326 TV plug type detection overruled by %s\n", (pSiS->SiS6326Flags & SIS6326_TVCVBS) ? "COMPOSITE" : "SVIDEO"); } } /* Do some checks */ if(pSiS->OptTVOver != -1) { if(pSiS->VBFlags2 & VB2_CHRONTEL) { pSiS->UseCHOverScan = pSiS->OptTVOver; } else { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "CHTVOverscan only supported on CHRONTEL 70xx\n"); pSiS->UseCHOverScan = -1; } } else pSiS->UseCHOverScan = -1; if(pSiS->sistvedgeenhance != -1) { if(!(pSiS->VBFlags2 & VB2_301)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "SISTVEdgeEnhance only supported on SiS301\n"); pSiS->sistvedgeenhance = -1; } } if(pSiS->sistvsaturation != -1) { if(pSiS->VBFlags2 & VB2_301) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "SISTVSaturation not supported on SiS301\n"); pSiS->sistvsaturation = -1; } } /* Do some MergedFB mode initialisation */ #ifdef SISMERGED if(pSiS->MergedFB) { pSiS->CRT2pScrn = xalloc(sizeof(ScrnInfoRec)); if(!pSiS->CRT2pScrn) { SISErrorLog(pScrn, "Failed to allocate memory for 2nd pScrn, %s\n", mergeddisstr); pSiS->MergedFB = FALSE; } else { memcpy(pSiS->CRT2pScrn, pScrn, sizeof(ScrnInfoRec)); } } #endif /* Determine CRT1<>CRT2 mode * Note: When using VESA or if the bridge is in slavemode, display * is ALWAYS in MIRROR_MODE! * This requires extra checks in functions using this flag! * (see sis_video.c for example) */ if(pSiS->VBFlags & DISPTYPE_DISP2) { if(pSiS->CRT1off) { /* CRT2 only ------------------------------- */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { SISErrorLog(pScrn, "CRT1 not detected or forced off. Dual Head mode can't initialize.\n"); if(pSiSEnt) pSiSEnt->DisableDual = TRUE; goto my_error_1; } #endif #ifdef SISMERGED if(pSiS->MergedFB) { if(pSiS->MergedFBAuto) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, mergednocrt1, mergeddisstr); } else { SISErrorLog(pScrn, mergednocrt1, mergeddisstr); } if(pSiS->CRT2pScrn) xfree(pSiS->CRT2pScrn); pSiS->CRT2pScrn = NULL; pSiS->MergedFB = FALSE; } #endif pSiS->VBFlags |= VB_DISPMODE_SINGLE; /* No CRT1? Then we use the video overlay on CRT2 */ pSiS->XvOnCRT2 = TRUE; } else /* CRT1 and CRT2 - mirror or dual head ----- */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiS->VBFlags |= (VB_DISPMODE_DUAL | DISPTYPE_CRT1); if(pSiS->VESA != -1) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "VESA option not used in Dual Head mode. VESA disabled.\n"); } if(pSiSEnt) pSiSEnt->DisableDual = FALSE; pSiS->VESA = 0; } else #endif #ifdef SISMERGED if(pSiS->MergedFB) { pSiS->VBFlags |= (VB_DISPMODE_MIRROR | DISPTYPE_CRT1); if(pSiS->VESA != -1) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "VESA option not used in MergedFB mode. VESA disabled.\n"); } pSiS->VESA = 0; } else #endif pSiS->VBFlags |= (VB_DISPMODE_MIRROR | DISPTYPE_CRT1); } else { /* CRT1 only ------------------------------- */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { SISErrorLog(pScrn, "No CRT2 output selected or no bridge detected. " "Dual Head mode can't initialize.\n"); goto my_error_1; } #endif #ifdef SISMERGED if(pSiS->MergedFB) { if(pSiS->MergedFBAuto) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, mergednocrt2, mergeddisstr); } else { SISErrorLog(pScrn, mergednocrt2, mergeddisstr); } if(pSiS->CRT2pScrn) xfree(pSiS->CRT2pScrn); pSiS->CRT2pScrn = NULL; pSiS->MergedFB = FALSE; } #endif pSiS->VBFlags |= (VB_DISPMODE_SINGLE | DISPTYPE_CRT1); } if((pSiS->VGAEngine == SIS_315_VGA) || (pSiS->VGAEngine == SIS_300_VGA)) { if((!pSiS->NoXvideo) && (!pSiS->hasTwoOverlays) && (!(pSiS->SiS_SD2_Flags & SiS_SD2_NOOVERLAY))) { xf86DrvMsg(pScrn->scrnIndex, from, "Using Xv overlay by default on CRT%d\n", pSiS->XvOnCRT2 ? 2 : 1); } } /* Init ptrs for Save/Restore functions and calc MaxClock */ SISDACPreInit(pScrn); /* ********** end of VBFlags setup ********** */ /* VBFlags are initialized now. Back them up for SlaveMode modes. */ pSiS->VBFlags_backup = pSiS->VBFlags; /* Backup CR32,36,37 (in order to write them back after a VT switch) */ if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { inSISIDXREG(SISCR,0x32,pSiS->myCR32); inSISIDXREG(SISCR,0x36,pSiS->myCR36); inSISIDXREG(SISCR,0x37,pSiS->myCR37); } /* Find out about paneldelaycompensation and evaluate option */ #ifdef SISDUALHEAD if((!pSiS->DualHeadMode) || (!pSiS->SecondHead)) { #endif if(pSiS->VGAEngine == SIS_300_VGA) { if(pSiS->VBFlags2 & (VB2_LVDS | VB2_30xBDH)) { /* Save the current PDC if the panel is used at the moment. * This seems by far the safest way to find out about it. * If the system is using an old version of sisfb, we can't * trust the pdc register value. If sisfb saved the pdc for * us, use it. */ if(pSiS->sisfbpdc != 0xff) { pSiS->SiS_Pr->PDC = pSiS->sisfbpdc; } else { if(!(pSiS->donttrustpdc)) { UChar tmp; inSISIDXREG(SISCR, 0x30, tmp); if(tmp & 0x20) { inSISIDXREG(SISPART1, 0x13, pSiS->SiS_Pr->PDC); } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Unable to detect LCD PanelDelayCompensation, LCD is not active\n"); } } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Unable to detect LCD PanelDelayCompensation, please update sisfb\n"); } } if(pSiS->SiS_Pr->PDC != -1) { pSiS->SiS_Pr->PDC &= 0x3c; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Detected LCD PanelDelayCompensation 0x%02x\n", pSiS->SiS_Pr->PDC); } /* If we haven't been able to find out, use our other methods */ if(pSiS->SiS_Pr->PDC == -1) { int i=0; do { if(mypdctable[i].subsysVendor == PCI_SUB_VENDOR_ID(pSiS->PciInfo) && mypdctable[i].subsysCard == PCI_SUB_DEVICE_ID(pSiS->PciInfo)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "PCI card/vendor identified for non-default PanelDelayCompensation\n"); xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Vendor: %s, card: %s (ID %04x), PanelDelayCompensation: 0x%02x\n", mypdctable[i].vendorName, mypdctable[i].cardName, PCI_SUB_DEVICE_ID(pSiS->PciInfo), mypdctable[i].pdc); if(pSiS->PDC == -1) { pSiS->PDC = mypdctable[i].pdc; } else { xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "PanelDelayCompensation overruled by option\n"); } break; } i++; } while(mypdctable[i].subsysVendor != 0); } if(pSiS->PDC != -1) { if(pSiS->BIOS) { if(pSiS->VBFlags2 & VB2_LVDS) { if(pSiS->BIOS[0x220] & 0x80) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "BIOS uses OEM LCD Panel Delay Compensation 0x%02x\n", pSiS->BIOS[0x220] & 0x3c); pSiS->BIOS[0x220] &= 0x7f; } } if(pSiS->VBFlags2 & (VB2_301B | VB2_302B)) { if(pSiS->BIOS[0x220] & 0x80) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "BIOS uses OEM LCD Panel Delay Compensation 0x%02x\n", ( (pSiS->VBLCDFlags & VB_LCD_1280x1024) ? pSiS->BIOS[0x223] : pSiS->BIOS[0x224] ) & 0x3c); pSiS->BIOS[0x220] &= 0x7f; } } } pSiS->SiS_Pr->PDC = (pSiS->PDC & 0x3c); xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Using LCD Panel Delay Compensation 0x%02x\n", pSiS->SiS_Pr->PDC); } } } /* SIS_300_VGA */ if(pSiS->VGAEngine == SIS_315_VGA) { UChar tmp, tmp2; inSISIDXREG(SISCR, 0x30, tmp); /* Save the current PDC if the panel is used at the moment. */ if(pSiS->VBFlags2 & VB2_SISLVDSBRIDGE) { if(pSiS->sisfbpdc != 0xff) { pSiS->SiS_Pr->PDC = pSiS->sisfbpdc; } if(pSiS->sisfbpdca != 0xff) { pSiS->SiS_Pr->PDCA = pSiS->sisfbpdca; } if(!pSiS->donttrustpdc) { if((pSiS->sisfbpdc == 0xff) && (pSiS->sisfbpdca == 0xff)) { CARD16 tempa, tempb; inSISIDXREG(SISPART1,0x2d,tmp2); tempa = (tmp2 & 0xf0) >> 3; tempb = (tmp2 & 0x0f) << 1; inSISIDXREG(SISPART1,0x20,tmp2); tempa |= ((tmp2 & 0x40) >> 6); inSISIDXREG(SISPART1,0x35,tmp2); tempb |= ((tmp2 & 0x80) >> 7); inSISIDXREG(SISPART1,0x13,tmp2); if(!pSiS->ROM661New) { if((tmp2 & 0x04) || (tmp & 0x20)) { pSiS->SiS_Pr->PDCA = tempa; pSiS->SiS_Pr->PDC = tempb; } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Unable to detect PanelDelayCompensation, LCD is not active\n"); } } else { if(tmp2 & 0x04) { pSiS->SiS_Pr->PDCA = tempa; } else if(tmp & 0x20) { pSiS->SiS_Pr->PDC = tempb; } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Unable to detect PanelDelayCompensation, LCD is not active\n"); } } } } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Unable to detect PanelDelayCompensation, please update sisfb\n"); } if(pSiS->SiS_Pr->PDC != -1) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Detected LCD PanelDelayCompensation 0x%02x (for LCD=CRT2)\n", pSiS->SiS_Pr->PDC); } if(pSiS->SiS_Pr->PDCA != -1) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Detected LCD PanelDelayCompensation1 0x%02x (for LCD=CRT1)\n", pSiS->SiS_Pr->PDCA); } } /* Let user override (for all bridges) */ if(pSiS->VBFlags2 & VB2_30xBLV) { if(pSiS->PDC != -1) { pSiS->SiS_Pr->PDC = pSiS->PDC & 0x1f; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Using LCD PanelDelayCompensation 0x%02x (for LCD=CRT2)\n", pSiS->SiS_Pr->PDC); } if(pSiS->PDCA != -1) { pSiS->SiS_Pr->PDCA = pSiS->PDCA & 0x1f; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Using LCD PanelDelayCompensation1 0x%02x (for LCD=CRT1)\n", pSiS->SiS_Pr->PDCA); } } /* Read the current EMI (if not overruled) */ if(pSiS->VBFlags2 & VB2_SISEMIBRIDGE) { MessageType from = X_PROBED; if(pSiS->EMI != -1) { pSiS->SiS_Pr->EMI_30 = (pSiS->EMI >> 24) & 0x60; pSiS->SiS_Pr->EMI_31 = (pSiS->EMI >> 16) & 0xff; pSiS->SiS_Pr->EMI_32 = (pSiS->EMI >> 8) & 0xff; pSiS->SiS_Pr->EMI_33 = pSiS->EMI & 0xff; pSiS->SiS_Pr->HaveEMI = pSiS->SiS_Pr->HaveEMILCD = TRUE; pSiS->SiS_Pr->OverruleEMI = TRUE; from = X_CONFIG; } else if((pSiS->sisfbfound) && (pSiS->sisfb_haveemi)) { pSiS->SiS_Pr->EMI_30 = pSiS->sisfb_emi30; pSiS->SiS_Pr->EMI_31 = pSiS->sisfb_emi31; pSiS->SiS_Pr->EMI_32 = pSiS->sisfb_emi32; pSiS->SiS_Pr->EMI_33 = pSiS->sisfb_emi33; pSiS->SiS_Pr->HaveEMI = TRUE; if(pSiS->sisfb_haveemilcd) pSiS->SiS_Pr->HaveEMILCD = TRUE; pSiS->SiS_Pr->OverruleEMI = FALSE; } else { inSISIDXREG(SISPART4, 0x30, pSiS->SiS_Pr->EMI_30); inSISIDXREG(SISPART4, 0x31, pSiS->SiS_Pr->EMI_31); inSISIDXREG(SISPART4, 0x32, pSiS->SiS_Pr->EMI_32); inSISIDXREG(SISPART4, 0x33, pSiS->SiS_Pr->EMI_33); pSiS->SiS_Pr->HaveEMI = TRUE; if(tmp & 0x20) pSiS->SiS_Pr->HaveEMILCD = TRUE; pSiS->SiS_Pr->OverruleEMI = FALSE; } xf86DrvMsg(pScrn->scrnIndex, from, "302LV/302ELV: Using EMI 0x%02x%02x%02x%02x%s\n", pSiS->SiS_Pr->EMI_30,pSiS->SiS_Pr->EMI_31, pSiS->SiS_Pr->EMI_32,pSiS->SiS_Pr->EMI_33, pSiS->SiS_Pr->HaveEMILCD ? " (LCD)" : ""); } } /* SIS_315_VGA */ #ifdef SISDUALHEAD } #endif /* In dual head mode, both heads (currently) share the maxxfbmem equally. * If memory sharing is done differently, the following has to be changed; * the other modules (eg. accel and Xv) use dhmOffset for hardware * pointer settings relative to VideoRAM start and won't need to be changed. * * Addendum: dhmoffset is also used for skipping the UMA area on SiS76x. */ pSiS->dhmOffset = pSiS->FbBaseOffset; pSiS->FbAddress += pSiS->dhmOffset; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiS->FbAddress = pSiS->realFbAddress; if(!pSiS->SecondHead) { /* ===== First head (always CRT2) ===== */ /* We use only half of the memory available */ pSiS->maxxfbmem /= 2; /* dhmOffset is 0 (or LFB-base for SiS76x UMA skipping) */ pSiS->FbAddress += pSiS->dhmOffset; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "%dKB video RAM at 0x%lx available for master head (CRT2)\n", pSiS->maxxfbmem/1024, pSiS->FbAddress); } else { /* ===== Second head (always CRT1) ===== */ /* We use only half of the memory available */ pSiS->maxxfbmem /= 2; /* Initialize dhmOffset */ pSiS->dhmOffset += pSiS->maxxfbmem; /* Adapt FBAddress */ pSiS->FbAddress += pSiS->dhmOffset; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "%dKB video RAM at 0x%lx available for slave head (CRT1)\n", pSiS->maxxfbmem/1024, pSiS->FbAddress); } } #endif /* Note: Do not use availMem for anything from now. Use * maxxfbmem instead. (availMem does not take dual head * mode into account.) */ if(pSiS->FbBaseOffset) { /* Doubt that the DRM memory manager can deal * with a heap start of 0... */ pSiS->DRIheapstart = 16; pSiS->DRIheapend = pSiS->FbBaseOffset; } else { pSiS->DRIheapstart = pSiS->maxxfbmem; pSiS->DRIheapend = pSiS->availMem; } #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiS->DRIheapstart = pSiS->DRIheapend = 0; } else #endif if(pSiS->DRIheapstart >= pSiS->DRIheapend) { #if 0 /* For future use */ xf86DrvMsg(pScrn->scrnIndex, X_INFO, "No memory for DRI heap. Please set the option \"MaxXFBMem\" to\n" "\tlimit the memory X should use and leave the rest to DRI\n"); #endif pSiS->DRIheapstart = pSiS->DRIheapend = 0; } /* Now for something completely different: DDC. * For 300 and 315/330/340 series, we provide our * own functions (in order to probe CRT2 as well) * If these fail, use the VBE. * All other chipsets will use VBE. No need to re-invent * the wheel there. */ pSiS->pVbe = NULL; didddc2 = FALSE; if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { if(xf86LoadSubModule(pScrn, "ddc")) { int crtnum = 0; xf86LoaderReqSymLists(ddcSymbols, NULL); if((pMonitor = SiSDoPrivateDDC(pScrn, &crtnum))) { didddc2 = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, ddcsstr, crtnum); xf86PrintEDID(pMonitor); xf86SetDDCproperties(pScrn, pMonitor); pScrn->monitor->DDC = pMonitor; /* Now try to find out aspect ratio */ SiSFindAspect(pScrn, pMonitor, crtnum); xf86DrvMsg(pScrn->scrnIndex, X_PROBED, ddcestr, crtnum); } } } #ifdef SISDUALHEAD /* In dual head mode, probe DDC using VBE only for CRT1 (second head) */ if((pSiS->DualHeadMode) && (!didddc2) && (!pSiS->SecondHead)) { didddc2 = TRUE; } #endif if(!didddc2) { /* If CRT1 is off or LCDA, skip DDC via VBE */ if((pSiS->CRT1off) || (pSiS->VBFlags & CRT1_LCDA)) { didddc2 = TRUE; } } /* Now (re-)load and initialize the DDC module */ if(!didddc2) { if(xf86LoadSubModule(pScrn, "ddc")) { xf86LoaderReqSymLists(ddcSymbols, NULL); /* Now load and initialize VBE module. */ SiS_LoadInitVBE(pScrn); if(pSiS->pVbe) { if((pMonitor = vbeDoEDID(pSiS->pVbe,NULL))) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "VBE CRT1 DDC monitor info:\n"); xf86SetDDCproperties(pScrn, xf86PrintEDID(pMonitor)); pScrn->monitor->DDC = pMonitor; /* Now try to find out aspect ratio */ SiSFindAspect(pScrn, pMonitor, 1); xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "End of VBE CRT1 DDC monitor info\n"); } } else { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Failed to read DDC data\n"); } } } #ifdef SISMERGED if(pSiS->MergedFB) { pSiS->CRT2pScrn->monitor = xalloc(sizeof(MonRec)); if(pSiS->CRT2pScrn->monitor) { DisplayModePtr tempm = NULL, currentm = NULL, newm = NULL; memcpy(pSiS->CRT2pScrn->monitor, pScrn->monitor, sizeof(MonRec)); pSiS->CRT2pScrn->monitor->DDC = NULL; pSiS->CRT2pScrn->monitor->Modes = NULL; pSiS->CRT2pScrn->monitor->id = (char *)crt2monname; tempm = pScrn->monitor->Modes; while(tempm) { if(!(newm = xalloc(sizeof(DisplayModeRec)))) break; memcpy(newm, tempm, sizeof(DisplayModeRec)); if(!(newm->name = xalloc(strlen(tempm->name) + 1))) { xfree(newm); break; } strcpy(newm->name, tempm->name); if(!pSiS->CRT2pScrn->monitor->Modes) pSiS->CRT2pScrn->monitor->Modes = newm; if(currentm) { currentm->next = newm; newm->prev = currentm; } currentm = newm; tempm = tempm->next; } if(pSiS->CRT2HSync) { pSiS->CRT2pScrn->monitor->nHsync = SiSStrToRanges(pSiS->CRT2pScrn->monitor->hsync, pSiS->CRT2HSync, MAX_HSYNC); } if(pSiS->CRT2VRefresh) { pSiS->CRT2pScrn->monitor->nVrefresh = SiSStrToRanges(pSiS->CRT2pScrn->monitor->vrefresh, pSiS->CRT2VRefresh, MAX_VREFRESH); } if((pMonitor = SiSInternalDDC(pSiS->CRT2pScrn, 1))) { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, ddcsstr, 2); xf86PrintEDID(pMonitor); xf86SetDDCproperties(pSiS->CRT2pScrn, pMonitor); pSiS->CRT2pScrn->monitor->DDC = pMonitor; /* Now try to find out aspect ratio */ SiSFindAspect(pScrn, pMonitor, 2); xf86DrvMsg(pScrn->scrnIndex, X_PROBED, ddcestr, 2); /* use DDC data if no ranges in config file */ if(!pSiS->CRT2HSync) { pSiS->CRT2pScrn->monitor->nHsync = 0; } if(!pSiS->CRT2VRefresh) { pSiS->CRT2pScrn->monitor->nVrefresh = 0; } } else { xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Failed to read DDC data for CRT2\n"); } } else { SISErrorLog(pScrn, "Failed to allocate memory for CRT2 monitor, %s.\n", mergeddisstr); if(pSiS->CRT2pScrn) xfree(pSiS->CRT2pScrn); pSiS->CRT2pScrn = NULL; pSiS->MergedFB = FALSE; } } #endif /* Copy our detected monitor gammas, part 1. Note that device redetection * is not supported in DHM, so there is no need to do that anytime later. */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(!pSiS->SecondHead) { /* CRT2: Got gamma for LCD or VGA2 */ pSiSEnt->CRT2VGAMonitorGamma = pSiS->CRT2VGAMonitorGamma; } else { /* CRT1: Got gamma for LCD or VGA */ pSiSEnt->CRT1VGAMonitorGamma = pSiS->CRT1VGAMonitorGamma; } if(pSiS->CRT2LCDMonitorGamma) pSiSEnt->CRT2LCDMonitorGamma = pSiS->CRT2LCDMonitorGamma; } #endif /* end of DDC */ /* From here, we mainly deal with clocks and modes */ #ifdef SISMERGED if(pSiS->MergedFB) xf86DrvMsg(pScrn->scrnIndex, X_INFO, crtsetupstr, 1); #endif /* Set the min pixel clock */ pSiS->MinClock = 5000; if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { pSiS->MinClock = 10000; } xf86DrvMsg(pScrn->scrnIndex, X_DEFAULT, "Min pixel clock is %d MHz\n", pSiS->MinClock / 1000); /* If the user has specified ramdac speed in the config * file, we respect that setting. */ from = X_PROBED; if(pSiS->pEnt->device->dacSpeeds[0]) { int speed = 0; switch(pScrn->bitsPerPixel) { case 8: speed = pSiS->pEnt->device->dacSpeeds[DAC_BPP8]; break; case 16: speed = pSiS->pEnt->device->dacSpeeds[DAC_BPP16]; break; case 24: speed = pSiS->pEnt->device->dacSpeeds[DAC_BPP24]; break; case 32: speed = pSiS->pEnt->device->dacSpeeds[DAC_BPP32]; break; } if(speed == 0) pSiS->MaxClock = pSiS->pEnt->device->dacSpeeds[0]; else pSiS->MaxClock = speed; from = X_CONFIG; } xf86DrvMsg(pScrn->scrnIndex, from, "Max pixel clock is %d MHz\n", pSiS->MaxClock / 1000); /* * Setup the ClockRanges, which describe what clock ranges are available, * and what sort of modes they can be used for. */ clockRanges = xnfcalloc(sizeof(ClockRange), 1); clockRanges->next = NULL; clockRanges->minClock = pSiS->MinClock; clockRanges->maxClock = pSiS->MaxClock; clockRanges->clockIndex = -1; /* programmable */ clockRanges->interlaceAllowed = TRUE; clockRanges->doubleScanAllowed = TRUE; /* * Since we have lots of built-in modes for 300/315/330/340 series * with vb support, we replace the given default mode list with our * own. In case the video bridge is to be used, we only allow other * modes if * -) vbtype is 301, 301B, 301C or 302B, and * -) crt2 device is not TV, and * -) crt1 is not LCDA, unless bridge is TMDS/LCDA capable (301C) */ if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { if(!(pSiS->noInternalModes)) { Bool acceptcustommodes = TRUE; /* Accept user modelines */ Bool includelcdmodes = TRUE; /* Include modes reported by DDC */ Bool isfordvi = FALSE; /* Is for digital DVI output */ Bool fakecrt2modes = FALSE; /* Fake some modes for CRT2 */ Bool IsForCRT2 = FALSE; if(pSiS->UseVESA) { acceptcustommodes = FALSE; includelcdmodes = FALSE; } #ifdef SISDUALHEAD /* Dual head is static. Output devices will not change. */ if(pSiS->DualHeadMode) { if(!pSiS->SecondHead) { /* CRT2: */ if(pSiS->VBFlags2 & VB2_SISTMDSBRIDGE) { if(!(pSiS->VBFlags2 & VB2_30xBDH)) { if(!(pSiS->VBFlags & (CRT2_LCD|CRT2_VGA))) includelcdmodes = FALSE; if(pSiS->VBFlags & CRT2_LCD) isfordvi = TRUE; if(pSiS->VBFlags & CRT2_TV) acceptcustommodes = FALSE; } else { if(pSiS->VBFlags & (CRT2_TV|CRT2_LCD)) { acceptcustommodes = FALSE; includelcdmodes = FALSE; fakecrt2modes = TRUE; } } } else { acceptcustommodes = FALSE; includelcdmodes = FALSE; if(pSiS->VBFlags & (CRT2_TV|CRT2_LCD)) { fakecrt2modes = TRUE; } } clockRanges->interlaceAllowed = FALSE; IsForCRT2 = TRUE; } else { /* CRT1: */ if(pSiS->VBFlags & CRT1_LCDA) { if(!(pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE)) { acceptcustommodes = FALSE; includelcdmodes = FALSE; fakecrt2modes = TRUE; /* Will handle i-lace in mode-switching code */ } else { isfordvi = TRUE; /* Don't allow i-lace modes */ clockRanges->interlaceAllowed = FALSE; } } else { includelcdmodes = FALSE; } } } else #endif #ifdef SISMERGED /* MergedFB mode is not static. Output devices may change. */ if(pSiS->MergedFB) { if(pSiS->VBFlags & CRT1_LCDA) { if(!(pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE)) { acceptcustommodes = FALSE; includelcdmodes = FALSE; fakecrt2modes = TRUE; /* Will handle i-lace in mode-switching code */ } else { isfordvi = TRUE; /* Don't allow i-lace custom modes */ clockRanges->interlaceAllowed = FALSE; } } else { includelcdmodes = FALSE; } } else #endif /* Mirror mode is not static. Output devices may change. */ if(pSiS->VBFlags2 & VB2_SISTMDSBRIDGE) { if(!(pSiS->VBFlags2 & VB2_30xBDH)) { if(!(pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE)) { if(!(pSiS->VBFlags & (CRT2_LCD|CRT2_VGA))) includelcdmodes = FALSE; if(pSiS->VBFlags & CRT2_LCD) isfordvi = TRUE; } else { if(!(pSiS->VBFlags & (CRT2_LCD|CRT2_VGA|CRT1_LCDA))) includelcdmodes = FALSE; if(pSiS->VBFlags & (CRT2_LCD|CRT1_LCDA)) isfordvi = TRUE; } if((!(pSiS->VBFlags & DISPTYPE_CRT1)) && (!(pSiS->VBFlags & CRT1_LCDA))) { IsForCRT2 = TRUE; } /* Allow user modes, even if CRT2 is TV. Will be filtered through ValidMode(); * leaving the user modes here might have the advantage that such a mode, if * it matches in resolution with a supported TV mode, allows us to drive eg. * non standard panels, and still permits switching to TV. This mode will be * "mapped" to a supported mode of identical resolution for TV. All this is * taken care of by ValidMode() and ModeInit()/PresetMode(). */ } else { if(pSiS->VBFlags & (CRT2_TV|CRT2_LCD)) { acceptcustommodes = FALSE; includelcdmodes = FALSE; if(!(pSiS->VBFlags & DISPTYPE_CRT1)) { fakecrt2modes = TRUE; IsForCRT2 = TRUE; } } } } else if(pSiS->VBFlags & (CRT2_ENABLE | CRT1_LCDA)) { acceptcustommodes = FALSE; includelcdmodes = FALSE; if((pSiS->VBFlags & CRT1_LCDA) || (!(pSiS->VBFlags & DISPTYPE_CRT1))) { fakecrt2modes = TRUE; IsForCRT2 = TRUE; } } else { includelcdmodes = FALSE; } /* Ignore interlace, mode switching code will handle this */ pSiS->HaveCustomModes = FALSE; if(SiSMakeOwnModeList(pScrn, acceptcustommodes, includelcdmodes, isfordvi, &pSiS->HaveCustomModes, FALSE /*fakecrt2modes*/, IsForCRT2)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Replaced %s mode list with built-in modes\n", pSiS->HaveCustomModes ? "default" : "entire"); if(pSiS->VGAEngine == SIS_315_VGA) { int UseWide = pSiS->SiS_Pr->SiS_UseWide; if(IsForCRT2) UseWide = pSiS->SiS_Pr->SiS_UseWideCRT2; if((!IsForCRT2) || (pSiS->VBFlags2 & VB2_SISVGA2BRIDGE)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Using %s widescreen modes for CRT%d VGA devices\n", UseWide ? "real" : "fake", IsForCRT2 ? 2 : 1); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "\tUse option \"ForceCRT%dVGAAspect\" to overrule\n", IsForCRT2 ? 2 : 1); } } #ifdef TWDEBUG pScrn->modes = pScrn->monitor->Modes; xf86PrintModes(pScrn); pScrn->modes = NULL; #endif } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Building list of built-in modes failed, using server defaults\n"); } } else { pSiS->HaveCustomModes = TRUE; } } /* Add our built-in hi-res and TV modes on the 6326 */ if(pSiS->Chipset == PCI_CHIP_SIS6326) { if(pScrn->bitsPerPixel == 8) { SiS6326SIS1600x1200_60Mode.next = pScrn->monitor->Modes; pScrn->monitor->Modes = &SiS6326SIS1600x1200_60Mode; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Adding mode \"SIS1600x1200-60\" (depth 8 only)\n"); } if(pScrn->bitsPerPixel <= 16) { SiS6326SIS1280x1024_75Mode.next = pScrn->monitor->Modes; pScrn->monitor->Modes = &SiS6326SIS1280x1024_75Mode; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Adding mode \"SIS1280x1024-75\" (depths 8, 15 and 16 only)\n"); } if((pSiS->SiS6326Flags & SIS6326_HASTV) && (pSiS->SiS6326Flags & SIS6326_TVDETECTED)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Adding %s TV modes to mode list:\n", (pSiS->SiS6326Flags & SIS6326_TVPAL) ? "PAL" : "NTSC"); if(pSiS->SiS6326Flags & SIS6326_TVPAL) { SiS6326PAL800x600Mode.next = pScrn->monitor->Modes; pScrn->monitor->Modes = &SiS6326PAL640x480Mode; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "\t\"PAL800x600\" \"PAL800x600U\" \"PAL720x540\" \"PAL640x480\"\n"); } else { SiS6326NTSC640x480Mode.next = pScrn->monitor->Modes; pScrn->monitor->Modes = &SiS6326NTSC640x400Mode; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "\t\"NTSC640x480\" \"NTSC640x480U\" \"NTSC640x400\"\n"); } } } /* If there is no HSync or VRefresh data for the monitor, * derive it from DDC data. Essentially done by common layer * since 4.3.99.14, but this is not usable since it is done * too late (in ValidateModes()). * Addendum: I overrule the ranges now in any case unless * it would affect a CRT output device or DDC data is available. * Hence, for LCD(A) and TV, we always get proper ranges. This * is entirely harmless. However, option "NoOverruleRanges" will * disable this behavior. * This should "fix" the - by far - most common configuration * mistakes. */ crt1freqoverruled = FALSE; fromDDC = FALSE; if((pScrn->monitor->nHsync <= 0) || (pSiS->OverruleRanges)) { if((pScrn->monitor->nHsync <= 0) && (pScrn->monitor->DDC)) { SiSSetSyncRangeFromEdid(pScrn, 1); if(pScrn->monitor->nHsync > 0) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, subshstr, #ifdef SISDUALHEAD pSiS->DualHeadMode ? (pSiS->SecondHead ? 1 : 2) : #endif pSiS->CRT1off ? 2 : 1); fromDDC = TRUE; } } if((pScrn->monitor->nHsync <= 0) || (pSiS->OverruleRanges)) { if(SiSAllowSyncOverride(pSiS, fromDDC)) { Bool HaveNoRanges = (pScrn->monitor->nHsync <= 0); /* Set sane ranges for LCD and TV * (our strict checking will filter out invalid ones anyway) */ if((crt1freqoverruled = CheckAndOverruleH(pScrn, pScrn->monitor))) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, saneh, HaveNoRanges ? "missing" : "bogus", #ifdef SISDUALHEAD pSiS->DualHeadMode ? (pSiS->SecondHead ? 1 : 2) : #endif pSiS->CRT1off ? 2 : 1); } } } } fromDDC = FALSE; if((pScrn->monitor->nVrefresh <= 0) || (pSiS->OverruleRanges)) { if((pScrn->monitor->nVrefresh <= 0) && (pScrn->monitor->DDC)) { SiSSetSyncRangeFromEdid(pScrn, 0); if(pScrn->monitor->nVrefresh > 0) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, subsvstr, #ifdef SISDUALHEAD pSiS->DualHeadMode ? (pSiS->SecondHead ? 1 : 2) : #endif pSiS->CRT1off ? 2 : 1); fromDDC = TRUE; } } if((pScrn->monitor->nVrefresh <= 0) || (pSiS->OverruleRanges)) { if(SiSAllowSyncOverride(pSiS, fromDDC)) { Bool HaveNoRanges = (pScrn->monitor->nVrefresh <= 0); /* Set sane ranges for LCD and TV */ if((crt1freqoverruled = CheckAndOverruleV(pScrn, pScrn->monitor))) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, sanev, HaveNoRanges ? "missing" : "bogus", #ifdef SISDUALHEAD pSiS->DualHeadMode ? (pSiS->SecondHead ? 1 : 2) : #endif pSiS->CRT1off ? 2 : 1); } } } } if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "\"Unknown reason\" in the following list means that the mode\n"); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "is not supported on the chipset/bridge/current output device.\n"); } /* * xf86ValidateModes will check that the mode HTotal and VTotal values * don't exceed the chipset's limit if pScrn->maxHValue and * pScrn->maxVValue are set. Since our SISValidMode() already takes * care of this, we don't worry about setting them here. */ /* Select valid modes from those available */ /* * Assuming min pitch 256, min height 128 */ { int minpitch, maxpitch, minheight, maxheight; pointer backupddc = pScrn->monitor->DDC; minpitch = 256; minheight = 128; switch(pSiS->VGAEngine) { case SIS_OLD_VGA: case SIS_530_VGA: maxpitch = 2040; maxheight = 2048; break; case SIS_300_VGA: case SIS_315_VGA: maxpitch = 4088; maxheight = 4096; break; default: maxpitch = 2048; maxheight = 2048; break; } #ifdef SISMERGED pSiS->CheckForCRT2 = FALSE; #endif /* Suppress bogus DDC warning */ if(crt1freqoverruled) pScrn->monitor->DDC = NULL; i = xf86ValidateModes(pScrn, pScrn->monitor->Modes, pScrn->display->modes, clockRanges, NULL, minpitch, maxpitch, pScrn->bitsPerPixel * 8, minheight, maxheight, pScrn->display->virtualX, pScrn->display->virtualY, pSiS->maxxfbmem, LOOKUP_BEST_REFRESH); pScrn->monitor->DDC = backupddc; } if(i == -1) { SISErrorLog(pScrn, "xf86ValidateModes() error\n"); goto my_error_1; } /* Check the virtual screen against the available memory */ { ULong memreq = (pScrn->virtualX * ((pScrn->bitsPerPixel + 7) / 8)) * pScrn->virtualY; if(memreq > pSiS->maxxfbmem) { SISErrorLog(pScrn, "Virtual screen too big for memory; %ldK needed, %ldK available\n", memreq/1024, pSiS->maxxfbmem/1024); goto my_error_1; } } /* Dual Head: * -) Go through mode list and mark all those modes as bad, * which are unsuitable for dual head mode. * -) Find the highest used pixelclock on the master head. */ #ifdef SISDUALHEAD if((pSiS->DualHeadMode) && (!pSiS->SecondHead)) { pSiSEnt->maxUsedClock = 0; if((p = first = pScrn->modes)) { do { n = p->next; /* Modes that require the bridge to operate in SlaveMode * are not suitable for Dual Head mode. */ if( (pSiS->VGAEngine == SIS_300_VGA) && ( (strcmp(p->name, "320x200") == 0) || (strcmp(p->name, "320x240") == 0) || (strcmp(p->name, "400x300") == 0) || (strcmp(p->name, "512x384") == 0) || (strcmp(p->name, "640x400") == 0) ) ) { p->status = MODE_BAD; xf86DrvMsg(pScrn->scrnIndex, X_INFO, notsuitablestr, p->name, "dual head"); } /* Search for the highest clock on first head in order to calculate * max clock for second head (CRT1) */ if((p->status == MODE_OK) && (p->Clock > pSiSEnt->maxUsedClock)) { pSiSEnt->maxUsedClock = p->Clock; } p = n; } while (p != NULL && p != first); } } #endif /* Prune the modes marked as invalid */ xf86PruneDriverModes(pScrn); if(i == 0 || pScrn->modes == NULL) { SISErrorLog(pScrn, "No valid modes found - check VertRefresh/HorizSync\n"); goto my_error_1; } xf86SetCrtcForModes(pScrn, INTERLACE_HALVE_V); /* Set the current mode to the first in the list */ pScrn->currentMode = pScrn->modes; /* Copy to CurrentLayout */ pSiS->CurrentLayout.mode = pScrn->currentMode; pSiS->CurrentLayout.displayWidth = pScrn->displayWidth; pSiS->CurrentLayout.displayHeight = pScrn->virtualY; #ifdef SISMERGED if(pSiS->MergedFB) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, modesforstr, 1); } #endif /* Print the list of modes being used */ { Bool usemyprint = FALSE; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) { if(pSiS->VBFlags & CRT1_LCDA) usemyprint = TRUE; } else { if(pSiS->VBFlags & (CRT2_LCD | CRT2_TV)) usemyprint = TRUE; } } else #endif #ifdef SISMERGED if(pSiS->MergedFB) { if(pSiS->VBFlags & CRT1_LCDA) usemyprint = TRUE; } else #endif { if( (pSiS->VBFlags & (CRT2_LCD | CRT2_TV)) && (!(pSiS->VBFlags & DISPTYPE_DISP1)) ) usemyprint = TRUE; } if(usemyprint) { SiSPrintModes(pScrn); } else { xf86PrintModes(pScrn); } } #ifdef SISMERGED if(pSiS->MergedFB) { Bool acceptcustommodes = TRUE; Bool includelcdmodes = TRUE; Bool isfordvi = FALSE; Bool fakecrt2modes = FALSE; xf86DrvMsg(pScrn->scrnIndex, X_INFO, crtsetupstr, 2); clockRanges->next = NULL; clockRanges->minClock = pSiS->MinClock; clockRanges->maxClock = SiSMemBandWidth(pSiS->CRT2pScrn, TRUE); clockRanges->clockIndex = -1; clockRanges->interlaceAllowed = FALSE; clockRanges->doubleScanAllowed = FALSE; if(pSiS->VGAEngine == SIS_315_VGA) { clockRanges->doubleScanAllowed = TRUE; } xf86DrvMsg(pScrn->scrnIndex, X_DEFAULT, "Min pixel clock for CRT2 is %d MHz\n", clockRanges->minClock / 1000); xf86DrvMsg(pScrn->scrnIndex, X_DEFAULT, "Max pixel clock for CRT2 is %d MHz\n", clockRanges->maxClock / 1000); if(pSiS->VBFlags2 & VB2_SISTMDSBRIDGE) { if(!(pSiS->VBFlags2 & VB2_30xBDH)) { if(!(pSiS->VBFlags & (CRT2_LCD|CRT2_VGA))) includelcdmodes = FALSE; if(pSiS->VBFlags & CRT2_LCD) isfordvi = TRUE; /* See above for a remark on handling CRT2 = TV */ } else { if(pSiS->VBFlags & (CRT2_LCD|CRT2_TV)) { includelcdmodes = FALSE; acceptcustommodes = FALSE; fakecrt2modes = TRUE; } } } else { includelcdmodes = FALSE; acceptcustommodes = FALSE; if(pSiS->VBFlags & (CRT2_LCD|CRT2_TV)) { fakecrt2modes = TRUE; } } pSiS->HaveCustomModes2 = FALSE; if(!SiSMakeOwnModeList(pSiS->CRT2pScrn, acceptcustommodes, includelcdmodes, isfordvi, &pSiS->HaveCustomModes2, FALSE /* fakecrt2modes */, TRUE )) { SISErrorLog(pScrn, "Building list of built-in modes for CRT2 failed, %s\n", mergeddisstr); SiSFreeCRT2Structs(pSiS); pSiS->MergedFB = FALSE; } else { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Replaced %s mode list for CRT2 with built-in modes\n", pSiS->HaveCustomModes2 ? "default" : "entire"); if((pSiS->VGAEngine == SIS_315_VGA) && (pSiS->VBFlags2 & VB2_SISVGA2BRIDGE)) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Using %s widescreen modes for CRT2 VGA devices\n", pSiS->SiS_Pr->SiS_UseWideCRT2 ? "real" : "fake"); } else pSiS->SiS_Pr->SiS_UseWideCRT2 = 0; } } if(pSiS->MergedFB) { pointer backupddc; crt2freqoverruled = FALSE; fromDDC = FALSE; if((pSiS->CRT2pScrn->monitor->nHsync <= 0) || (pSiS->OverruleRanges)) { if((pSiS->CRT2pScrn->monitor->nHsync <= 0) && (pSiS->CRT2pScrn->monitor->DDC)) { SiSSetSyncRangeFromEdid(pSiS->CRT2pScrn, 1); if(pSiS->CRT2pScrn->monitor->nHsync > 0) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, subshstr, 2); fromDDC = TRUE; } } if((pSiS->CRT2pScrn->monitor->nHsync <= 0) || (pSiS->OverruleRanges)) { if( (pSiS->VBFlags & CRT2_TV) || ((pSiS->VBFlags & CRT2_LCD) && (!fromDDC)) ) { Bool HaveNoRanges = (pSiS->CRT2pScrn->monitor->nHsync <= 0); /* Set sane ranges for LCD and TV */ if((crt2freqoverruled = CheckAndOverruleH(pScrn, pSiS->CRT2pScrn->monitor))) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, saneh, HaveNoRanges ? "missing" : "bogus", 2); } } } } fromDDC = FALSE; if((pSiS->CRT2pScrn->monitor->nVrefresh <= 0) || (pSiS->OverruleRanges)) { if((pSiS->CRT2pScrn->monitor->nVrefresh <= 0) && (pSiS->CRT2pScrn->monitor->DDC)) { SiSSetSyncRangeFromEdid(pSiS->CRT2pScrn, 0); if(pSiS->CRT2pScrn->monitor->nVrefresh > 0) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, subsvstr, 2); fromDDC = TRUE; } } if((pSiS->CRT2pScrn->monitor->nVrefresh <= 0) || (pSiS->OverruleRanges)) { if( (pSiS->VBFlags & CRT2_TV) || ((pSiS->VBFlags & CRT2_LCD) && (!fromDDC)) ) { Bool HaveNoRanges = (pSiS->CRT2pScrn->monitor->nVrefresh <= 0); /* Set sane ranges for LCD and TV */ if((crt2freqoverruled = CheckAndOverruleV(pScrn, pSiS->CRT2pScrn->monitor))) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, sanev, HaveNoRanges ? "missing" : "bogus", 2); } } } } backupddc = pSiS->CRT2pScrn->monitor->DDC; /* Suppress bogus DDC warning */ if(crt2freqoverruled) pSiS->CRT2pScrn->monitor->DDC = NULL; pSiS->CheckForCRT2 = TRUE; i = xf86ValidateModes(pSiS->CRT2pScrn, pSiS->CRT2pScrn->monitor->Modes, pSiS->CRT2pScrn->display->modes, clockRanges, NULL, 256, 4088, pSiS->CRT2pScrn->bitsPerPixel * 8, 128, 4096, pScrn->display->virtualX ? pScrn->virtualX : 0, pScrn->display->virtualY ? pScrn->virtualY : 0, pSiS->maxxfbmem, LOOKUP_BEST_REFRESH); pSiS->CheckForCRT2 = FALSE; pSiS->CRT2pScrn->monitor->DDC = backupddc; if(i == -1) { SISErrorLog(pScrn, "xf86ValidateModes() error, %s.\n", mergeddisstr); SiSFreeCRT2Structs(pSiS); pSiS->MergedFB = FALSE; } } if(pSiS->MergedFB) { if((p = first = pSiS->CRT2pScrn->modes)) { do { n = p->next; if( (pSiS->VGAEngine == SIS_300_VGA) && ( (strcmp(p->name, "320x200") == 0) || (strcmp(p->name, "320x240") == 0) || (strcmp(p->name, "400x300") == 0) || (strcmp(p->name, "512x384") == 0) || (strcmp(p->name, "640x400") == 0) ) ) { p->status = MODE_BAD; xf86DrvMsg(pScrn->scrnIndex, X_INFO, notsuitablestr, p->name, "MergedFB"); } p = n; } while (p != NULL && p != first); } xf86PruneDriverModes(pSiS->CRT2pScrn); if(i == 0 || pSiS->CRT2pScrn->modes == NULL) { SISErrorLog(pScrn, "No valid modes found for CRT2; %s\n", mergeddisstr); SiSFreeCRT2Structs(pSiS); pSiS->MergedFB = FALSE; } } if(pSiS->MergedFB) { xf86SetCrtcForModes(pSiS->CRT2pScrn, INTERLACE_HALVE_V); xf86DrvMsg(pScrn->scrnIndex, X_INFO, modesforstr, 2); if(pSiS->VBFlags & (CRT2_LCD | CRT2_TV)) { SiSPrintModes(pSiS->CRT2pScrn); } else { xf86PrintModes(pSiS->CRT2pScrn); } pSiS->CRT1Modes = pScrn->modes; pSiS->CRT1CurrentMode = pScrn->currentMode; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "MergedFB: Generating mode list\n"); pScrn->modes = SiSGenerateModeList(pScrn, pSiS->MetaModes, pSiS->CRT1Modes, pSiS->CRT2pScrn->modes, pSiS->CRT2Position); if(!pScrn->modes) { SISErrorLog(pScrn, "Failed to parse MetaModes or no modes found. %s.\n", mergeddisstr); SiSFreeCRT2Structs(pSiS); pScrn->modes = pSiS->CRT1Modes; pSiS->CRT1Modes = NULL; pSiS->MergedFB = FALSE; } } if(pSiS->MergedFB) { /* If no virtual dimension was given by the user, * calculate a sane one now. Adapts pScrn->virtualX, * pScrn->virtualY and pScrn->displayWidth. */ SiSRecalcDefaultVirtualSize(pScrn); pScrn->modes = pScrn->modes->next; /* We get the last from GenerateModeList(), skip to first */ pScrn->currentMode = pScrn->modes; /* Update CurrentLayout */ pSiS->CurrentLayout.mode = pScrn->currentMode; pSiS->CurrentLayout.displayWidth = pScrn->displayWidth; pSiS->CurrentLayout.displayHeight = pScrn->virtualY; } #endif /* Set display resolution */ #ifdef SISMERGED if(pSiS->MergedFB) { SiSMergedFBSetDpi(pScrn, pSiS->CRT2pScrn, pSiS->CRT2Position); } else #endif xf86SetDpi(pScrn, 0, 0); /* Load fb module */ switch(pScrn->bitsPerPixel) { case 8: case 16: case 24: case 32: if(!xf86LoadSubModule(pScrn, "fb")) { SISErrorLog(pScrn, "Failed to load fb module"); goto my_error_1; } break; default: SISErrorLog(pScrn, "Unsupported framebuffer bpp (%d)\n", pScrn->bitsPerPixel); goto my_error_1; } xf86LoaderReqSymLists(fbSymbols, NULL); /* Load XAA/EXA (if needed) */ if(!pSiS->NoAccel) { const char **symNames = NULL; #ifdef SIS_USE_XAA if(!pSiS->useEXA) { if (!xf86LoadSubModule(pScrn, "xaa")) { SISErrorLog(pScrn, "Could not load xaa module\n"); goto my_error_1; } symNames = xaaSymbols; } #endif #ifdef SIS_USE_EXA if(pSiS->useEXA) { XF86ModReqInfo req; int errmaj, errmin; memset(&req, 0, sizeof(req)); req.majorversion = 2; req.minorversion = 0; if (!LoadSubModule(pScrn->module, "exa", NULL, NULL, NULL, &req, &errmaj, &errmin)) { LoaderErrorMsg(NULL, "exa", errmaj, errmin); goto my_error_1; } symNames = exaSymbols; } #endif if(symNames) { xf86LoaderReqSymLists(symNames, NULL); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "2D acceleration enabled\n"); } } /* Load shadowfb (if needed) */ if(pSiS->ShadowFB) { if(!xf86LoadSubModule(pScrn, "shadowfb")) { SISErrorLog(pScrn, "Could not load shadowfb module\n"); goto my_error_1; } xf86LoaderReqSymLists(shadowSymbols, NULL); } /* Load the dri and glx modules if requested. */ #ifdef XF86DRI if(pSiS->loadDRI) { if(!xf86LoaderCheckSymbol("DRIScreenInit")) { if(xf86LoadSubModule(pScrn, "dri")) { if(!xf86LoaderCheckSymbol("GlxSetVisualConfigs")) { if(xf86LoadSubModule(pScrn, "glx")) { xf86LoaderReqSymLists(driSymbols, drmSymbols, NULL); } else { SISErrorLog(pScrn, "Failed to load glx module\n"); } } } else { SISErrorLog(pScrn, "Failed to load dri module\n"); } } } #endif /* Now load and initialize VBE module for VESA mode switching */ pSiS->UseVESA = 0; if(pSiS->VESA == 1) { SiS_LoadInitVBE(pScrn); if(pSiS->pVbe) { VbeInfoBlock *vbe; if((vbe = VBEGetVBEInfo(pSiS->pVbe))) { pSiS->vesamajor = (unsigned)(vbe->VESAVersion >> 8); pSiS->vesaminor = vbe->VESAVersion & 0xff; SiSBuildVesaModeList(pScrn, pSiS->pVbe, vbe); VBEFreeVBEInfo(vbe); pSiS->UseVESA = 1; } else { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Failed to read VBE Info Block\n"); } } if(pSiS->UseVESA == 0) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "VESA mode switching disabled.\n"); } } if(pSiS->pVbe) { vbeFree(pSiS->pVbe); pSiS->pVbe = NULL; } #ifdef SISDUALHEAD xf86SetPrimInitDone(pScrn->entityList[0]); #endif sisRestoreExtRegisterLock(pSiS,srlockReg,crlockReg); if(pSiS->pInt) xf86FreeInt10(pSiS->pInt); pSiS->pInt = NULL; if(pSiS->VGAEngine == SIS_315_VGA) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTXVGAMMA1; } #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiS->SiS_SD_Flags |= SiS_SD_ISDUALHEAD; if(pSiS->SecondHead) pSiS->SiS_SD_Flags |= SiS_SD_ISDHSECONDHEAD; else pSiS->SiS_SD_Flags &= ~(SiS_SD_SUPPORTXVGAMMA1); #ifdef PANORAMIX if(!noPanoramiXExtension) { pSiS->SiS_SD_Flags |= SiS_SD_ISDHXINERAMA; /* pSiS->SiS_SD_Flags &= ~(SiS_SD_SUPPORTXVGAMMA1); */ } #endif } #endif #ifdef SISMERGED if(pSiS->MergedFB) pSiS->SiS_SD_Flags |= SiS_SD_ISMERGEDFB; #endif /* Try to determine if this is a laptop */ /* (only used for SiSCtrl visualisations) */ pSiS->SiS_SD2_Flags |= SiS_SD2_SUPPLTFLAG; pSiS->SiS_SD2_Flags &= ~SiS_SD2_ISLAPTOP; if(pSiS->detectedCRT2Devices & CRT2_LCD) { if(pSiS->VBFlags2 & (VB2_SISLVDSBRIDGE | VB2_LVDS | VB2_30xBDH)) { /* 1. By bridge type: LVDS in 99% of all cases; * exclude unusual setups like Barco projectors * and parallel flat panels. TODO: Exclude * Sony W1, V1. */ if((pSiS->SiS_Pr->SiS_CustomT != CUT_BARCO1366) && (pSiS->SiS_Pr->SiS_CustomT != CUT_BARCO1024) && (pSiS->SiS_Pr->SiS_CustomT != CUT_PANEL848) && (pSiS->SiS_Pr->SiS_CustomT != CUT_PANEL856) && (pSiS->SiS_Pr->SiS_CustomT != CUT_AOP8060) && ( (pSiS->ChipType != SIS_550) || (!pSiS->DSTN && !pSiS->FSTN) ) ) { pSiS->SiS_SD2_Flags |= SiS_SD2_ISLAPTOP; } } else if((pSiS->VBFlags2 & (VB2_301 | VB2_301C)) && (pSiS->VBLCDFlags & (VB_LCD_1280x960 | VB_LCD_1400x1050 | VB_LCD_1024x600 | VB_LCD_1280x800 | VB_LCD_1280x854))) { /* 2. By (odd) LCD resolutions on TMDS bridges * (eg Averatec). TODO: Exclude IBM Netvista. */ pSiS->SiS_SD2_Flags |= SiS_SD2_ISLAPTOP; } } if(pSiS->enablesisctrl) pSiS->SiS_SD_Flags |= SiS_SD_ENABLED; pSiS->currentModeLast = pScrn->currentMode; pSiS->VBFlagsInit = pSiS->VBFlags; return TRUE; /* ---- */ my_error_1: sisRestoreExtRegisterLock(pSiS, srlockReg, crlockReg); my_error_0: #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->ErrorAfterFirst = TRUE; #endif if(pSiS->pInt) xf86FreeInt10(pSiS->pInt); pSiS->pInt = NULL; SISFreeRec(pScrn); return FALSE; } /* * Map I/O port area for non-PC platforms */ #ifdef SIS_NEED_MAP_IOP static Bool SISMapIOPMem(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiS->DualHeadMode) { pSiSEnt->MapCountIOPBase++; if(!(pSiSEnt->IOPBase)) { /* Only map if not mapped previously */ #ifndef XSERVER_LIBPCIACCESS pSiSEnt->IOPBase = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_MMIO, pSiS->PciTag, pSiS->IOPAddress, 128); #else { void **result = (void **)&pSiSEnt->IOPBase; int err = pci_device_map_range(pSiS->PciInfo, pSiS->IOPAddress, 128, PCI_DEV_MAP_FLAG_WRITABLE, result); if (err) { xf86DrvMsg (pScrn->scrnIndex, X_ERROR, "Unable to map IO aperture. %s (%d)\n", strerror (err), err); } } #endif } pSiS->IOPBase = pSiSEnt->IOPBase; } else #endif #ifndef XSERVER_LIBPCIACCESS pSiS->IOPBase = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_MMIO, pSiS->PciTag, pSiS->IOPAddress, 128); #else { void **result = (void **)&pSiS->IOPBase; int err = pci_device_map_range(pSiS->PciInfo, pSiS->IOPAddress, 128, PCI_DEV_MAP_FLAG_WRITABLE, result); if (err) { xf86DrvMsg (pScrn->scrnIndex, X_ERROR, "Unable to map IO aperture. %s (%d)\n", strerror (err), err); } } #endif if(pSiS->IOPBase == NULL) { SISErrorLog(pScrn, "Could not map I/O port area\n"); return FALSE; } return TRUE; } static Bool SISUnmapIOPMem(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate;; #endif /* In dual head mode, we must not unmap if the other head still * assumes memory as mapped */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiSEnt->MapCountIOPBase) { pSiSEnt->MapCountIOPBase--; if((pSiSEnt->MapCountIOPBase == 0) || (pSiSEnt->forceUnmapIOPBase)) { xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSiSEnt->IOPBase, 2048); pSiSEnt->IOPBase = NULL; pSiSEnt->MapCountIOPBase = 0; pSiSEnt->forceUnmapIOPBase = FALSE; } pSiS->IOPBase = NULL; } } else { #endif xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSiS->IOPBase, 2048); pSiS->IOPBase = NULL; #ifdef SISDUALHEAD } #endif return TRUE; } #endif /* * Map the framebuffer and MMIO memory */ static Bool SISMapMem(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int mmioFlags = VIDMEM_MMIO; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif /* * Map IO registers to virtual address space * (For Alpha, we need to map SPARSE memory, since we need * byte/short access.) */ #if defined(__alpha__) mmioFlags |= VIDMEM_SPARSE; #endif #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiSEnt->MapCountIOBase++; if(!(pSiSEnt->IOBase)) { /* Only map if not mapped previously */ #ifndef XSERVER_LIBPCIACCESS pSiSEnt->IOBase = xf86MapPciMem(pScrn->scrnIndex, mmioFlags, pSiS->PciTag, pSiS->IOAddress, (pSiS->mmioSize * 1024)); #else void **result = (void **)&pSiSEnt->IOBase; int err = pci_device_map_range(pSiS->PciInfo, pSiS->IOAddress, (pSiS->mmioSize * 1024), PCI_DEV_MAP_FLAG_WRITABLE, result); if (err) { xf86DrvMsg (pScrn->scrnIndex, X_ERROR, "Unable to map IO aperture. %s (%d)\n", strerror (err), err); } #endif } pSiS->IOBase = pSiSEnt->IOBase; } else #endif #ifndef XSERVER_LIBPCIACCESS pSiS->IOBase = xf86MapPciMem(pScrn->scrnIndex, mmioFlags, pSiS->PciTag, pSiS->IOAddress, (pSiS->mmioSize * 1024)); #else { void **result = (void **)&pSiS->IOBase; int err = pci_device_map_range(pSiS->PciInfo, pSiS->IOAddress, (pSiS->mmioSize * 1024), PCI_DEV_MAP_FLAG_WRITABLE, result); if (err) { xf86DrvMsg (pScrn->scrnIndex, X_ERROR, "Unable to map IO aperture. %s (%d)\n", strerror (err), err); } } #endif if(pSiS->IOBase == NULL) { SISErrorLog(pScrn, "Could not map MMIO area\n"); return FALSE; } #ifdef __alpha__ /* * for Alpha, we need to map DENSE memory as well, for * setting CPUToScreenColorExpandBase. */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiSEnt->MapCountIOBaseDense++; if(!(pSiSEnt->IOBaseDense)) { /* Only map if not mapped previously */ #ifndef XSERVER_LIBPCIACCESS pSiSEnt->IOBaseDense = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_MMIO, pSiS->PciTag, pSiS->IOAddress, (pSiS->mmioSize * 1024)); #else void **result = (void **)&pSiSEnt->IOBaseDense; int err = pci_device_map_range(pSiS->PciInfo, pSiS->IOAddress, (pSiS->mmioSize * 1024), PCI_DEV_MAP_FLAG_WRITABLE, result); if (err) { xf86DrvMsg (pScrn->scrnIndex, X_ERROR, "Unable to map IO dense aperture. %s (%d)\n", strerror (err), err); #endif } pSiS->IOBaseDense = pSiSEnt->IOBaseDense; } else #endif #ifndef XSERVER_LIBPCIACCESS pSiS->IOBaseDense = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_MMIO, pSiS->PciTag, pSiS->IOAddress, (pSiS->mmioSize * 1024)); #else void **result = (void **)&pSiS->IOBaseDense; int err = pci_device_map_range(pSiS->PciInfo, pSiS->IOAddress, (pSiS->mmioSize * 1024), PCI_DEV_MAP_FLAG_WRITABLE, result); if (err) { xf86DrvMsg (pScrn->scrnIndex, X_ERROR, "Unable to map IO dense aperture. %s (%d)\n", strerror (err), err); #endif if(pSiS->IOBaseDense == NULL) { SISErrorLog(pScrn, "Could not map MMIO dense area\n"); return FALSE; } #endif /* __alpha__ */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiSEnt->MapCountFbBase++; if(!(pSiSEnt->FbBase)) { /* Only map if not mapped previously */ #ifndef XSERVER_LIBPCIACCESS pSiSEnt->FbBase = pSiSEnt->RealFbBase = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_FRAMEBUFFER, pSiS->PciTag, (ULong)pSiS->realFbAddress, pSiS->FbMapSize); #else int err = pci_device_map_range(pSiS->PciInfo, (ULong)pSiS->realFbAddress, pSiS->FbMapSize, PCI_DEV_MAP_FLAG_WRITABLE | PCI_DEV_MAP_FLAG_WRITE_COMBINE, (void *)&pSiSEnt->FbBase); if (err) { xf86DrvMsg (pScrn->scrnIndex, X_ERROR, "Unable to map FB aperture. %s (%d)\n", strerror (err), err); return FALSE; } pSiSEnt->RealFbBase = pSiSEnt->FbBase; #endif } pSiS->FbBase = pSiS->RealFbBase = pSiSEnt->FbBase; /* Adapt FbBase (for DHM and SiS76x UMA skipping; dhmOffset is 0 otherwise) */ pSiS->FbBase += pSiS->dhmOffset; } else { #endif #ifndef XSERVER_LIBPCIACCESS pSiS->FbBase = pSiS->RealFbBase = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_FRAMEBUFFER, pSiS->PciTag, (ULong)pSiS->realFbAddress, pSiS->FbMapSize); #else int err = pci_device_map_range(pSiS->PciInfo, (ULong)pSiS->realFbAddress, pSiS->FbMapSize, PCI_DEV_MAP_FLAG_WRITABLE | PCI_DEV_MAP_FLAG_WRITE_COMBINE, (void *)&pSiS->FbBase); if (err) { xf86DrvMsg (pScrn->scrnIndex, X_ERROR, "Unable to map FB aperture. %s (%d)\n", strerror (err), err); return FALSE; } pSiS->RealFbBase = pSiS->FbBase; #endif pSiS->FbBase += pSiS->dhmOffset; #ifdef SISDUALHEAD } #endif if(pSiS->FbBase == NULL) { SISErrorLog(pScrn, "Could not map framebuffer area\n"); return FALSE; } #ifdef TWDEBUG xf86DrvMsg(0, 0, "Framebuffer mapped to %p\n", pSiS->FbBase); #endif return TRUE; } /* * Unmap the framebuffer and MMIO memory. */ static Bool SISUnmapMem(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif /* In dual head mode, we must not unmap if the other head still * assumes memory as mapped */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiSEnt->MapCountIOBase) { pSiSEnt->MapCountIOBase--; if((pSiSEnt->MapCountIOBase == 0) || (pSiSEnt->forceUnmapIOBase)) { xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSiSEnt->IOBase, (pSiS->mmioSize * 1024)); pSiSEnt->IOBase = NULL; pSiSEnt->MapCountIOBase = 0; pSiSEnt->forceUnmapIOBase = FALSE; } pSiS->IOBase = NULL; } #ifdef __alpha__ if(pSiSEnt->MapCountIOBaseDense) { pSiSEnt->MapCountIOBaseDense--; if((pSiSEnt->MapCountIOBaseDense == 0) || (pSiSEnt->forceUnmapIOBaseDense)) { xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSiSEnt->IOBaseDense, (pSiS->mmioSize * 1024)); pSiSEnt->IOBaseDense = NULL; pSiSEnt->MapCountIOBaseDense = 0; pSiSEnt->forceUnmapIOBaseDense = FALSE; } pSiS->IOBaseDense = NULL; } #endif /* __alpha__ */ if(pSiSEnt->MapCountFbBase) { pSiSEnt->MapCountFbBase--; if((pSiSEnt->MapCountFbBase == 0) || (pSiSEnt->forceUnmapFbBase)) { xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSiSEnt->RealFbBase, pSiS->FbMapSize); pSiSEnt->FbBase = pSiSEnt->RealFbBase = NULL; pSiSEnt->MapCountFbBase = 0; pSiSEnt->forceUnmapFbBase = FALSE; } pSiS->FbBase = pSiS->RealFbBase = NULL; } } else { #endif xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSiS->IOBase, (pSiS->mmioSize * 1024)); pSiS->IOBase = NULL; #ifdef __alpha__ xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSiS->IOBaseDense, (pSiS->mmioSize * 1024)); pSiS->IOBaseDense = NULL; #endif xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSiS->RealFbBase, pSiS->FbMapSize); pSiS->FbBase = pSiS->RealFbBase = NULL; #ifdef SISDUALHEAD } #endif return TRUE; } /* * This function saves the video state. */ static void SISSave(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); SISRegPtr sisReg; int flags; #ifdef SISDUALHEAD /* We always save master & slave */ if(pSiS->DualHeadMode && pSiS->SecondHead) return; #endif sisReg = &pSiS->SavedReg; if( ((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) && ((pSiS->VBFlags2 & VB2_VIDEOBRIDGE) && (SiSBridgeIsInSlaveMode(pScrn))) ) { SiSVGASave(pScrn, sisReg, SISVGA_SR_CMAP | SISVGA_SR_MODE); #ifdef SIS_PC_PLATFORM if(pSiS->VGAMemBase) { SiSRegInit(pSiS->SiS_Pr, pSiS->RelIO+0x30); SiSSetLVDSetc(pSiS->SiS_Pr, 0); SiS_GetVBType(pSiS->SiS_Pr); SiS_DisableBridge(pSiS->SiS_Pr); SiSVGASave(pScrn, sisReg, SISVGA_SR_FONTS); SiS_EnableBridge(pSiS->SiS_Pr); } #endif } else { flags = SISVGA_SR_CMAP | SISVGA_SR_MODE; #ifdef SIS_PC_PLATFORM if(pSiS->VGAMemBase) flags |= SISVGA_SR_FONTS; #endif SiSVGASave(pScrn, sisReg, flags); } sisSaveUnlockExtRegisterLock(pSiS, &sisReg->sisRegs3C4[0x05], &sisReg->sisRegs3D4[0x80]); (*pSiS->SiSSave)(pScrn, sisReg); if(pSiS->UseVESA) SISVESASaveRestore(pScrn, MODE_SAVE); /* "Save" these again as they may have been changed prior to SISSave() call */ if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { sisReg->sisRegs3C4[0x1f] = pSiS->oldSR1F; sisReg->sisRegs3D4[0x17] = pSiS->oldCR17; sisReg->sisRegs3D4[0x32] = pSiS->oldCR32; sisReg->sisRegs3D4[0x36] = pSiS->oldCR36; sisReg->sisRegs3D4[0x37] = pSiS->oldCR37; if(pSiS->VGAEngine == SIS_315_VGA) { sisReg->sisRegs3D4[pSiS->myCR63] = pSiS->oldCR63; } } } /* VESASaveRestore taken from vesa driver */ static void SISVESASaveRestore(ScrnInfoPtr pScrn, vbeSaveRestoreFunction function) { SISPtr pSiS = SISPTR(pScrn); /* Query amount of memory to save state */ if((function == MODE_QUERY) || (function == MODE_SAVE && pSiS->state == NULL)) { /* Make sure we save at least this information in case of failure */ (void)VBEGetVBEMode(pSiS->pVbe, &pSiS->stateMode); SiSVGASaveFonts(pScrn); if(pSiS->vesamajor > 1) { if(!VBESaveRestore(pSiS->pVbe, function, (pointer)&pSiS->state, &pSiS->stateSize, &pSiS->statePage)) { return; } } } /* Save/Restore Super VGA state */ if(function != MODE_QUERY) { if(pSiS->vesamajor > 1) { if(function == MODE_RESTORE) { memcpy(pSiS->state, pSiS->pstate, pSiS->stateSize); } if(VBESaveRestore(pSiS->pVbe,function,(pointer)&pSiS->state, &pSiS->stateSize,&pSiS->statePage) && (function == MODE_SAVE)) { /* don't rely on the memory not being touched */ if(!pSiS->pstate) { pSiS->pstate = xalloc(pSiS->stateSize); } memcpy(pSiS->pstate, pSiS->state, pSiS->stateSize); } } if(function == MODE_RESTORE) { VBESetVBEMode(pSiS->pVbe, pSiS->stateMode, NULL); SiSVGARestoreFonts(pScrn); } } } /* * Initialise a new mode. This is currently done using the * "initialise struct, restore/write struct to HW" model for * the old chipsets (5597/530/6326). For newer chipsets, * we use our own mode switching code. */ static Bool SISModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode) { SISPtr pSiS = SISPTR(pScrn); SISRegPtr sisReg; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = NULL; #endif andSISIDXREG(SISCR,0x11,0x7f); /* Unlock CRTC registers */ SISModifyModeInfo(mode); /* Quick check of the mode parameters */ if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { SiSRegInit(pSiS->SiS_Pr, pSiS->RelIO+0x30); } if(pSiS->UseVESA) { /* With VESA: */ #ifdef SISDUALHEAD /* No dual head mode when using VESA */ if(pSiS->SecondHead) return TRUE; #endif pScrn->vtSema = TRUE; /* * This order is required: * The video bridge needs to be adjusted before the * BIOS is run as the BIOS sets up CRT2 according to * these register settings. * After the BIOS is run, the bridges and turboqueue * registers need to be readjusted as the BIOS may * very probably have messed them up. */ if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { SiSPreSetMode(pScrn, mode, SIS_MODE_SIMU); } if(!SiSSetVESAMode(pScrn, mode)) { SISErrorLog(pScrn, "SiSSetVESAMode() failed\n"); return FALSE; } sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { SiSPreSetMode(pScrn, mode, SIS_MODE_SIMU); SiSPostSetMode(pScrn, &pSiS->ModeReg); } #ifdef TWDEBUG xf86DrvMsg(pScrn->scrnIndex, X_INFO, "REAL REGISTER CONTENTS AFTER SETMODE:\n"); #endif if(!(*pSiS->ModeInit)(pScrn, mode)) { SISErrorLog(pScrn, "ModeInit() failed\n"); return FALSE; } SiSVGAProtect(pScrn, TRUE); (*pSiS->SiSRestore)(pScrn, &pSiS->ModeReg); SiSVGAProtect(pScrn, FALSE); } else { /* Without VESA: */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(!(*pSiS->ModeInit)(pScrn, mode)) { SISErrorLog(pScrn, "ModeInit() failed\n"); return FALSE; } pScrn->vtSema = TRUE; pSiSEnt = pSiS->entityPrivate; if(!(pSiS->SecondHead)) { /* Head 1 (master) is always CRT2 */ SiSPreSetMode(pScrn, mode, SIS_MODE_CRT2); if(!SiSBIOSSetModeCRT2(pSiS->SiS_Pr, pScrn, mode, pSiS->IsCustom)) { SISErrorLog(pScrn, "SiSBIOSSetModeCRT2() failed\n"); return FALSE; } SiSPostSetMode(pScrn, &pSiS->ModeReg); if(pSiSEnt->pScrn_2) { SISAdjustFrame(pSiSEnt->pScrn_2->scrnIndex, pSiSEnt->pScrn_2->frameX0, pSiSEnt->pScrn_2->frameY0, 0); } } else { /* Head 2 (slave) is always CRT1 */ SiSPreSetMode(pScrn, mode, SIS_MODE_CRT1); if(!SiSBIOSSetModeCRT1(pSiS->SiS_Pr, pScrn, mode, pSiS->IsCustom)) { SISErrorLog(pScrn, "SiSBIOSSetModeCRT1() failed\n"); return FALSE; } SiSPostSetMode(pScrn, &pSiS->ModeReg); if(pSiSEnt->pScrn_1) { SISAdjustFrame(pSiSEnt->pScrn_1->scrnIndex, pSiSEnt->pScrn_1->frameX0, pSiSEnt->pScrn_1->frameY0, 0); } } } else { #endif if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { if(!(*pSiS->ModeInit)(pScrn, mode)) { SISErrorLog(pScrn, "ModeInit() failed\n"); return FALSE; } pScrn->vtSema = TRUE; #ifdef SISMERGED if(pSiS->MergedFB) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Setting MergedFB mode %dx%d\n", mode->HDisplay, mode->VDisplay); SiSPreSetMode(pScrn, mode, SIS_MODE_CRT1); if(!SiSBIOSSetModeCRT1(pSiS->SiS_Pr, pScrn, ((SiSMergedDisplayModePtr)mode->Private)->CRT1, pSiS->IsCustom)) { SISErrorLog(pScrn, "SiSBIOSSetModeCRT1() failed\n"); return FALSE; } SiSPreSetMode(pScrn, mode, SIS_MODE_CRT2); if(!SiSBIOSSetModeCRT2(pSiS->SiS_Pr, pScrn, ((SiSMergedDisplayModePtr)mode->Private)->CRT2, pSiS->IsCustom)) { SISErrorLog(pScrn, "SiSBIOSSetModeCRT2() failed\n"); return FALSE; } } else { #endif if((pSiS->VBFlags & CRT1_LCDA) || (!(mode->type & M_T_DEFAULT))) { SiSPreSetMode(pScrn, mode, SIS_MODE_CRT1); if(!SiSBIOSSetModeCRT1(pSiS->SiS_Pr, pScrn, mode, pSiS->IsCustom)) { SISErrorLog(pScrn, "SiSBIOSSetModeCRT1() failed\n"); return FALSE; } SiSPreSetMode(pScrn, mode, SIS_MODE_CRT2); if(!SiSBIOSSetModeCRT2(pSiS->SiS_Pr, pScrn, mode, pSiS->IsCustom)) { SISErrorLog(pScrn, "SiSBIOSSetModeCRT2() failed\n"); return FALSE; } } else { SiSPreSetMode(pScrn, mode, SIS_MODE_SIMU); if(!SiSBIOSSetMode(pSiS->SiS_Pr, pScrn, mode, pSiS->IsCustom)) { SISErrorLog(pScrn, "SiSBIOSSetMode() failed\n"); return FALSE; } } #ifdef SISMERGED } #endif SiSPostSetMode(pScrn, &pSiS->ModeReg); #ifdef TWDEBUG xf86DrvMsg(pScrn->scrnIndex, X_INFO, "VBFlags %lx\n", pSiS->VBFlags); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "REAL REGISTER CONTENTS AFTER SETMODE:\n"); (*pSiS->ModeInit)(pScrn, mode); #endif } else { /* For other chipsets, use the old method */ /* Prepare the register contents */ if(!(*pSiS->ModeInit)(pScrn, mode)) { SISErrorLog(pScrn, "ModeInit() failed\n"); return FALSE; } pScrn->vtSema = TRUE; /* Program the registers */ SiSVGAProtect(pScrn, TRUE); sisReg = &pSiS->ModeReg; sisReg->sisRegsATTR[0x10] = 0x01; if(pScrn->bitsPerPixel > 8) { sisReg->sisRegsGR[0x05] = 0x00; } SiSVGARestore(pScrn, sisReg, SISVGA_SR_MODE); (*pSiS->SiSRestore)(pScrn, sisReg); if((pSiS->Chipset == PCI_CHIP_SIS6326) && (pSiS->SiS6326Flags & SIS6326_HASTV)) { SiS6326PostSetMode(pScrn, &pSiS->ModeReg); } #ifdef TWDEBUG xf86DrvMsg(pScrn->scrnIndex, X_INFO, "REAL REGISTER CONTENTS AFTER SETMODE:\n"); (*pSiS->ModeInit)(pScrn, mode); #endif SiSVGAProtect(pScrn, FALSE); } #ifdef SISDUALHEAD } #endif } /* Update Currentlayout */ pSiS->CurrentLayout.mode = pSiS->currentModeLast = mode; return TRUE; } static Bool SiSSetVESAMode(ScrnInfoPtr pScrn, DisplayModePtr pMode) { SISPtr pSiS; int mode; pSiS = SISPTR(pScrn); if(!(mode = SiSCalcVESAModeIndex(pScrn, pMode))) return FALSE; mode |= (1 << 15); /* Don't clear framebuffer */ mode |= (1 << 14); /* Use linear adressing */ if(VBESetVBEMode(pSiS->pVbe, mode, NULL) == FALSE) { SISErrorLog(pScrn, "Setting VESA mode 0x%x failed\n", mode & 0x0fff); return (FALSE); } if(pMode->HDisplay != pScrn->virtualX) { VBESetLogicalScanline(pSiS->pVbe, pScrn->virtualX); } xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "Setting VESA mode 0x%x succeeded\n", mode & 0x0fff); return (TRUE); } static void SISSpecialRestore(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); SISRegPtr sisReg = &pSiS->SavedReg; UChar temp; int i; /* 1.11.04 and later for 651 and 301B(DH) do strange register * fiddling after the usual mode change. This happens * depending on the result of a call of int 2f (with * ax=0x1680) and if modeno <= 0x13. I have no idea if * that is specific for the 651 or that very machine. * So this perhaps requires some more checks in the beginning * (although it should not do any harm on other chipsets/bridges * etc.) However, even if I call the VBE to restore mode 0x03, * these registers don't get restored correctly, possibly * because that int-2f-call for some reason results non-zero. So * what I do here is to restore these few registers * manually. */ if(!(pSiS->ChipFlags & SiSCF_Is65x)) return; inSISIDXREG(SISCR, 0x34, temp); temp &= 0x7f; if(temp > 0x13) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif SiS_UnLockCRT2(pSiS->SiS_Pr); outSISIDXREG(SISCAP, 0x3f, sisReg->sisCapt[0x3f]); outSISIDXREG(SISCAP, 0x00, sisReg->sisCapt[0x00]); for(i = 0; i < 0x4f; i++) { outSISIDXREG(SISCAP, i, sisReg->sisCapt[i]); } outSISIDXREG(SISVID, 0x32, (sisReg->sisVid[0x32] & ~0x05)); outSISIDXREG(SISVID, 0x30, sisReg->sisVid[0x30]); outSISIDXREG(SISVID, 0x32, ((sisReg->sisVid[0x32] & ~0x04) | 0x01)); outSISIDXREG(SISVID, 0x30, sisReg->sisVid[0x30]); if(!(pSiS->ChipFlags & SiSCF_Is651)) return; if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return; inSISIDXREG(SISCR, 0x30, temp); if(temp & 0x40) { UChar myregs[] = { 0x2f, 0x08, 0x09, 0x03, 0x0a, 0x0c, 0x0b, 0x0d, 0x0e, 0x12, 0x0f, 0x10, 0x11, 0x04, 0x05, 0x06, 0x07, 0x00, 0x2e }; for(i = 0; i <= 18; i++) { outSISIDXREG(SISPART1, myregs[i], sisReg->VBPart1[myregs[i]]); } } else if((temp & 0x20) || (temp & 0x9c)) { UChar myregs[] = { 0x04, 0x05, 0x06, 0x07, 0x00, 0x2e }; for(i = 0; i <= 5; i++) { outSISIDXREG(SISPART1, myregs[i], sisReg->VBPart1[myregs[i]]); } } } /* Fix SR11 for 661 and later */ static void SiSFixupSR11(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); CARD8 tmpreg; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif if(pSiS->ChipType >= SIS_661) { inSISIDXREG(SISSR,0x11,tmpreg); if(tmpreg & 0x20) { inSISIDXREG(SISSR,0x3e,tmpreg); tmpreg = (tmpreg + 1) & 0xff; outSISIDXREG(SISSR,0x3e,tmpreg); } inSISIDXREG(SISSR,0x11,tmpreg); if(tmpreg & 0xf0) { andSISIDXREG(SISSR,0x11,0x0f); } } } /* Subroutine for restoring sisfb's TV parameters (used by SiSRestore()) */ static void SiSRestore_SiSFB_TVParms(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int fd; CARD32 parm; if(!pSiS->sisfbfound) return; if(!pSiS->sisfb_tvposvalid) return; if(!(pSiS->sisfbdevname[0])) return; if((fd = open(pSiS->sisfbdevname, O_RDONLY)) != -1) { parm = (CARD32)((pSiS->sisfb_tvxpos << 16) | (pSiS->sisfb_tvypos & 0xffff)); ioctl(fd, SISFB_SET_TVPOSOFFSET, &parm); close(fd); } } /* * Restore the initial mode. To be used internally only! */ static void SISRestore(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); SISRegPtr sisReg = &pSiS->SavedReg; Bool doit = FALSE, doitlater = FALSE; Bool vesasuccess = FALSE; int flags; /* WARNING: Don't ever touch this. It now seems to work on * all chipset/bridge combinations - but finding out the * correct combination was pure hell. */ /* Wait for the accelerators */ (*pSiS->SyncAccel)(pScrn); /* Set up restore flags */ flags = SISVGA_SR_MODE | SISVGA_SR_CMAP; #ifdef SIS_PC_PLATFORM /* We now restore ALL to overcome the vga=extended problem */ if(pSiS->VGAMemBase) flags |= SISVGA_SR_FONTS; #endif if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { #ifdef SISDUALHEAD /* We always restore master AND slave */ if(pSiS->DualHeadMode && pSiS->SecondHead) return; #endif #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif /* We must not disable the sequencer if the bridge is in SlaveMode! */ if(!(SiSBridgeIsInSlaveMode(pScrn))) { SiSVGAProtect(pScrn, TRUE); } /* First, restore CRT1 on/off and VB connection registers */ outSISIDXREG(SISCR, 0x32, pSiS->oldCR32); if(!(pSiS->oldCR17 & 0x80)) { /* CRT1 was off */ if(!(SiSBridgeIsInSlaveMode(pScrn))) { /* Bridge is NOT in SlaveMode now -> do it */ doit = TRUE; } else { doitlater = TRUE; } } else { /* CRT1 was on -> do it now */ doit = TRUE; } if(doit) { outSISIDXREG(SISCR, 0x17, pSiS->oldCR17); } if(pSiS->VGAEngine == SIS_315_VGA) { outSISIDXREG(SISCR, pSiS->myCR63, pSiS->oldCR63); } outSISIDXREG(SISSR, 0x1f, pSiS->oldSR1F); /* For 30xB/LV, restoring the registers does not * work. We "manually" set the old mode, instead. * The same applies for SiS730 machines with LVDS. * Finally, this behavior can be forced by setting * the option RestoreBySetMode. */ if( ( (pSiS->restorebyset) || (pSiS->VBFlags2 & VB2_30xBLV) || ((pSiS->ChipType == SIS_730) && (pSiS->VBFlags2 & VB2_LVDS)) ) && (pSiS->OldMode) ) { Bool changedmode = FALSE; xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, 3, "Restoring by setting old mode 0x%02x\n", pSiS->OldMode); if(((pSiS->OldMode <= 0x13) || (!pSiS->sisfbfound)) && (pSiS->pVbe)) { int vmode = SiSTranslateToVESA(pScrn, pSiS->OldMode); if(vmode > 0) { if(vmode > 0x13) vmode |= ((1 << 15) | (1 << 14)); if(VBESetVBEMode(pSiS->pVbe, vmode, NULL) == TRUE) { SISSpecialRestore(pScrn); SiS_GetSetModeID(pScrn,pSiS->OldMode); vesasuccess = TRUE; } else { xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, 3, "VBE failed to restore mode 0x%x\n", pSiS->OldMode); } } else { xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, 3, "Can't identify VESA mode number for mode 0x%x\n", pSiS->OldMode); } } if(vesasuccess == FALSE) { int backupscaler = pSiS->SiS_Pr->UsePanelScaler; int backupcenter = pSiS->SiS_Pr->CenterScreen; ULong backupspecialtiming = pSiS->SiS_Pr->SiS_CustomT; int mymode = pSiS->OldMode; if((pSiS->VGAEngine == SIS_315_VGA) && ((pSiS->ROM661New) || (pSiS->ChipFlags & SiSCF_IsXGI)) && (!pSiS->sisfbfound)) { /* New SiS BIOS or XGI BIOS has set mode, therefore eventually translate number */ mymode = SiSTranslateToOldMode(mymode); } if((pSiS->VBFlags2 & VB2_30xBLV)) { /* !!! REQUIRED for 630+301B-DH, otherwise the text modes * will not be restored correctly !!! * !!! Do this ONLY for LCD; VGA2 will not be restored * correctly otherwise. */ UChar temp; inSISIDXREG(SISCR, 0x30, temp); if(temp & 0x20) { if(mymode == 0x03) { mymode = 0x13; changedmode = TRUE; } } } pSiS->SiS_Pr->UseCustomMode = FALSE; pSiS->SiS_Pr->CRT1UsesCustomMode = FALSE; pSiS->SiS_Pr->CenterScreen = 0; if(pSiS->sisfbfound) { pSiS->SiS_Pr->UsePanelScaler = pSiS->sisfbscalelcd; pSiS->SiS_Pr->SiS_CustomT = pSiS->sisfbspecialtiming; } else { pSiS->SiS_Pr->UsePanelScaler = -1; /* Leave CustomT as it is */ } SiS_SetEnableDstn(pSiS->SiS_Pr, FALSE); SiS_SetEnableFstn(pSiS->SiS_Pr, FALSE); if((pSiS->ChipType == SIS_550) && (pSiS->sisfbfound)) { if(pSiS->sisfbxSTN) { SiS_SetEnableDstn(pSiS->SiS_Pr, pSiS->sisfbDSTN); SiS_SetEnableFstn(pSiS->SiS_Pr, pSiS->sisfbFSTN); } else if(mymode == 0x5a || mymode == 0x5b) { SiS_SetEnableFstn(pSiS->SiS_Pr, TRUE); } } SiSSetMode(pSiS->SiS_Pr, pScrn, mymode, FALSE); if(changedmode) { outSISIDXREG(SISCR,0x34,0x03); } SISSpecialRestore(pScrn); SiS_GetSetModeID(pScrn, pSiS->OldMode); /* NOT mymode! */ pSiS->SiS_Pr->UsePanelScaler = backupscaler; pSiS->SiS_Pr->CenterScreen = backupcenter; pSiS->SiS_Pr->SiS_CustomT = backupspecialtiming; SiS_SiSFB_Lock(pScrn, FALSE); SiSRestore_SiSFB_TVParms(pScrn); SiS_SiSFB_Lock(pScrn, TRUE); } /* Restore CRT1 status */ if(pSiS->VGAEngine == SIS_315_VGA) { outSISIDXREG(SISCR, pSiS->myCR63, pSiS->oldCR63); } outSISIDXREG(SISSR, 0x1f, pSiS->oldSR1F); #ifdef SISVRAMQ /* Restore queue mode registers on 315/330/340 series */ /* (This became necessary due to the switch to VRAM queue) */ SiSRestoreQueueMode(pSiS, sisReg); #endif } else { if(pSiS->VBFlags2 & VB2_VIDEOBRIDGE) { /* If a video bridge is present, we need to restore * non-extended (=standard VGA) SR and CR registers * before restoring the extended ones and the bridge * registers. */ if(!(SiSBridgeIsInSlaveMode(pScrn))) { SiSVGAProtect(pScrn, TRUE); SiSVGARestore(pScrn, sisReg, SISVGA_SR_MODE); } } (*pSiS->SiSRestore)(pScrn, sisReg); } if(doitlater) { outSISIDXREG(SISCR, 0x17, pSiS->oldCR17); } if((pSiS->VBFlags2 & VB2_VIDEOBRIDGE) && (SiSBridgeIsInSlaveMode(pScrn))) { /* IMPORTANT: The 30xLV does not handle well being disabled if in * LCDA mode! In LCDA mode, the bridge is NOT in slave mode, * so this is the only safe way: Disable the bridge ONLY if * in Slave Mode, and don't bother if not. */ if(flags & SISVGA_SR_FONTS) { SiSRegInit(pSiS->SiS_Pr, pSiS->RelIO+0x30); SiSSetLVDSetc(pSiS->SiS_Pr, 0); SiS_GetVBType(pSiS->SiS_Pr); SiS_DisableBridge(pSiS->SiS_Pr); SiSVGAProtect(pScrn, TRUE); } SiSVGARestore(pScrn, sisReg, flags); if(flags & SISVGA_SR_FONTS) { SiSVGAProtect(pScrn, FALSE); SiS_EnableBridge(pSiS->SiS_Pr); andSISIDXREG(SISSR, 0x01, ~0x20); /* Display on */ } } else { SiSVGAProtect(pScrn, TRUE); SiSVGARestore(pScrn, sisReg, flags); SiSVGAProtect(pScrn, FALSE); } SiSFixupSR11(pScrn); #ifdef TWDEBUG { SISRegPtr pReg = &pSiS->ModeReg; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "REAL REGISTER CONTENTS AFTER RESTORE BY SETMODE:\n"); (*pSiS->SiSSave)(pScrn, pReg); } #endif sisRestoreExtRegisterLock(pSiS,sisReg->sisRegs3C4[0x05],sisReg->sisRegs3D4[0x80]); } else { /* All other chipsets */ SiSVGAProtect(pScrn, TRUE); #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif (*pSiS->SiSRestore)(pScrn, sisReg); SiSVGAProtect(pScrn, TRUE); SiSVGARestore(pScrn, sisReg, flags); /* Restore TV. This is rather complicated, but if we don't do it, * TV output will flicker terribly */ if((pSiS->Chipset == PCI_CHIP_SIS6326) && (pSiS->SiS6326Flags & SIS6326_HASTV)) { if(sisReg->sis6326tv[0] & 0x04) { UChar tmp; int val; orSISIDXREG(SISSR, 0x01, 0x20); tmp = SiS6326GetTVReg(pScrn,0x00); tmp &= ~0x04; while(!(inSISREG(SISINPSTAT) & 0x08)); /* Wait while NOT vb */ SiS6326SetTVReg(pScrn,0x00,tmp); for(val=0; val < 2; val++) { while(!(inSISREG(SISINPSTAT) & 0x08)); /* Wait while NOT vb */ while(inSISREG(SISINPSTAT) & 0x08); /* wait while vb */ } SiS6326SetTVReg(pScrn, 0x00, sisReg->sis6326tv[0]); tmp = inSISREG(SISINPSTAT); outSISREG(SISAR, 0x20); tmp = inSISREG(SISINPSTAT); while(inSISREG(SISINPSTAT) & 0x01); while(!(inSISREG(SISINPSTAT) & 0x01)); andSISIDXREG(SISSR, 0x01, ~0x20); for(val=0; val < 10; val++) { while(!(inSISREG(SISINPSTAT) & 0x08)); /* Wait while NOT vb */ while(inSISREG(SISINPSTAT) & 0x08); /* wait while vb */ } andSISIDXREG(SISSR, 0x01, ~0x20); } } sisRestoreExtRegisterLock(pSiS,sisReg->sisRegs3C4[5],sisReg->sisRegs3D4[0x80]); SiSVGAProtect(pScrn, FALSE); } } static void SISVESARestore(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISVRAMQ SISRegPtr sisReg = &pSiS->SavedReg; #endif if(pSiS->UseVESA) { SISVESASaveRestore(pScrn, MODE_RESTORE); #ifdef SISVRAMQ /* Restore queue mode registers on 315/330/340 series */ /* (This became necessary due to the switch to VRAM queue) */ SiSRestoreQueueMode(pSiS, sisReg); #endif } } /* Restore bridge config registers - to be called BEFORE VESARestore */ static void SISBridgeRestore(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD /* We only restore for master head */ if(pSiS->DualHeadMode && pSiS->SecondHead) return; #endif if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { SiSRestoreBridge(pScrn, &pSiS->SavedReg); } } /* Our BlockHandler */ static void SISBlockHandler(int i, pointer blockData, pointer pTimeout, pointer pReadmask) { ScreenPtr pScreen = screenInfo.screens[i]; ScrnInfoPtr pScrn = xf86Screens[i]; SISPtr pSiS = SISPTR(pScrn); pScreen->BlockHandler = pSiS->BlockHandler; (*pScreen->BlockHandler) (i, blockData, pTimeout, pReadmask); pScreen->BlockHandler = SISBlockHandler; #ifdef SISDUALHEAD if(pSiS->NeedCopyFastVidCpy) { SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt->HaveFastVidCpy) { pSiS->NeedCopyFastVidCpy = FALSE; pSiS->SiSFastVidCopy = pSiSEnt->SiSFastVidCopy; pSiS->SiSFastMemCopy = pSiSEnt->SiSFastMemCopy; pSiS->SiSFastVidCopyFrom = pSiSEnt->SiSFastVidCopyFrom; pSiS->SiSFastMemCopyFrom = pSiSEnt->SiSFastMemCopyFrom; } } #endif if(pSiS->VideoTimerCallback) { (*pSiS->VideoTimerCallback)(pScrn, currentTime.milliseconds); } #ifdef SIS_USE_XAA if(pSiS->RenderCallback) { (*pSiS->RenderCallback)(pScrn); } #endif #ifdef SIS_USE_EXA if(pSiS->ExaRenderCallback) { (*pSiS->ExaRenderCallback)(pScrn); } #endif } /* Do screen blanking; DPMS handling * * Mandatory; latter optional */ static void SiSHandleBackLight(SISPtr pSiS, Bool blon) { UChar sr11mask = (pSiS->SiS_Pr->SiS_SensibleSR11) ? 0x03 : 0xf3; if(pSiS->VBFlags2 & VB2_SISLVDSBRIDGE) { if(!blon) { SiS_SiS30xBLOff(pSiS->SiS_Pr); } else { SiS_SiS30xBLOn(pSiS->SiS_Pr); } } else if( ((pSiS->VGAEngine == SIS_300_VGA) && (pSiS->VBFlags2 & (VB2_LVDS | VB2_30xBDH))) || ((pSiS->VGAEngine == SIS_315_VGA) && ((pSiS->VBFlags2 & (VB2_LVDS | VB2_CHRONTEL)) == VB2_LVDS)) ) { if(!blon) { setSISIDXREG(SISSR, 0x11, sr11mask, 0x08); } else { setSISIDXREG(SISSR, 0x11, sr11mask, 0x00); } } else if((pSiS->VGAEngine == SIS_315_VGA) && (pSiS->VBFlags2 & VB2_CHRONTEL)) { if(!blon) { SiS_Chrontel701xBLOff(pSiS->SiS_Pr); } else { SiS_Chrontel701xBLOn(pSiS->SiS_Pr); } } } static Bool SISSaveScreen(ScreenPtr pScreen, int mode) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; SISPtr pSiS; Bool IsUnblank = xf86IsUnblank(mode) ? TRUE : FALSE; if((pScrn == NULL) || (!pScrn->vtSema)) return TRUE; pSiS = SISPTR(pScrn); #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif if(pSiS->VBFlags & (CRT2_LCD | CRT1_LCDA)) { SiSHandleBackLight(pSiS, IsUnblank); } if(!SiSBridgeIsInSlaveMode(pScrn)) { return SiSVGASaveScreen(pScreen, mode); } return TRUE; } #ifdef SISDUALHEAD /* SaveScreen for dual head mode */ static Bool SISSaveScreenDH(ScreenPtr pScreen, int mode) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; SISPtr pSiS; Bool IsUnblank = xf86IsUnblank(mode) ? TRUE : FALSE; if((pScrn == NULL) || (!pScrn->vtSema)) return TRUE; pSiS = SISPTR(pScrn); if( (pSiS->SecondHead) && ((!(pSiS->VBFlags & CRT1_LCDA)) || (pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE)) ) { /* Slave head is always CRT1 */ /* (No backlight handling on TMDS bridges) */ return SiSVGASaveScreen(pScreen, mode); } else { /* Master head is always CRT2 */ /* But we land here for LCDA, too (if bridge is SiS LVDS type) */ /* We can only blank LCD, not other CRT2 devices */ if(pSiS->VBFlags & (CRT2_LCD|CRT1_LCDA)) { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif SiSHandleBackLight(pSiS, IsUnblank); } } return TRUE; } #endif static void SISDisplayPowerManagementSet(ScrnInfoPtr pScrn, int PowerManagementMode, int flags) { SISPtr pSiS = SISPTR(pScrn); Bool docrt1 = TRUE, docrt2 = TRUE, backlight = TRUE; UChar sr1=0, cr17=0, cr63=0, pmreg=0, sr7=0; UChar p1_13=0, p2_0=0, oldpmreg=0; if(!pScrn->vtSema) return; xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, 4, "SISDisplayPowerManagementSet(%d)\n", PowerManagementMode); #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) docrt2 = FALSE; else docrt1 = FALSE; } #endif /* Work around a bug in xf86Event.c: * pScrn->DPMSSet is being called without a previous * call to xf86EnableAccess(). So we have no hardware * access here. */ outSISIDXREG(SISSR,0x05,0x86); inSISIDXREG(SISSR,0x05,pmreg); if(pmreg != 0xa1) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(PowerManagementMode) { case DPMSModeOn: /* HSync: On, VSync: On */ sr1 = 0x00; cr17 = 0x80; pmreg = 0x00; cr63 = 0x00; sr7 = 0x10; p2_0 = 0x20; p1_13 = 0x00; backlight = TRUE; break; case DPMSModeSuspend: /* HSync: On, VSync: Off */ sr1 = 0x20; cr17 = 0x80; pmreg = 0x80; cr63 = 0x40; sr7 = 0x00; p2_0 = 0x40; p1_13 = 0x80; backlight = FALSE; break; case DPMSModeStandby: /* HSync: Off, VSync: On */ sr1 = 0x20; cr17 = 0x80; pmreg = 0x40; cr63 = 0x40; sr7 = 0x00; p2_0 = 0x80; p1_13 = 0x40; backlight = FALSE; break; case DPMSModeOff: /* HSync: Off, VSync: Off */ sr1 = 0x20; cr17 = 0x00; pmreg = 0xc0; cr63 = 0x40; sr7 = 0x00; p2_0 = 0xc0; p1_13 = 0xc0; backlight = FALSE; break; default: return; } oldpmreg = pmreg; if((docrt2 && (pSiS->VBFlags & CRT2_LCD)) || (docrt1 && (pSiS->VBFlags & CRT1_LCDA))) { SiSHandleBackLight(pSiS, backlight); } if(docrt1) { switch(pSiS->VGAEngine) { case SIS_OLD_VGA: case SIS_530_VGA: setSISIDXREG(SISSR, 0x01, ~0x20, sr1); /* Set/Clear "Display On" bit */ inSISIDXREG(SISSR, 0x11, oldpmreg); setSISIDXREG(SISCR, 0x17, 0x7f, cr17); setSISIDXREG(SISSR, 0x11, 0x3f, pmreg); break; case SIS_315_VGA: if( (!pSiS->CRT1off) && ((!(pSiS->VBFlags & CRT1_LCDA)) || (pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE)) ) { setSISIDXREG(SISCR, pSiS->myCR63, 0xbf, cr63); setSISIDXREG(SISSR, 0x07, 0xef, sr7); } /* fall through */ default: if(!SiSBridgeIsInSlaveMode(pScrn)) { setSISIDXREG(SISSR, 0x01, ~0x20, sr1); /* Set/Clear "Display On" bit */ } if((!(pSiS->VBFlags & CRT1_LCDA)) || (pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE)) { inSISIDXREG(SISSR, 0x1f, oldpmreg); if((!pSiS->CRT1off) && (!SiSBridgeIsInSlaveMode(pScrn))) { setSISIDXREG(SISSR, 0x1f, 0x3f, pmreg); } } } oldpmreg &= 0xc0; } if(docrt2) { if(pSiS->VBFlags & CRT2_LCD) { if((pSiS->VBFlags2 & VB2_SISBRIDGE) && (!(pSiS->VBFlags2 & VB2_30xBDH))) { if(pSiS->VGAEngine == SIS_300_VGA) { SiS_UnLockCRT2(pSiS->SiS_Pr); setSISIDXREG(SISPART1, 0x13, 0x3f, p1_13); } if(pSiS->VBFlags2 & VB2_SISLVDSBRIDGE) p2_0 |= 0x20; setSISIDXREG(SISPART2, 0x00, 0x1f, p2_0); } } else if(pSiS->VBFlags & (CRT2_VGA | CRT2_TV)) { if(pSiS->VBFlags2 & VB2_SISBRIDGE) { setSISIDXREG(SISPART2, 0x00, 0x1f, p2_0); } } } if( (docrt1) && (pmreg != oldpmreg) && ((!(pSiS->VBFlags & CRT1_LCDA)) || (pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE)) ) { outSISIDXREG(SISSR, 0x00, 0x01); /* Synchronous Reset */ usleep(10000); outSISIDXREG(SISSR, 0x00, 0x03); /* End Reset */ } } /* Mandatory * This gets called at the start of each server generation * * We use pScrn and not CurrentLayout here, because the * properties we use have not changed (displayWidth, * depth, bitsPerPixel) */ static Bool SISScreenInit(int scrnIndex, ScreenPtr pScreen, int argc, char **argv) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; SISPtr pSiS = SISPTR(pScrn); VisualPtr visual; ULong OnScreenSize; int ret, height, width, displayWidth; UChar *FBStart; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = NULL; #endif #ifdef SISDUALHEAD if((!pSiS->DualHeadMode) || (!pSiS->SecondHead)) { #endif SiS_LoadInitVBE(pScrn); #ifdef SISDUALHEAD } #endif #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiSEnt = pSiS->entityPrivate; pSiSEnt->refCount++; } #endif #ifdef SIS_PC_PLATFORM /* Map 64k VGA window for saving/restoring CGA fonts */ SiS_MapVGAMem(pScrn); #endif /* Map the SiS memory and MMIO areas */ if(!SISMapMem(pScrn)) { SISErrorLog(pScrn, "SiSMapMem() failed\n"); return FALSE; } SiS_SiSFB_Lock(pScrn, TRUE); #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif /* Enable TurboQueue so that SISSave() saves it in enabled * state. If we don't do this, X will hang after a restart! * (Happens for some unknown reason only when using VESA * for mode switching; assumingly a BIOS issue.) * This is done on 300 and 315 series only. */ if(pSiS->UseVESA) { #ifdef SISVRAMQ if(pSiS->VGAEngine != SIS_315_VGA) #endif SiSEnableTurboQueue(pScrn); } /* Save the current state */ SISSave(pScrn); if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { if(!pSiS->OldMode) { /* Try to find out current (=old) mode number * (Do this only if not sisfb has told us its mode yet) */ /* Read 0:449 which the BIOS sets to the current mode number * Unfortunately, this not reliable since the int10 emulation * does not change this. So if we call the VBE later, this * byte won't be touched (which is why we set this manually * then). */ UChar myoldmode = SiS_GetSetModeID(pScrn, 0xFF); UChar cr30, cr31; /* Read CR34 which the BIOS sets to the current mode number for CRT2 * This is - of course - not reliable if the machine has no video * bridge... */ inSISIDXREG(SISCR, 0x34, pSiS->OldMode); inSISIDXREG(SISCR, 0x30, cr30); inSISIDXREG(SISCR, 0x31, cr31); /* What if CR34 is different from the BIOS scratch byte? */ if(pSiS->OldMode != myoldmode) { /* If no bridge output is active, trust the BIOS scratch byte */ if( (!(pSiS->VBFlags2 & VB2_VIDEOBRIDGE)) || (pSiS->OldMode == 0) || (!cr31 && !cr30) || (cr31 & 0x20) ) { pSiS->OldMode = myoldmode; } /* ..else trust CR34 */ } /* Newer 650 BIOSes set CR34 to 0xff if the mode has been * "patched", for instance for 80x50 text mode. (That mode * has no number of its own, it's 0x03 like 80x25). In this * case, we trust the BIOS scratch byte (provided that any * of these two is valid). */ if(pSiS->OldMode > 0x7f) { pSiS->OldMode = myoldmode; } } #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(!pSiS->SecondHead) pSiSEnt->OldMode = pSiS->OldMode; else pSiS->OldMode = pSiSEnt->OldMode; } #endif } /* RandR resets screen mode and size in CloseScreen(), hence * we need to adapt our VBFlags to the initial state if the * current mode has changed since closescreen() (or Screeninit() * for the first instance) */ if(pScrn->currentMode != pSiS->currentModeLast) { pSiS->VBFlags = pSiS->VBFlags_backup = pSiS->VBFlagsInit; } /* Copy our detected monitor gammas, part 2. Note that device redetection * is not supported in DHM, so there is no need to do that anytime later. */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(!pSiS->SecondHead) { /* CRT2 */ pSiS->CRT1VGAMonitorGamma = pSiSEnt->CRT1VGAMonitorGamma; } else { /* CRT1 */ pSiS->CRT2VGAMonitorGamma = pSiSEnt->CRT2VGAMonitorGamma; } if(!pSiS->CRT2LCDMonitorGamma) pSiS->CRT2LCDMonitorGamma = pSiSEnt->CRT2LCDMonitorGamma; } #endif /* Initialize the first mode */ if(!SISModeInit(pScrn, pScrn->currentMode)) { SISErrorLog(pScrn, "SiSModeInit() failed\n"); return FALSE; } /* Darken the screen for aesthetic reasons */ /* Not using Dual Head variant on purpose; we darken * the screen for both displays, and un-darken * it when the second head is finished */ SISSaveScreen(pScreen, SCREEN_SAVER_ON); /* Set the viewport */ SISAdjustFrame(scrnIndex, pScrn->frameX0, pScrn->frameY0, 0); /* Reset visual list. */ miClearVisualTypes(); /* Setup the visuals we support. */ /* * For bpp > 8, the default visuals are not acceptable because we only * support TrueColor and not DirectColor. */ if(!miSetVisualTypes(pScrn->depth, (pScrn->bitsPerPixel > 8) ? TrueColorMask : miGetDefaultVisualMask(pScrn->depth), pScrn->rgbBits, pScrn->defaultVisual)) { SISSaveScreen(pScreen, SCREEN_SAVER_OFF); SISErrorLog(pScrn, "miSetVisualTypes() failed (bpp %d)\n", pScrn->bitsPerPixel); return FALSE; } width = pScrn->virtualX; height = pScrn->virtualY; displayWidth = pScrn->displayWidth; if(pSiS->Rotate) { height = pScrn->virtualX; width = pScrn->virtualY; } if(pSiS->ShadowFB) { pSiS->ShadowPitch = BitmapBytePad(pScrn->bitsPerPixel * width); pSiS->ShadowPtr = xalloc(pSiS->ShadowPitch * height); displayWidth = pSiS->ShadowPitch / (pScrn->bitsPerPixel >> 3); FBStart = pSiS->ShadowPtr; } else { pSiS->ShadowPtr = NULL; FBStart = pSiS->FbBase; } if(!miSetPixmapDepths()) { SISSaveScreen(pScreen, SCREEN_SAVER_OFF); SISErrorLog(pScrn, "miSetPixmapDepths() failed\n"); return FALSE; } /* Point cmdQueuePtr to pSiSEnt for shared usage * (same technique is then eventually used in DRIScreeninit) * For 315/330 series, this is done in EnableTurboQueue * which has already been called during ModeInit(). */ #ifdef SISDUALHEAD if(pSiS->SecondHead) pSiS->cmdQueueLenPtr = &(SISPTR(pSiSEnt->pScrn_1)->cmdQueueLen); else #endif pSiS->cmdQueueLenPtr = &(pSiS->cmdQueueLen); pSiS->cmdQueueLen = 0; /* Force an EngineIdle() at start */ #ifdef XF86DRI if(pSiS->loadDRI) { #ifdef SISDUALHEAD /* No DRI in dual head mode */ if(pSiS->DualHeadMode) { pSiS->directRenderingEnabled = FALSE; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "DRI not supported in Dual Head mode\n"); } else #endif if(pSiS->VGAEngine != SIS_315_VGA) { /* Force the initialization of the context */ pSiS->directRenderingEnabled = SISDRIScreenInit(pScreen); } else { xf86DrvMsg(pScrn->scrnIndex, X_NOT_IMPLEMENTED, "DRI not supported on this chipset\n"); pSiS->directRenderingEnabled = FALSE; } } #endif /* Call the framebuffer layer's ScreenInit function and fill in other * pScreen fields. */ switch(pScrn->bitsPerPixel) { case 24: if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { ret = FALSE; break; } /* fall through */ case 8: case 16: case 32: ret = fbScreenInit(pScreen, FBStart, width, height, pScrn->xDpi, pScrn->yDpi, displayWidth, pScrn->bitsPerPixel); break; default: ret = FALSE; break; } if(!ret) { SISErrorLog(pScrn, "Unsupported bpp (%d) or fbScreenInit() failed\n", pScrn->bitsPerPixel); SISSaveScreen(pScreen, SCREEN_SAVER_OFF); return FALSE; } /* Fixup RGB ordering */ if(pScrn->bitsPerPixel > 8) { visual = pScreen->visuals + pScreen->numVisuals; while (--visual >= pScreen->visuals) { if((visual->class | DynamicClass) == DirectColor) { visual->offsetRed = pScrn->offset.red; visual->offsetGreen = pScrn->offset.green; visual->offsetBlue = pScrn->offset.blue; visual->redMask = pScrn->mask.red; visual->greenMask = pScrn->mask.green; visual->blueMask = pScrn->mask.blue; } } } /* Initialize RENDER extension (must be after RGB ordering fixed) */ fbPictureInit(pScreen, 0, 0); /* Hardware cursor needs to wrap this layer */ if(!pSiS->ShadowFB) SISDGAInit(pScreen); xf86SetBlackWhitePixels(pScreen); /* Initialize the accelerators */ switch(pSiS->VGAEngine) { case SIS_530_VGA: case SIS_300_VGA: SiS300AccelInit(pScreen); break; case SIS_315_VGA: SiS315AccelInit(pScreen); break; default: SiSAccelInit(pScreen); } #ifdef TWDEBUG xf86DrvMsg(pScrn->scrnIndex, X_INFO, "CPUFlags %x\n", pSiS->CPUFlags); #endif /* Benchmark memcpy() methods (needs FB manager initialized) */ /* Dual head: Do this AFTER the mode for CRT1 has been set */ pSiS->NeedCopyFastVidCpy = FALSE; if(!pSiS->SiSFastVidCopyDone) { #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) { pSiSEnt->SiSFastVidCopy = SiSVidCopyInit(pScreen, &pSiSEnt->SiSFastMemCopy, FALSE); pSiSEnt->SiSFastVidCopyFrom = SiSVidCopyGetDefault(); pSiSEnt->SiSFastMemCopyFrom = SiSVidCopyGetDefault(); #ifdef SIS_USE_EXA if(pSiS->useEXA) { pSiSEnt->SiSFastVidCopyFrom = SiSVidCopyInit(pScreen, &pSiSEnt->SiSFastMemCopyFrom, TRUE); } #endif /* EXA */ pSiSEnt->HaveFastVidCpy = TRUE; pSiS->SiSFastVidCopy = pSiSEnt->SiSFastVidCopy; pSiS->SiSFastMemCopy = pSiSEnt->SiSFastMemCopy; pSiS->SiSFastVidCopyFrom = pSiSEnt->SiSFastVidCopyFrom; pSiS->SiSFastMemCopyFrom = pSiSEnt->SiSFastMemCopyFrom; } else { pSiS->NeedCopyFastVidCpy = TRUE; } } else { #endif pSiS->SiSFastVidCopy = SiSVidCopyInit(pScreen, &pSiS->SiSFastMemCopy, FALSE); pSiS->SiSFastVidCopyFrom = SiSVidCopyGetDefault(); pSiS->SiSFastMemCopyFrom = SiSVidCopyGetDefault(); #ifdef SIS_USE_EXA if(pSiS->useEXA) { pSiS->SiSFastVidCopyFrom = SiSVidCopyInit(pScreen, &pSiS->SiSFastMemCopyFrom, TRUE); } #endif /* EXA */ #ifdef SISDUALHEAD } #endif } pSiS->SiSFastVidCopyDone = TRUE; miInitializeBackingStore(pScreen); xf86SetBackingStore(pScreen); xf86SetSilkenMouse(pScreen); /* Initialise cursor functions */ miDCInitialize(pScreen, xf86GetPointerScreenFuncs()); if(pSiS->HWCursor) { SiSHWCursorInit(pScreen); } #ifdef SISDUALHEAD if(!pSiS->DualHeadMode) { #endif if((pSiS->VBFlags2 & VB2_SISBRIDGE) && (pScrn->depth > 8)) { pSiS->CRT2ColNum = 1 << pScrn->rgbBits; if((pSiS->crt2gcolortable = xalloc(pSiS->CRT2ColNum * 2 * sizeof(LOCO)))) { pSiS->crt2colors = &pSiS->crt2gcolortable[pSiS->CRT2ColNum]; if((pSiS->crt2cindices = xalloc(256 * sizeof(int)))) { int i = pSiS->CRT2ColNum; SISCalculateGammaRampCRT2(pScrn); while(i--) pSiS->crt2cindices[i] = i; } else { xfree(pSiS->crt2gcolortable); pSiS->crt2gcolortable = NULL; pSiS->CRT2SepGamma = FALSE; } } else { pSiS->CRT2SepGamma = FALSE; } if(!pSiS->crt2cindices) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Failed to allocate cmap for CRT2, separate gamma correction disabled\n"); } } #ifdef SISDUALHEAD } else pSiS->CRT2SepGamma = FALSE; #endif /* Initialise default colormap */ if(!miCreateDefColormap(pScreen)) { SISSaveScreen(pScreen, SCREEN_SAVER_OFF); SISErrorLog(pScrn, "miCreateDefColormap() failed\n"); return FALSE; } if(!xf86HandleColormaps(pScreen, 256, (pScrn->depth == 8) ? 8 : pScrn->rgbBits, SISLoadPalette, NULL, CMAP_PALETTED_TRUECOLOR | CMAP_RELOAD_ON_MODE_SWITCH)) { SISSaveScreen(pScreen, SCREEN_SAVER_OFF); SISErrorLog(pScrn, "xf86HandleColormaps() failed\n"); return FALSE; } /* Recalculate our gamma ramp for brightness feature */ #ifdef SISGAMMARAMP if((pSiS->GammaBriR != 1000) || (pSiS->GammaBriB != 1000) || (pSiS->GammaBriG != 1000) || (pSiS->NewGammaBriR != 0.0) || (pSiS->NewGammaBriG != 0.0) || (pSiS->NewGammaBriB != 0.0) || (pSiS->NewGammaConR != 0.0) || (pSiS->NewGammaConG != 0.0) || (pSiS->NewGammaConB != 0.0)) { SISCalculateGammaRamp(pScreen, pScrn); } #endif /* Initialize Shadow framebuffer and screen rotation/reflection */ if(pSiS->ShadowFB) { RefreshAreaFuncPtr refreshArea = SISRefreshArea; if(pSiS->Rotate) { if(!pSiS->PointerMoved) pSiS->PointerMoved = pScrn->PointerMoved; pScrn->PointerMoved = SISPointerMoved; switch(pScrn->bitsPerPixel) { case 8: refreshArea = SISRefreshArea8; break; case 16: refreshArea = SISRefreshArea16; break; case 24: refreshArea = SISRefreshArea24; break; case 32: refreshArea = SISRefreshArea32; break; } #if XF86_VERSION_CURRENT >= XF86_VERSION_NUMERIC(4,3,0,0,0) xf86DisableRandR(); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Driver rotation enabled, disabling RandR\n"); #endif } else if(pSiS->Reflect) { switch(pScrn->bitsPerPixel) { case 8: case 16: case 32: if(!pSiS->PointerMoved) pSiS->PointerMoved = pScrn->PointerMoved; pScrn->PointerMoved = SISPointerMovedReflect; refreshArea = SISRefreshAreaReflect; #if XF86_VERSION_CURRENT >= XF86_VERSION_NUMERIC(4,3,0,0,0) xf86DisableRandR(); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Driver reflection enabled, disabling RandR\n"); #endif break; default: xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Reflection not supported at this framebuffer depth\n"); } } ShadowFBInit(pScreen, refreshArea); } xf86DPMSInit(pScreen, (DPMSSetProcPtr)SISDisplayPowerManagementSet, 0); /* Init memPhysBase and fbOffset in pScrn */ pScrn->memPhysBase = pSiS->FbAddress; pScrn->fbOffset = 0; /* Initialize Xv */ pSiS->ResetXv = pSiS->ResetXvGamma = pSiS->ResetXvDisplay = NULL; #if (XF86_VERSION_CURRENT >= XF86_VERSION_NUMERIC(4,3,99,0,0)) || (defined(XvExtension)) if((!pSiS->NoXvideo) && (!(pSiS->SiS_SD2_Flags & SiS_SD2_NOOVERLAY))) { if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { const char *using = "Using SiS300/315/330/340 series HW Xv"; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "%s on CRT%d\n", using, (pSiS->SecondHead ? 1 : 2)); if(!pSiS->hasTwoOverlays) { if( (pSiS->XvOnCRT2 && pSiS->SecondHead) || (!pSiS->XvOnCRT2 && !pSiS->SecondHead) ) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "However, video overlay will by default only be visible on CRT%d\n", pSiS->XvOnCRT2 ? 2 : 1); } } } else { #endif if(pSiS->hasTwoOverlays) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "%s\n", using); } else { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "%s by default on CRT%d\n", using, (pSiS->XvOnCRT2 ? 2 : 1)); } #ifdef SISDUALHEAD } #endif SISInitVideo(pScreen); if(pSiS->blitadaptor) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Default Xv adaptor is Video %s\n", pSiS->XvDefAdaptorBlit ? "Blitter" : "Overlay"); } } else if(pSiS->Chipset == PCI_CHIP_SIS530 || pSiS->Chipset == PCI_CHIP_SIS6326 || pSiS->Chipset == PCI_CHIP_SIS5597) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Using SiS5597/5598/6326/530/620 HW Xv\n" ); SIS6326InitVideo(pScreen); } else { /* generic Xv */ XF86VideoAdaptorPtr *ptr; int n = xf86XVListGenericAdaptors(pScrn, &ptr); if(n) { xf86XVScreenInit(pScreen, ptr, n); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Using generic Xv\n" ); } } } #endif #ifdef XF86DRI if(pSiS->loadDRI) { if(pSiS->directRenderingEnabled) { /* Now that mi, drm and others have done their thing, * complete the DRI setup. */ pSiS->directRenderingEnabled = SISDRIFinishScreenInit(pScreen); } xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Direct rendering %s\n", pSiS->directRenderingEnabled ? "enabled" : "disabled"); /* TODO */ /* if(pSiS->directRenderingEnabled) SISSetLFBConfig(pSiS); */ } #endif /* Wrap some funcs, initialize pseudo-Xinerama and setup remaining SD flags */ pSiS->SiS_SD_Flags &= ~(SiS_SD_PSEUDOXINERAMA); #ifdef SISMERGED if(pSiS->MergedFB) { pSiS->PointerMoved = pScrn->PointerMoved; pScrn->PointerMoved = SISMergedPointerMoved; pSiS->Rotate = 0; pSiS->Reflect = 0; pSiS->ShadowFB = FALSE; #if XF86_VERSION_CURRENT >= XF86_VERSION_NUMERIC(4,3,0,0,0) if(pSiS->CRT1XOffs || pSiS->CRT1YOffs || pSiS->CRT2XOffs || pSiS->CRT2YOffs) { xf86DisableRandR(); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "MergedFB: CRT2Position offset used, disabling RandR\n"); } #endif #ifdef SISXINERAMA if(pSiS->UseSiSXinerama) { SiSnoPanoramiXExtension = FALSE; SiSXineramaExtensionInit(pScrn); if(!SiSnoPanoramiXExtension) { pSiS->SiS_SD_Flags |= SiS_SD_PSEUDOXINERAMA; if(pSiS->HaveNonRect) { /* Reset the viewport (now eventually non-recangular) */ SISAdjustFrame(scrnIndex, pScrn->frameX0, pScrn->frameY0, 0); } } } else { pSiS->MouseRestrictions = FALSE; } #endif } #endif /* Wrap CloseScreen and set up SaveScreen */ pSiS->CloseScreen = pScreen->CloseScreen; pScreen->CloseScreen = SISCloseScreen; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) pScreen->SaveScreen = SISSaveScreenDH; else #endif pScreen->SaveScreen = SISSaveScreen; /* Install BlockHandler */ pSiS->BlockHandler = pScreen->BlockHandler; pScreen->BlockHandler = SISBlockHandler; /* Report any unused options (only for the first generation) */ if(serverGeneration == 1) { xf86ShowUnusedOptions(pScrn->scrnIndex, pScrn->options); } /* Clear frame buffer */ /* For CRT2, we don't do that at this point in dual head * mode since the mode isn't switched at this time (it will * be reset when setting the CRT1 mode). Hence, we just * save the necessary data and clear the screen when * going through this for CRT1. */ OnScreenSize = pScrn->displayWidth * pScrn->currentMode->VDisplay * (pScrn->bitsPerPixel >> 3); /* Turn on the screen now */ /* We do this in dual head mode after second head is finished */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) { sisclearvram(pSiS->FbBase, OnScreenSize); sisclearvram(pSiSEnt->FbBase1, pSiSEnt->OnScreenSize1); SISSaveScreen(pScreen, SCREEN_SAVER_OFF); } else { pSiSEnt->FbBase1 = pSiS->FbBase; pSiSEnt->OnScreenSize1 = OnScreenSize; } } else { #endif SISSaveScreen(pScreen, SCREEN_SAVER_OFF); sisclearvram(pSiS->FbBase, OnScreenSize); #ifdef SISDUALHEAD } #endif pSiS->SiS_SD_Flags &= ~SiS_SD_SUPPORTSGRCRT2; #ifdef SISDUALHEAD if(!pSiS->DualHeadMode) { #endif if(pSiS->VBFlags2 & VB2_SISBRIDGE) { if((pSiS->crt2cindices) && (pSiS->crt2gcolortable)) { pSiS->SiS_SD_Flags |= SiS_SD_SUPPORTSGRCRT2; } } #ifdef SISDUALHEAD } #endif pSiS->SiS_SD_Flags &= ~SiS_SD_ISDEPTH8; if(pSiS->CurrentLayout.bitsPerPixel == 8) { pSiS->SiS_SD_Flags |= SiS_SD_ISDEPTH8; pSiS->SiS_SD_Flags &= ~SiS_SD_SUPPORTXVGAMMA1; pSiS->SiS_SD_Flags &= ~SiS_SD_SUPPORTSGRCRT2; } #ifdef SISGAMMARAMP pSiS->SiS_SD_Flags |= SiS_SD_CANSETGAMMA; #else pSiS->SiS_SD_Flags &= ~SiS_SD_CANSETGAMMA; #endif SiSCtrlExtInit(pScrn); return TRUE; } /* Usually mandatory */ Bool SISSwitchMode(int scrnIndex, DisplayModePtr mode, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn); if(!pSiS->skipswitchcheck) { if(SISValidMode(scrnIndex, mode, TRUE, flags) != MODE_OK) { return FALSE; } } (*pSiS->SyncAccel)(pScrn); if(!(SISModeInit(xf86Screens[scrnIndex], mode))) return FALSE; /* Since RandR (indirectly) uses SwitchMode(), we need to * update our Xinerama info here, too, in case of resizing */ #ifdef SISMERGED #ifdef SISXINERAMA if(pSiS->MergedFB) { SiSUpdateXineramaScreenInfo(pScrn); } #endif #endif return TRUE; } static void SISSetStartAddressCRT1(SISPtr pSiS, ULong base) { UChar cr11backup; inSISIDXREG(SISCR, 0x11, cr11backup); /* Unlock CRTC registers */ andSISIDXREG(SISCR, 0x11, 0x7F); outSISIDXREG(SISCR, 0x0D, base & 0xFF); outSISIDXREG(SISCR, 0x0C, (base >> 8) & 0xFF); outSISIDXREG(SISSR, 0x0D, (base >> 16) & 0xFF); if(pSiS->VGAEngine == SIS_315_VGA) { setSISIDXREG(SISSR, 0x37, 0xFE, (base >> 24) & 0x01); } /* Eventually lock CRTC registers */ setSISIDXREG(SISCR, 0x11, 0x7F,(cr11backup & 0x80)); } static void SISSetStartAddressCRT2(SISPtr pSiS, ULong base) { SiS_UnLockCRT2(pSiS->SiS_Pr); outSISIDXREG(SISPART1, 0x06, GETVAR8(base)); outSISIDXREG(SISPART1, 0x05, GETBITS(base, 15:8)); outSISIDXREG(SISPART1, 0x04, GETBITS(base, 23:16)); if(pSiS->VGAEngine == SIS_315_VGA) { setSISIDXREG(SISPART1, 0x02, 0x7F, ((base >> 24) & 0x01) << 7); } SiS_LockCRT2(pSiS->SiS_Pr); } #ifdef SISMERGED static Bool InRegion(int x, int y, region r) { return (r.x0 <= x) && (x <= r.x1) && (r.y0 <= y) && (y <= r.y1); } static void SISAdjustFrameHW_CRT1(ScrnInfoPtr pScrn, int x, int y) { SISPtr pSiS = SISPTR(pScrn); ULong base; base = y * pSiS->CurrentLayout.displayWidth + x; switch(pSiS->CurrentLayout.bitsPerPixel) { case 16: base >>= 1; break; case 32: break; default: base >>= 2; } base += (pSiS->dhmOffset/4); SISSetStartAddressCRT1(pSiS, base); } static void SISAdjustFrameHW_CRT2(ScrnInfoPtr pScrn, int x, int y) { SISPtr pSiS = SISPTR(pScrn); ULong base; base = y * pSiS->CurrentLayout.displayWidth + x; switch(pSiS->CurrentLayout.bitsPerPixel) { case 16: base >>= 1; break; case 32: break; default: base >>= 2; } base += (pSiS->dhmOffset/4); SISSetStartAddressCRT2(pSiS, base); } static void SISMergedPointerMoved(int scrnIndex, int x, int y) { ScrnInfoPtr pScrn1 = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn1); ScrnInfoPtr pScrn2 = pSiS->CRT2pScrn; region out, in1, in2, f2, f1; int deltax, deltay; int temp1, temp2; int old1x0, old1y0, old2x0, old2y0; int CRT1XOffs = 0, CRT1YOffs = 0, CRT2XOffs = 0, CRT2YOffs = 0; int HVirt = pScrn1->virtualX; int VVirt = pScrn1->virtualY; int sigstate; Bool doit = FALSE, HaveNonRect = FALSE, HaveOffsRegions = FALSE; SiSScrn2Rel srel = ((SiSMergedDisplayModePtr)pSiS->CurrentLayout.mode->Private)->CRT2Position; if(pSiS->DGAactive) { return; /* DGA: There is no cursor and no panning while DGA is active. */ /* If it were, we would need to do: */ /* HVirt = pSiS->CurrentLayout.displayWidth; VVirt = pSiS->CurrentLayout.displayHeight; BOUND(x, pSiS->CurrentLayout.DGAViewportX, HVirt); BOUND(y, pSiS->CurrentLayout.DGAViewportY, VVirt); */ } else { CRT1XOffs = pSiS->CRT1XOffs; CRT1YOffs = pSiS->CRT1YOffs; CRT2XOffs = pSiS->CRT2XOffs; CRT2YOffs = pSiS->CRT2YOffs; HaveNonRect = pSiS->HaveNonRect; HaveOffsRegions = pSiS->HaveOffsRegions; } /* Check if the pointer is inside our dead areas */ if((pSiS->MouseRestrictions) && (srel != sisClone) && !SiSnoPanoramiXExtension) { if(HaveNonRect) { if(InRegion(x, y, pSiS->NonRectDead)) { switch(srel) { case sisLeftOf: case sisRightOf: y = pSiS->NonRectDead.y0 - 1; doit = TRUE; break; case sisAbove: case sisBelow: x = pSiS->NonRectDead.x0 - 1; doit = TRUE; default: break; } } } if(HaveOffsRegions) { if(InRegion(x, y, pSiS->OffDead1)) { switch(srel) { case sisLeftOf: case sisRightOf: y = pSiS->OffDead1.y1; doit = TRUE; break; case sisAbove: case sisBelow: x = pSiS->OffDead1.x1; doit = TRUE; default: break; } } else if(InRegion(x, y, pSiS->OffDead2)) { switch(srel) { case sisLeftOf: case sisRightOf: y = pSiS->OffDead2.y0 - 1; doit = TRUE; break; case sisAbove: case sisBelow: x = pSiS->OffDead2.x0 - 1; doit = TRUE; default: break; } } } if(doit) { UpdateCurrentTime(); sigstate = xf86BlockSIGIO(); miPointerAbsoluteCursor(x, y, currentTime.milliseconds); xf86UnblockSIGIO(sigstate); return; } } f1.x0 = old1x0 = pSiS->CRT1frameX0; f1.x1 = pSiS->CRT1frameX1; f1.y0 = old1y0 = pSiS->CRT1frameY0; f1.y1 = pSiS->CRT1frameY1; f2.x0 = old2x0 = pScrn2->frameX0; f2.x1 = pScrn2->frameX1; f2.y0 = old2y0 = pScrn2->frameY0; f2.y1 = pScrn2->frameY1; /* Define the outer region. Crossing this causes all frames to move */ out.x0 = pScrn1->frameX0; out.x1 = pScrn1->frameX1; out.y0 = pScrn1->frameY0; out.y1 = pScrn1->frameY1; /* * Define the inner sliding window. Being outsize both frames but * inside the outer clipping window will slide corresponding frame */ in1 = out; in2 = out; switch(srel) { case sisLeftOf: in1.x0 = f1.x0; in2.x1 = f2.x1; break; case sisRightOf: in1.x1 = f1.x1; in2.x0 = f2.x0; break; case sisBelow: in1.y1 = f1.y1; in2.y0 = f2.y0; break; case sisAbove: in1.y0 = f1.y0; in2.y1 = f2.y1; break; case sisClone: break; } deltay = 0; deltax = 0; if(InRegion(x, y, out)) { /* inside outer region */ if(InRegion(x, y, in1) && !InRegion(x, y, f1)) { REBOUND(f1.x0, f1.x1, x); REBOUND(f1.y0, f1.y1, y); deltax = 1; } if(InRegion(x, y, in2) && !InRegion(x, y, f2)) { REBOUND(f2.x0, f2.x1, x); REBOUND(f2.y0, f2.y1, y); deltax = 1; } } else { /* outside outer region */ if(out.x0 > x) { deltax = x - out.x0; } if(out.x1 < x) { deltax = x - out.x1; } if(deltax) { pScrn1->frameX0 += deltax; pScrn1->frameX1 += deltax; f1.x0 += deltax; f1.x1 += deltax; f2.x0 += deltax; f2.x1 += deltax; } if(out.y0 > y) { deltay = y - out.y0; } if(out.y1 < y) { deltay = y - out.y1; } if(deltay) { pScrn1->frameY0 += deltay; pScrn1->frameY1 += deltay; f1.y0 += deltay; f1.y1 += deltay; f2.y0 += deltay; f2.y1 += deltay; } switch(srel) { case sisLeftOf: if(x >= f1.x0) { REBOUND(f1.y0, f1.y1, y); } if(x <= f2.x1) { REBOUND(f2.y0, f2.y1, y); } break; case sisRightOf: if(x <= f1.x1) { REBOUND(f1.y0, f1.y1, y); } if(x >= f2.x0) { REBOUND(f2.y0, f2.y1, y); } break; case sisBelow: if(y <= f1.y1) { REBOUND(f1.x0, f1.x1, x); } if(y >= f2.y0) { REBOUND(f2.x0, f2.x1, x); } break; case sisAbove: if(y >= f1.y0) { REBOUND(f1.x0, f1.x1, x); } if(y <= f2.y1) { REBOUND(f2.x0, f2.x1, x); } break; case sisClone: break; } } if(deltax || deltay) { pSiS->CRT1frameX0 = f1.x0; pSiS->CRT1frameY0 = f1.y0; pScrn2->frameX0 = f2.x0; pScrn2->frameY0 = f2.y0; switch(srel) { case sisLeftOf: case sisRightOf: if(CRT1YOffs || CRT2YOffs || HaveNonRect) { if(pSiS->CRT1frameY0 != old1y0) { if(pSiS->CRT1frameY0 < CRT1YOffs) pSiS->CRT1frameY0 = CRT1YOffs; temp1 = pSiS->CRT1frameY0 + CDMPTR->CRT1->VDisplay; temp2 = min((VVirt - CRT2YOffs), (CRT1YOffs + pSiS->MBXNR1YMAX)); if(temp1 > temp2) pSiS->CRT1frameY0 -= (temp1 - temp2); } if(pScrn2->frameY0 != old2y0) { if(pScrn2->frameY0 < CRT2YOffs) pScrn2->frameY0 = CRT2YOffs; temp1 = pScrn2->frameY0 + CDMPTR->CRT2->VDisplay; temp2 = min((VVirt - CRT1YOffs), (CRT2YOffs + pSiS->MBXNR2YMAX)); if(temp1 > temp2) pScrn2->frameY0 -= (temp1 - temp2); } } break; case sisBelow: case sisAbove: if(CRT1XOffs || CRT2XOffs || HaveNonRect) { if(pSiS->CRT1frameX0 != old1x0) { if(pSiS->CRT1frameX0 < CRT1XOffs) pSiS->CRT1frameX0 = CRT1XOffs; temp1 = pSiS->CRT1frameX0 + CDMPTR->CRT1->HDisplay; temp2 = min((HVirt - CRT2XOffs), (CRT1XOffs + pSiS->MBXNR1XMAX)); if(temp1 > temp2) pSiS->CRT1frameX0 -= (temp1 - temp2); } if(pScrn2->frameX0 != old2x0) { if(pScrn2->frameX0 < CRT2XOffs) pScrn2->frameX0 = CRT2XOffs; temp1 = pScrn2->frameX0 + CDMPTR->CRT2->HDisplay; temp2 = min((HVirt - CRT1XOffs), (CRT2XOffs + pSiS->MBXNR2XMAX)); if(temp1 > temp2) pScrn2->frameX0 -= (temp1 - temp2); } } break; case sisClone: break; } pSiS->CRT1frameX1 = pSiS->CRT1frameX0 + CDMPTR->CRT1->HDisplay - 1; pSiS->CRT1frameY1 = pSiS->CRT1frameY0 + CDMPTR->CRT1->VDisplay - 1; pScrn2->frameX1 = pScrn2->frameX0 + CDMPTR->CRT2->HDisplay - 1; pScrn2->frameY1 = pScrn2->frameY0 + CDMPTR->CRT2->VDisplay - 1; /* No need to update pScrn1->frame?1, done above */ SISAdjustFrameHW_CRT1(pScrn1, pSiS->CRT1frameX0, pSiS->CRT1frameY0); SISAdjustFrameHW_CRT2(pScrn1, pScrn2->frameX0, pScrn2->frameY0); } } static void SISAdjustFrameMerged(int scrnIndex, int x, int y, int flags) { ScrnInfoPtr pScrn1 = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn1); ScrnInfoPtr pScrn2 = pSiS->CRT2pScrn; int HTotal = pSiS->CurrentLayout.mode->HDisplay; int VTotal = pSiS->CurrentLayout.mode->VDisplay; int HMax = HTotal; int VMax = VTotal; int HVirt = pScrn1->virtualX; int VVirt = pScrn1->virtualY; int x1 = x, x2 = x; int y1 = y, y2 = y; int CRT1XOffs = 0, CRT1YOffs = 0, CRT2XOffs = 0, CRT2YOffs = 0; int MBXNR1XMAX = 65536, MBXNR1YMAX = 65536, MBXNR2XMAX = 65536, MBXNR2YMAX = 65536; if(pSiS->DGAactive) { HVirt = pSiS->CurrentLayout.displayWidth; VVirt = pSiS->CurrentLayout.displayHeight; } else { CRT1XOffs = pSiS->CRT1XOffs; CRT1YOffs = pSiS->CRT1YOffs; CRT2XOffs = pSiS->CRT2XOffs; CRT2YOffs = pSiS->CRT2YOffs; MBXNR1XMAX = pSiS->MBXNR1XMAX; MBXNR1YMAX = pSiS->MBXNR1YMAX; MBXNR2XMAX = pSiS->MBXNR2XMAX; MBXNR2YMAX = pSiS->MBXNR2YMAX; } BOUND(x, 0, HVirt - HTotal); BOUND(y, 0, VVirt - VTotal); if(SDMPTR(pScrn1)->CRT2Position != sisClone) { BOUND(x1, CRT1XOffs, min(HVirt, MBXNR1XMAX + CRT1XOffs) - min(HTotal, MBXNR1XMAX) - CRT2XOffs); BOUND(y1, CRT1YOffs, min(VVirt, MBXNR1YMAX + CRT1YOffs) - min(VTotal, MBXNR1YMAX) - CRT2YOffs); BOUND(x2, CRT2XOffs, min(HVirt, MBXNR2XMAX + CRT2XOffs) - min(HTotal, MBXNR2XMAX) - CRT1XOffs); BOUND(y2, CRT2YOffs, min(VVirt, MBXNR2YMAX + CRT2YOffs) - min(VTotal, MBXNR2YMAX) - CRT1YOffs); } switch(SDMPTR(pScrn1)->CRT2Position) { case sisLeftOf: pScrn2->frameX0 = x2; BOUND(pScrn2->frameY0, y2, y2 + min(VMax, MBXNR2YMAX) - CDMPTR->CRT2->VDisplay); pSiS->CRT1frameX0 = x1 + CDMPTR->CRT2->HDisplay; BOUND(pSiS->CRT1frameY0, y1, y1 + min(VMax, MBXNR1YMAX) - CDMPTR->CRT1->VDisplay); break; case sisRightOf: pSiS->CRT1frameX0 = x1; BOUND(pSiS->CRT1frameY0, y1, y1 + min(VMax, MBXNR1YMAX) - CDMPTR->CRT1->VDisplay); pScrn2->frameX0 = x2 + CDMPTR->CRT1->HDisplay; BOUND(pScrn2->frameY0, y2, y2 + min(VMax, MBXNR2YMAX) - CDMPTR->CRT2->VDisplay); break; case sisAbove: BOUND(pScrn2->frameX0, x2, x2 + min(HMax, MBXNR2XMAX) - CDMPTR->CRT2->HDisplay); pScrn2->frameY0 = y2; BOUND(pSiS->CRT1frameX0, x1, x1 + min(HMax, MBXNR1XMAX) - CDMPTR->CRT1->HDisplay); pSiS->CRT1frameY0 = y1 + CDMPTR->CRT2->VDisplay; break; case sisBelow: BOUND(pSiS->CRT1frameX0, x1, x1 + min(HMax, MBXNR1XMAX) - CDMPTR->CRT1->HDisplay); pSiS->CRT1frameY0 = y1; BOUND(pScrn2->frameX0, x2, x2 + min(HMax, MBXNR2XMAX) - CDMPTR->CRT2->HDisplay); pScrn2->frameY0 = y2 + CDMPTR->CRT1->VDisplay; break; case sisClone: BOUND(pSiS->CRT1frameX0, x, x + HMax - CDMPTR->CRT1->HDisplay); BOUND(pSiS->CRT1frameY0, y, y + VMax - CDMPTR->CRT1->VDisplay); BOUND(pScrn2->frameX0, x, x + HMax - CDMPTR->CRT2->HDisplay); BOUND(pScrn2->frameY0, y, y + VMax - CDMPTR->CRT2->VDisplay); break; } BOUND(pSiS->CRT1frameX0, 0, HVirt - CDMPTR->CRT1->HDisplay); BOUND(pSiS->CRT1frameY0, 0, VVirt - CDMPTR->CRT1->VDisplay); BOUND(pScrn2->frameX0, 0, HVirt - CDMPTR->CRT2->HDisplay); BOUND(pScrn2->frameY0, 0, VVirt - CDMPTR->CRT2->VDisplay); pScrn1->frameX0 = x; pScrn1->frameY0 = y; pSiS->CRT1frameX1 = pSiS->CRT1frameX0 + CDMPTR->CRT1->HDisplay - 1; pSiS->CRT1frameY1 = pSiS->CRT1frameY0 + CDMPTR->CRT1->VDisplay - 1; pScrn2->frameX1 = pScrn2->frameX0 + CDMPTR->CRT2->HDisplay - 1; pScrn2->frameY1 = pScrn2->frameY0 + CDMPTR->CRT2->VDisplay - 1; pScrn1->frameX1 = pScrn1->frameX0 + pSiS->CurrentLayout.mode->HDisplay - 1; pScrn1->frameY1 = pScrn1->frameY0 + pSiS->CurrentLayout.mode->VDisplay - 1; if(SDMPTR(pScrn1)->CRT2Position != sisClone) { pScrn1->frameX1 += CRT1XOffs + CRT2XOffs; pScrn1->frameY1 += CRT1YOffs + CRT2YOffs; } SISAdjustFrameHW_CRT1(pScrn1, pSiS->CRT1frameX0, pSiS->CRT1frameY0); SISAdjustFrameHW_CRT2(pScrn1, pScrn2->frameX0, pScrn2->frameY0); } #endif /* * This function is used to initialize the Start Address - the first * displayed location in the video memory. * * Usually mandatory */ void SISAdjustFrame(int scrnIndex, int x, int y, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn); ULong base; UChar temp, cr11backup; #ifdef SISMERGED if(pSiS->MergedFB) { SISAdjustFrameMerged(scrnIndex, x, y, flags); return; } #endif if(pSiS->UseVESA) { VBESetDisplayStart(pSiS->pVbe, x, y, TRUE); return; } if(pScrn->bitsPerPixel < 8) { base = (y * pSiS->CurrentLayout.displayWidth + x + 3) >> 3; } else { base = y * pSiS->CurrentLayout.displayWidth + x; /* calculate base bpp dep. */ switch(pSiS->CurrentLayout.bitsPerPixel) { case 16: base >>= 1; break; case 24: base = ((base * 3)) >> 2; base -= base % 6; break; case 32: break; default: /* 8bpp */ base >>= 2; break; } } #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif base += (pSiS->dhmOffset/4); #ifdef TWDEBUG xf86DrvMsg(0, 0, "AdjustFrame: x %d y %d bpp %d dw %d base %d, dhmOffset %d\n", x, y, pSiS->CurrentLayout.bitsPerPixel, pSiS->CurrentLayout.displayWidth, base, pSiS->dhmOffset); #endif #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(!pSiS->SecondHead) { /* Head 1 (master) is always CRT2 */ SISSetStartAddressCRT2(pSiS, base); } else { /* Head 2 (slave) is always CRT1 */ SISSetStartAddressCRT1(pSiS, base); } } else { #endif switch(pSiS->VGAEngine) { case SIS_300_VGA: case SIS_315_VGA: SISSetStartAddressCRT1(pSiS, base); if(pSiS->VBFlags & CRT2_ENABLE) { if(!SiSBridgeIsInSlaveMode(pScrn)) { SISSetStartAddressCRT2(pSiS, base); } } break; default: /* Unlock CRTC registers */ inSISIDXREG(SISCR, 0x11, cr11backup); andSISIDXREG(SISCR, 0x11, 0x7F); outSISIDXREG(SISCR, 0x0D, base & 0xFF); outSISIDXREG(SISCR, 0x0C, (base >> 8) & 0xFF); inSISIDXREG(SISSR, 0x27, temp); temp &= 0xF0; temp |= (base & 0x0F0000) >> 16; outSISIDXREG(SISSR, 0x27, temp); /* Eventually lock CRTC registers */ setSISIDXREG(SISCR, 0x11, 0x7F, (cr11backup & 0x80)); } #ifdef SISDUALHEAD } #endif } /* * This is called when VT switching back to the X server. Its job is * to reinitialise the video mode. * Mandatory! */ static Bool SISEnterVT(int scrnIndex, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn); SiS_SiSFB_Lock(pScrn, TRUE); sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { outSISIDXREG(SISCR,0x32,pSiS->myCR32); outSISIDXREG(SISCR,0x36,pSiS->myCR36); outSISIDXREG(SISCR,0x37,pSiS->myCR37); } if(!SISModeInit(pScrn, pScrn->currentMode)) { SISErrorLog(pScrn, "SiSEnterVT: SISModeInit() failed\n"); return FALSE; } SISAdjustFrame(scrnIndex, pScrn->frameX0, pScrn->frameY0, 0); #ifdef XF86DRI if(pSiS->directRenderingEnabled) { DRIUnlock(screenInfo.screens[scrnIndex]); } #endif #ifdef SISDUALHEAD if((!pSiS->DualHeadMode) || (!pSiS->SecondHead)) #endif if(pSiS->ResetXv) { (pSiS->ResetXv)(pScrn); } return TRUE; } /* * This is called when VT switching away from the X server. Its job is * to restore the previous (text) mode. * Mandatory! */ static void SISLeaveVT(int scrnIndex, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn); #ifdef XF86DRI ScreenPtr pScreen; if(pSiS->directRenderingEnabled) { pScreen = screenInfo.screens[scrnIndex]; DRILock(pScreen, 0); } #endif #ifdef SISDUALHEAD if(pSiS->DualHeadMode && pSiS->SecondHead) return; #endif if(pSiS->CursorInfoPtr) { #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(!pSiS->SecondHead) { pSiS->ForceCursorOff = TRUE; pSiS->CursorInfoPtr->HideCursor(pScrn); SISWaitVBRetrace(pScrn); pSiS->ForceCursorOff = FALSE; } } else { #endif pSiS->CursorInfoPtr->HideCursor(pScrn); SISWaitVBRetrace(pScrn); #ifdef SISDUALHEAD } #endif } SISBridgeRestore(pScrn); if(pSiS->UseVESA) { /* This is a q&d work-around for a BIOS bug. In case we disabled CRT2, * VBESaveRestore() does not restore CRT1. So we set any mode now, * because VBESetVBEMode correctly restores CRT1. Afterwards, we * can call VBESaveRestore to restore original mode. */ if((pSiS->VBFlags2 & VB2_VIDEOBRIDGE) && (!(pSiS->VBFlags & DISPTYPE_DISP2))) VBESetVBEMode(pSiS->pVbe, (pSiS->SISVESAModeList->n) | 0xc000, NULL); SISVESARestore(pScrn); } else { SISRestore(pScrn); } /* We use (otherwise unused) bit 7 to indicate that we are running * to keep sisfb to change the displaymode (this would result in * lethal display corruption upon quitting X or changing to a VT * until a reboot) */ if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { orSISIDXREG(SISCR,0x34,0x80); } SISVGALock(pSiS); SiS_SiSFB_Lock(pScrn, FALSE); } /* * This is called at the end of each server generation. It restores the * original (text) mode. It should really also unmap the video memory too. * Mandatory! */ static Bool SISCloseScreen(int scrnIndex, ScreenPtr pScreen) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(pSiS->SiSCtrlExtEntry) { SiSCtrlExtUnregister(pSiS, pScrn->scrnIndex); } #ifdef XF86DRI if(pSiS->directRenderingEnabled) { SISDRICloseScreen(pScreen); pSiS->directRenderingEnabled = FALSE; } #endif if(pScrn->vtSema) { if(pSiS->CursorInfoPtr) { #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(!pSiS->SecondHead) { pSiS->ForceCursorOff = TRUE; pSiS->CursorInfoPtr->HideCursor(pScrn); SISWaitVBRetrace(pScrn); pSiS->ForceCursorOff = FALSE; } } else { #endif pSiS->CursorInfoPtr->HideCursor(pScrn); SISWaitVBRetrace(pScrn); #ifdef SISDUALHEAD } #endif } SISBridgeRestore(pScrn); if(pSiS->UseVESA) { /* This is a q&d work-around for a BIOS bug. In case we disabled CRT2, * VBESaveRestore() does not restore CRT1. So we set any mode now, * because VBESetVBEMode correctly restores CRT1. Afterwards, we * can call VBESaveRestore to restore original mode. */ if((pSiS->VBFlags2 & VB2_VIDEOBRIDGE) && (!(pSiS->VBFlags & DISPTYPE_DISP2))) VBESetVBEMode(pSiS->pVbe, (pSiS->SISVESAModeList->n) | 0xc000, NULL); SISVESARestore(pScrn); } else { SISRestore(pScrn); } SISVGALock(pSiS); } SiS_SiSFB_Lock(pScrn, FALSE); /* We should restore the mode number in case vtsema = false as well, * but since we haven't register access then we can't do it. I think * I need to rework the save/restore stuff, like saving the video * status when returning to the X server and by that save me the * trouble if sisfb was started from a textmode VT while X was on. */ SISUnmapMem(pScrn); #ifdef SIS_PC_PLATFORM SiSVGAUnmapMem(pScrn); #endif #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { pSiSEnt = pSiS->entityPrivate; pSiSEnt->refCount--; } #endif if(pSiS->pInt) { xf86FreeInt10(pSiS->pInt); pSiS->pInt = NULL; } #ifdef SIS_USE_XAA if(!pSiS->useEXA) { if(pSiS->AccelLinearScratch) { xf86FreeOffscreenLinear(pSiS->AccelLinearScratch); pSiS->AccelLinearScratch = NULL; } if(pSiS->AccelInfoPtr) { XAADestroyInfoRec(pSiS->AccelInfoPtr); pSiS->AccelInfoPtr = NULL; } } #endif #ifdef SIS_USE_EXA if(pSiS->useEXA) { if(pSiS->EXADriverPtr) { exaDriverFini(pScreen); xfree(pSiS->EXADriverPtr); pSiS->EXADriverPtr = NULL; pSiS->exa_scratch = NULL; } } #endif if(pSiS->CursorInfoPtr) { xf86DestroyCursorInfoRec(pSiS->CursorInfoPtr); pSiS->CursorInfoPtr = NULL; } if(pSiS->ShadowPtr) { xfree(pSiS->ShadowPtr); pSiS->ShadowPtr = NULL; } if(pSiS->DGAModes) { xfree(pSiS->DGAModes); pSiS->DGAModes = NULL; } if(pSiS->adaptor) { xfree(pSiS->adaptor); pSiS->adaptor = NULL; pSiS->ResetXv = pSiS->ResetXvGamma = pSiS->ResetXvDisplay = NULL; } if(pSiS->blitadaptor) { xfree(pSiS->blitadaptor); pSiS->blitadaptor = NULL; } if(pSiS->crt2gcolortable) { xfree(pSiS->crt2gcolortable); pSiS->crt2gcolortable = NULL; } if(pSiS->crt2cindices) { xfree(pSiS->crt2cindices); pSiS->crt2cindices = NULL; } pScrn->vtSema = FALSE; /* Restore Blockhandler */ pScreen->BlockHandler = pSiS->BlockHandler; pScreen->CloseScreen = pSiS->CloseScreen; return(*pScreen->CloseScreen)(scrnIndex, pScreen); } /* Free up any per-generation data structures */ /* Optional */ static void SISFreeScreen(int scrnIndex, int flags) { #ifdef SIS_NEED_MAP_IOP ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn); if(pSiS) { #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt) { pSiSEnt->forceUnmapIOPBase = TRUE; } #endif SISUnmapIOPMem(pScrn); } #endif SISFreeRec(xf86Screens[scrnIndex]); } /* Checks if a mode is suitable for the selected chipset. */ static ModeStatus SISValidMode(int scrnIndex, DisplayModePtr mode, Bool verbose, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SISPtr pSiS = SISPTR(pScrn); if(pSiS->UseVESA) { if(SiSCalcVESAModeIndex(pScrn, mode)) return(MODE_OK); else return(MODE_BAD); } if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) { if(SiS_CheckModeCRT1(pScrn, mode, pSiS->VBFlags, pSiS->HaveCustomModes) < 0x14) return(MODE_BAD); } else { if(SiS_CheckModeCRT2(pScrn, mode, pSiS->VBFlags, pSiS->HaveCustomModes) < 0x14) return(MODE_BAD); } } else #endif #ifdef SISMERGED if(pSiS->MergedFB) { if(!mode->Private) { if(!pSiS->CheckForCRT2) { if(SiS_CheckModeCRT1(pScrn, mode, pSiS->VBFlags, pSiS->HaveCustomModes) < 0x14) return(MODE_BAD); } else { if(SiS_CheckModeCRT2(pScrn, mode, pSiS->VBFlags, pSiS->HaveCustomModes2) < 0x14) return(MODE_BAD); } } else { if(SiS_CheckModeCRT1(pScrn, ((SiSMergedDisplayModePtr)mode->Private)->CRT1, pSiS->VBFlags, pSiS->HaveCustomModes) < 0x14) return(MODE_BAD); if(SiS_CheckModeCRT2(pScrn, ((SiSMergedDisplayModePtr)mode->Private)->CRT2, pSiS->VBFlags, pSiS->HaveCustomModes2) < 0x14) return(MODE_BAD); } } else #endif { if(SiS_CheckModeCRT1(pScrn, mode, pSiS->VBFlags, pSiS->HaveCustomModes) < 0x14) return(MODE_BAD); if(SiS_CheckModeCRT2(pScrn, mode, pSiS->VBFlags, pSiS->HaveCustomModes) < 0x14) return(MODE_BAD); } } return(MODE_OK); } #ifdef DEBUG static void SiSDumpModeInfo(ScrnInfoPtr pScrn, DisplayModePtr mode) { xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Clock : %x\n", mode->Clock); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Hz Display : %x\n", mode->CrtcHDisplay); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Hz Blank Start : %x\n", mode->CrtcHBlankStart); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Hz Sync Start : %x\n", mode->CrtcHSyncStart); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Hz Sync End : %x\n", mode->CrtcHSyncEnd); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Hz Blank End : %x\n", mode->CrtcHBlankEnd); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Hz Total : %x\n", mode->CrtcHTotal); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Hz Skew : %x\n", mode->CrtcHSkew); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Hz HAdjusted : %x\n", mode->CrtcHAdjusted); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Vt Display : %x\n", mode->CrtcVDisplay); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Vt Blank Start : %x\n", mode->CrtcVBlankStart); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Vt Sync Start : %x\n", mode->CrtcVSyncStart); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Vt Sync End : %x\n", mode->CrtcVSyncEnd); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Vt Blank End : %x\n", mode->CrtcVBlankEnd); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Vt Total : %x\n", mode->CrtcVTotal); xf86DrvMsg(pScrn->scrnIndex,X_INFO, "Vt VAdjusted : %x\n", mode->CrtcVAdjusted); } #endif static void SISModifyModeInfo(DisplayModePtr mode) { if(mode->CrtcHBlankStart == mode->CrtcHDisplay) mode->CrtcHBlankStart++; if(mode->CrtcHBlankEnd == mode->CrtcHTotal) mode->CrtcHBlankEnd--; if(mode->CrtcVBlankStart == mode->CrtcVDisplay) mode->CrtcVBlankStart++; if(mode->CrtcVBlankEnd == mode->CrtcVTotal) mode->CrtcVBlankEnd--; } /* Enable the Turboqueue/Commandqueue (For 300 and 315/330/340 series only) */ static void SiSEnableTurboQueue(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); UShort SR26, SR27; ULong temp; switch(pSiS->VGAEngine) { case SIS_300_VGA: if((!pSiS->NoAccel) && (pSiS->TurboQueue)) { /* TQ size is always 512k */ temp = (pScrn->videoRam/64) - 8; SR26 = temp & 0xFF; inSISIDXREG(SISSR, 0x27, SR27); SR27 &= 0xFC; SR27 |= (0xF0 | ((temp >> 8) & 3)); outSISIDXREG(SISSR, 0x26, SR26); outSISIDXREG(SISSR, 0x27, SR27); } break; case SIS_315_VGA: if(!pSiS->NoAccel) { /* On 315/330/340 series, there are three queue modes available * which are chosen by setting bits 7:5 in SR26: * 1. MMIO queue mode (bit 5, 0x20). The hardware will keep * track of the queue, the FIFO, command parsing and so * on. This is the one comparable to the 300 series. * 2. VRAM queue mode (bit 6, 0x40). In this case, one will * have to do queue management himself. * 3. AGP queue mode (bit 7, 0x80). Works as 2., but keeps the * queue in AGP memory space. * We go VRAM or MMIO here. * SR26 bit 4 is called "Bypass H/W queue". * SR26 bit 1 is called "Enable Command Queue Auto Correction" * SR26 bit 0 resets the queue * Size of queue memory is encoded in bits 3:2 like this: * 00 (0x00) 512K * 01 (0x04) 1M * 10 (0x08) 2M * 11 (0x0C) 4M * The queue location is to be written to 0x85C0. */ #ifdef SISVRAMQ /* We use VRAM Cmd Queue, not MMIO or AGP */ UChar tempCR55 = 0; /* Set Command Queue Threshold to max value 11111b (?) */ outSISIDXREG(SISSR, 0x27, 0x1F); /* Disable queue flipping */ inSISIDXREG(SISCR, 0x55, tempCR55); andSISIDXREG(SISCR, 0x55, 0x33); /* Synchronous reset for Command Queue */ outSISIDXREG(SISSR, 0x26, 0x01); SIS_MMIO_OUT32(pSiS->IOBase, 0x85c4, 0); /* Enable VRAM Command Queue mode */ if(pSiS->ChipType == XGI_20) { /* On XGI_20, always 128K */ SR26 = 0x40 | 0x04 | 0x01; } else { switch(pSiS->cmdQueueSize) { case 1*1024*1024: SR26 = (0x40 | 0x04 | 0x01); break; case 2*1024*1024: SR26 = (0x40 | 0x08 | 0x01); break; case 4*1024*1024: SR26 = (0x40 | 0x0C | 0x01); break; default: pSiS->cmdQueueSize = 512 * 1024; case 512*1024: SR26 = (0x40 | 0x00 | 0x01); } } outSISIDXREG(SISSR, 0x26, SR26); SR26 &= 0xfe; outSISIDXREG(SISSR, 0x26, SR26); *(pSiS->cmdQ_SharedWritePort) = (unsigned int)(SIS_MMIO_IN32(pSiS->IOBase, 0x85c8)); SIS_MMIO_OUT32(pSiS->IOBase, 0x85c4, (CARD32)(*(pSiS->cmdQ_SharedWritePort))); SIS_MMIO_OUT32(pSiS->IOBase, 0x85C0, pSiS->cmdQueueOffset); temp = (ULong)pSiS->RealFbBase; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { SISEntPtr pSiSEnt = pSiS->entityPrivate; temp = (ULong)pSiSEnt->RealFbBase; } #endif temp += pSiS->cmdQueueOffset; pSiS->cmdQueueBase = (unsigned int *)temp; outSISIDXREG(SISCR, 0x55, tempCR55); #ifdef TWDEBUG xf86DrvMsg(0, 0, "CmdQueueOffs 0x%x, CmdQueueAdd %p, shwrp 0x%x, status %x, base %p\n", pSiS->cmdQueueOffset, pSiS->cmdQueueBase, *(pSiS->cmdQ_SharedWritePort), SIS_MMIO_IN32(pSiS->IOBase, 0x85cc), (ULong *)temp); #endif #else /* For MMIO */ /* Syncronous reset for Command Queue */ orSISIDXREG(SISSR, 0x26, 0x01); /* Set Command Queue Threshold to max value 11111b */ outSISIDXREG(SISSR, 0x27, 0x1F); /* Do some magic (cp readport to writeport) */ temp = SIS_MMIO_IN32(pSiS->IOBase, 0x85C8); SIS_MMIO_OUT32(pSiS->IOBase, 0x85C4, temp); /* Enable MMIO Command Queue mode (0x20), * Enable_command_queue_auto_correction (0x02) * (no idea, but sounds good, so use it) * 512k (0x00) (does this apply to MMIO mode?) */ outSISIDXREG(SISSR, 0x26, 0x22); /* Calc Command Queue position (Q is always 512k)*/ temp = (pScrn->videoRam - 512) * 1024; /* Set Q position */ SIS_MMIO_OUT32(pSiS->IOBase, 0x85C0, temp); #endif } break; default: break; } } #ifdef SISVRAMQ static void SiSRestoreQueueMode(SISPtr pSiS, SISRegPtr sisReg) { UChar tempCR55=0; if(pSiS->VGAEngine == SIS_315_VGA) { inSISIDXREG(SISCR,0x55,tempCR55); andSISIDXREG(SISCR,0x55,0x33); outSISIDXREG(SISSR,0x26,0x01); SIS_MMIO_OUT32(pSiS->IOBase, 0x85c4, 0); outSISIDXREG(SISSR,0x27,sisReg->sisRegs3C4[0x27]); outSISIDXREG(SISSR,0x26,sisReg->sisRegs3C4[0x26]); SIS_MMIO_OUT32(pSiS->IOBase, 0x85C0, sisReg->sisMMIO85C0); outSISIDXREG(SISCR,0x55,tempCR55); } } #endif /* Things to do before a ModeSwitch. We set up the * video bridge configuration and the TurboQueue. */ void SiSPreSetMode(ScrnInfoPtr pScrn, DisplayModePtr mode, int viewmode) { SISPtr pSiS = SISPTR(pScrn); UChar CR30, CR31, CR32, CR33; UChar CR39 = 0, CR3B = 0; UChar CR17, CR38 = 0; UChar CR35 = 0, CR79 = 0; int temp = 0, crt1rateindex = 0; ULong vbflag = pSiS->VBFlags; Bool hcm = pSiS->HaveCustomModes; DisplayModePtr mymode = mode; pSiS->IsCustom = FALSE; /* NEVER call this with viewmode = SIS_MODE_SIMU * if mode->type is not M_T_DEFAULT! */ #ifdef SISMERGED if(pSiS->MergedFB) { switch(viewmode) { case SIS_MODE_CRT1: mymode = ((SiSMergedDisplayModePtr)mode->Private)->CRT1; break; case SIS_MODE_CRT2: mymode = ((SiSMergedDisplayModePtr)mode->Private)->CRT2; hcm = pSiS->HaveCustomModes2; } } #endif switch(viewmode) { case SIS_MODE_CRT1: if(SiS_CheckModeCRT1(pScrn, mymode, vbflag, hcm) == 0xfe) { pSiS->IsCustom = TRUE; } break; case SIS_MODE_CRT2: if(vbflag & CRT2_ENABLE) { if(SiS_CheckModeCRT2(pScrn, mymode, vbflag, hcm) == 0xfe) { pSiS->IsCustom = TRUE; } } else { /* This can only happen in mirror mode */ if(SiS_CheckModeCRT1(pScrn, mymode, vbflag, hcm) == 0xfe) { pSiS->IsCustom = TRUE; } } } #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); /* Unlock Registers */ #endif inSISIDXREG(SISCR, 0x30, CR30); inSISIDXREG(SISCR, 0x31, CR31); CR32 = pSiS->newCR32; inSISIDXREG(SISCR, 0x33, CR33); if(pSiS->NewCRLayout) { inSISIDXREG(SISCR, 0x35, CR35); inSISIDXREG(SISCR, 0x38, CR38); inSISIDXREG(SISCR, 0x39, CR39); xf86DrvMsgVerb(pScrn->scrnIndex, X_PROBED, SISVERBLEVEL, "Before: CR30=0x%02x,CR31=0x%02x,CR32=0x%02x,CR33=0x%02x,CR35=0x%02x,CR38=0x%02x\n", CR30, CR31, CR32, CR33, CR35, CR38); CR38 &= ~0x07; } else { if(pSiS->Chipset != PCI_CHIP_SIS300) { switch(pSiS->VGAEngine) { case SIS_300_VGA: temp = 0x35; break; case SIS_315_VGA: temp = 0x38; break; } if(temp) inSISIDXREG(SISCR, temp, CR38); } if(pSiS->VGAEngine == SIS_315_VGA) { inSISIDXREG(SISCR, 0x79, CR79); CR38 &= ~0x3b; /* Clear LCDA/DualEdge and YPbPr bits */ } inSISIDXREG(SISCR, 0x3b, CR3B); xf86DrvMsgVerb(pScrn->scrnIndex, X_PROBED, SISVERBLEVEL, "Before: CR30=0x%02x, CR31=0x%02x, CR32=0x%02x, CR33=0x%02x, CR%02x=0x%02x\n", CR30, CR31, CR32, CR33, temp, CR38); } xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, SISVERBLEVEL, "VBFlags=0x%x\n", pSiS->VBFlags); CR30 = 0x00; CR31 &= ~0x60; /* Clear VB_Drivermode & VB_OutputDisable */ CR31 |= 0x04; /* Set VB_NotSimuMode (not for 30xB/1400x1050?) */ CR35 = 0x00; if(!pSiS->NewCRLayout) { if(!pSiS->AllowHotkey) { CR31 |= 0x80; /* Disable hotkey-switch */ } CR79 &= ~0x10; /* Enable Backlight control on 315 series */ } SiS_SetEnableDstn(pSiS->SiS_Pr, FALSE); SiS_SetEnableFstn(pSiS->SiS_Pr, FALSE); if((vbflag & CRT1_LCDA) && (viewmode == SIS_MODE_CRT1)) { CR38 |= 0x02; } else { switch(vbflag & (CRT2_TV|CRT2_LCD|CRT2_VGA)) { case CRT2_TV: CR38 &= ~0xC0; /* Clear Pal M/N bits */ if((pSiS->VBFlags2 & VB2_CHRONTEL) && (vbflag & TV_CHSCART)) { /* Chrontel */ CR30 |= 0x10; CR38 |= 0x04; CR38 &= ~0x08; CR31 |= 0x01; } else if((pSiS->VBFlags2 & VB2_CHRONTEL) && (vbflag & TV_CHYPBPR525I)) { /* Chrontel */ CR38 |= 0x08; CR38 &= ~0x04; CR31 &= ~0x01; } else if(vbflag & TV_HIVISION) { /* SiS bridge */ if(pSiS->NewCRLayout) { CR38 |= 0x04; CR35 |= 0x60; } else { CR30 |= 0x80; if(pSiS->VGAEngine == SIS_315_VGA) { if(pSiS->VBFlags2 & VB2_SISYPBPRBRIDGE) { CR38 |= (0x08 | 0x30); } } } CR31 |= 0x01; CR35 |= 0x01; } else if(vbflag & TV_YPBPR) { /* SiS bridge */ if(pSiS->NewCRLayout) { CR38 |= 0x04; CR31 &= ~0x01; CR35 &= ~0x01; if(vbflag & (TV_YPBPR525P | TV_YPBPR625P)) CR35 |= 0x20; else if(vbflag & TV_YPBPR750P) CR35 |= 0x40; else if(vbflag & TV_YPBPR1080I) CR35 |= 0x60; if(vbflag & (TV_YPBPR625I | TV_YPBPR625P)) { CR31 |= 0x01; CR35 |= 0x01; } CR39 &= ~0x03; if((vbflag & TV_YPBPRAR) == TV_YPBPR43LB) CR39 |= 0x00; else if((vbflag & TV_YPBPRAR) == TV_YPBPR43) CR39 |= 0x01; else if((vbflag & TV_YPBPRAR) == TV_YPBPR169) CR39 |= 0x02; else CR39 |= 0x03; } else if(pSiS->SiS_SD_Flags & SiS_SD_SUPPORTYPBPR) { CR30 |= 0x80; CR38 |= 0x08; CR31 &= ~0x01; if(vbflag & (TV_YPBPR525P|TV_YPBPR625P)) CR38 |= 0x10; else if(vbflag & TV_YPBPR750P) CR38 |= 0x20; else if(vbflag & TV_YPBPR1080I) CR38 |= 0x30; if(vbflag & (TV_YPBPR625I | TV_YPBPR625P)) CR31 |= 0x01; if(pSiS->SiS_SD_Flags & SiS_SD_SUPPORTYPBPRAR) { CR3B &= ~0x03; if((vbflag & TV_YPBPRAR) == TV_YPBPR43LB) CR3B |= 0x00; else if((vbflag & TV_YPBPRAR) == TV_YPBPR43) CR3B |= 0x03; else if((vbflag & TV_YPBPRAR) == TV_YPBPR169) CR3B |= 0x01; else CR3B |= 0x03; } } } else { /* All */ if(vbflag & TV_SCART) CR30 |= 0x10; if(vbflag & TV_SVIDEO) CR30 |= 0x08; if(vbflag & TV_AVIDEO) CR30 |= 0x04; if(!(CR30 & 0x1C)) CR30 |= 0x08; /* default: SVIDEO */ if(vbflag & TV_PAL) { CR31 |= 0x01; CR35 |= 0x01; if( (pSiS->VBFlags2 & VB2_SISBRIDGE) || ((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->ChrontelType == CHRONTEL_701x)) ) { if(vbflag & TV_PALM) { CR38 |= 0x40; CR35 |= 0x04; } else if(vbflag & TV_PALN) { CR38 |= 0x80; CR35 |= 0x08; } } } else { CR31 &= ~0x01; CR35 &= ~0x01; if(vbflag & TV_NTSCJ) { CR38 |= 0x40; /* TW, not BIOS */ CR35 |= 0x02; } } if(vbflag & TV_SCART) { CR31 |= 0x01; CR35 |= 0x01; } } CR31 &= ~0x04; /* Clear NotSimuMode */ pSiS->SiS_Pr->SiS_CHOverScan = pSiS->UseCHOverScan; if((pSiS->OptTVSOver == 1) && (pSiS->ChrontelType == CHRONTEL_700x)) { pSiS->SiS_Pr->SiS_CHSOverScan = TRUE; } else { pSiS->SiS_Pr->SiS_CHSOverScan = FALSE; } #ifdef SIS_CP SIS_CP_DRIVER_CONFIG #endif break; case CRT2_LCD: CR30 |= 0x20; SiS_SetEnableDstn(pSiS->SiS_Pr, pSiS->DSTN); SiS_SetEnableFstn(pSiS->SiS_Pr, pSiS->FSTN); break; case CRT2_VGA: CR30 |= 0x40; break; default: CR30 |= 0x00; CR31 |= 0x20; /* VB_OUTPUT_DISABLE */ if(pSiS->UseVESA) { crt1rateindex = SISSearchCRT1Rate(pScrn, mymode); } } } if(vbflag & CRT1_LCDA) { switch(viewmode) { case SIS_MODE_CRT1: CR38 |= 0x01; break; case SIS_MODE_CRT2: if(vbflag & (CRT2_TV|CRT2_VGA)) { CR30 |= 0x02; CR38 |= 0x01; } else { CR38 |= 0x03; } break; case SIS_MODE_SIMU: default: if(vbflag & (CRT2_TV|CRT2_LCD|CRT2_VGA)) { CR30 |= 0x01; } break; } } else { if(vbflag & (CRT2_TV|CRT2_LCD|CRT2_VGA)) { CR30 |= 0x01; } } if(pSiS->UseVESA) { CR31 &= ~0x40; /* Clear Drivermode */ CR31 |= 0x06; /* Set SlaveMode, Enable SimuMode in Slavemode */ #ifdef TWDEBUG CR31 |= 0x40; /* DEBUG (for non-slave mode VESA) */ crt1rateindex = SISSearchCRT1Rate(pScrn, mymode); #endif } else { CR31 |= 0x40; /* Set Drivermode */ CR31 &= ~0x06; /* Disable SlaveMode, disable SimuMode in SlaveMode */ if(!pSiS->IsCustom) { crt1rateindex = SISSearchCRT1Rate(pScrn, mymode); } } switch(viewmode) { case SIS_MODE_SIMU: CR33 = 0; if(!(vbflag & CRT1_LCDA)) { CR33 |= (crt1rateindex & 0x0f); } if(vbflag & CRT2_VGA) { CR33 |= ((crt1rateindex & 0x0f) << 4); } break; case SIS_MODE_CRT1: CR33 &= 0xf0; if(!(vbflag & CRT1_LCDA)) { CR33 |= (crt1rateindex & 0x0f); } break; case SIS_MODE_CRT2: CR33 &= 0x0f; if(vbflag & CRT2_VGA) { CR33 |= ((crt1rateindex & 0x0f) << 4); } break; } if((!pSiS->UseVESA) && (vbflag & CRT2_ENABLE)) { if(pSiS->CRT1off) CR33 &= 0xf0; } if(pSiS->NewCRLayout) { CR31 &= 0xfe; /* Clear PAL flag (now in CR35) */ CR38 &= 0x07; /* Use only LCDA and HiVision/YPbPr bits */ outSISIDXREG(SISCR, 0x30, CR30); outSISIDXREG(SISCR, 0x31, CR31); outSISIDXREG(SISCR, 0x33, CR33); outSISIDXREG(SISCR, 0x35, CR35); setSISIDXREG(SISCR, 0x38, 0xf8, CR38); outSISIDXREG(SISCR, 0x39, CR39); xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, SISVERBLEVEL, "After: CR30=0x%02x,CR31=0x%02x,CR33=0x%02x,CR35=0x%02x,CR38=%02x\n", CR30, CR31, CR33, CR35, CR38); } else { outSISIDXREG(SISCR, 0x30, CR30); outSISIDXREG(SISCR, 0x31, CR31); outSISIDXREG(SISCR, 0x33, CR33); if(temp) { outSISIDXREG(SISCR, temp, CR38); } if(pSiS->VGAEngine == SIS_315_VGA) { outSISIDXREG(SISCR, 0x3b, CR3B); outSISIDXREG(SISCR, 0x79, CR79); } xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, SISVERBLEVEL, "After: CR30=0x%02x,CR31=0x%02x,CR33=0x%02x,CR%02x=%02x\n", CR30, CR31, CR33, temp, CR38); } pSiS->SiS_Pr->SiS_UseOEM = pSiS->OptUseOEM; /* Enable TurboQueue */ #ifdef SISVRAMQ if(pSiS->VGAEngine != SIS_315_VGA) #endif SiSEnableTurboQueue(pScrn); if((!pSiS->UseVESA) && (pSiS->VBFlags & CRT2_ENABLE)) { /* Switch on CRT1 for modes that require the bridge in SlaveMode */ andSISIDXREG(SISSR,0x1f,0x3f); inSISIDXREG(SISCR, 0x17, CR17); if(!(CR17 & 0x80)) { orSISIDXREG(SISCR, 0x17, 0x80); outSISIDXREG(SISSR, 0x00, 0x01); usleep(10000); outSISIDXREG(SISSR, 0x00, 0x03); } } } /* Functions for adjusting various TV settings */ /* These are used by the PostSetMode() functions as well as * the display properties tool SiSCtrl. * * There is each a Set and a Get routine. The Set functions * take a value of the same range as the corresponding option. * The Get routines return a value of the same range (although * not necessarily the same value as previously set because * of the lower resolution of the respective setting compared * to the valid range). * The Get routines return -2 on error (eg. hardware does not * support this setting). * Note: The x and y positioning routines accept a position * RELATIVE to the default position. All other routines * take ABSOLUTE values. * * The Set functions will store the property regardless if TV is * currently used or not and if the hardware supports the property * or not. The Get routines will return this stored * value if TV is not currently used (because the register does * not contain the correct value then) or if the hardware supports * the respective property. This should make it easier for the * display property tool because it does not have to know the * hardware features. * * All the routines are dual head aware. It does not matter * if the function is called from the CRT1 or CRT2 session. * The values will be in pSiSEnt anyway, and read from there * if we're running dual head. */ void SiS_SetCHTVlumabandwidthcvbs(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->chtvlumabandwidthcvbs = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->chtvlumabandwidthcvbs = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: val /= 8; if((val == 0) || (val == 1)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x03, val, 0xFE); } break; case CHRONTEL_701x: val /= 4; if((val >= 0) && (val <= 3)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x02, val, 0xFC); } break; } } int SiS_GetCHTVlumabandwidthcvbs(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & CRT2_TV))) { #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->chtvlumabandwidthcvbs; else #endif return (int)pSiS->chtvlumabandwidthcvbs; } else { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: return (int)((SiS_GetCH70xx(pSiS->SiS_Pr, 0x03) & 0x01) * 8); case CHRONTEL_701x: return (int)((SiS_GetCH70xx(pSiS->SiS_Pr, 0x02) & 0x03) * 4); default: return (int)pSiS->chtvlumabandwidthcvbs; } } } void SiS_SetCHTVlumabandwidthsvideo(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->chtvlumabandwidthsvideo = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->chtvlumabandwidthsvideo = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: val /= 6; if((val >= 0) && (val <= 2)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x03, (val << 1), 0xF9); } break; case CHRONTEL_701x: val /= 4; if((val >= 0) && (val <= 3)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x02, (val << 2), 0xF3); } break; } } int SiS_GetCHTVlumabandwidthsvideo(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & CRT2_TV))) { #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->chtvlumabandwidthsvideo; else #endif return (int)pSiS->chtvlumabandwidthsvideo; } else { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x03) & 0x06) >> 1) * 6); case CHRONTEL_701x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x02) & 0x0c) >> 2) * 4); default: return (int)pSiS->chtvlumabandwidthsvideo; } } } void SiS_SetCHTVlumaflickerfilter(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->chtvlumaflickerfilter = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->chtvlumaflickerfilter = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: val /= 6; if((val >= 0) && (val <= 2)) { UShort reg = 0; reg = SiS_GetCH70xx(pSiS->SiS_Pr, 0x01); reg = (reg & 0xf0) | ((reg & 0x0c) >> 2) | (val << 2); SiS_SetCH70xx(pSiS->SiS_Pr, 0x01, reg); } break; case CHRONTEL_701x: val /= 4; if((val >= 0) && (val <= 3)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x01, (val << 2), 0xF3); } break; } } int SiS_GetCHTVlumaflickerfilter(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & CRT2_TV))) { #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->chtvlumaflickerfilter; else #endif return (int)pSiS->chtvlumaflickerfilter; } else { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: return (int)((SiS_GetCH70xx(pSiS->SiS_Pr, 0x01) & 0x03) * 6); case CHRONTEL_701x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x01) & 0x0c) >> 2) * 4); default: return (int)pSiS->chtvlumaflickerfilter; } } } void SiS_SetCHTVchromabandwidth(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->chtvchromabandwidth = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->chtvchromabandwidth = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: val /= 4; if((val >= 0) && (val <= 3)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x03, (val << 4), 0xCF); } break; case CHRONTEL_701x: val /= 8; if((val >= 0) && (val <= 1)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x02, (val << 4), 0xEF); } break; } } int SiS_GetCHTVchromabandwidth(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & CRT2_TV))) { #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->chtvchromabandwidth; else #endif return (int)pSiS->chtvchromabandwidth; } else { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x03) & 0x30) >> 4) * 4); case CHRONTEL_701x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x02) & 0x10) >> 4) * 8); default: return (int)pSiS->chtvchromabandwidth; } } } void SiS_SetCHTVchromaflickerfilter(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->chtvchromaflickerfilter = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->chtvchromaflickerfilter = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: val /= 6; if((val >= 0) && (val <= 2)) { UShort reg = 0; reg = SiS_GetCH70xx(pSiS->SiS_Pr, 0x01); reg = (reg & 0xc0) | ((reg & 0x0c) >> 2) | ((reg & 0x03) << 2) | (val << 4); SiS_SetCH70xx(pSiS->SiS_Pr, 0x01, reg); } break; case CHRONTEL_701x: val /= 4; if((val >= 0) && (val <= 3)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x01, (val << 4), 0xCF); } break; } } int SiS_GetCHTVchromaflickerfilter(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & CRT2_TV))) { #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->chtvchromaflickerfilter; else #endif return (int)pSiS->chtvchromaflickerfilter; } else { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x01) & 0x30) >> 4) * 6); case CHRONTEL_701x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x01) & 0x30) >> 4) * 4); default: return (int)pSiS->chtvchromaflickerfilter; } } } void SiS_SetCHTVcvbscolor(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->chtvcvbscolor = val ? 1 : 0; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->chtvcvbscolor = pSiS->chtvcvbscolor; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: if(!val) SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x03, 0x40, 0x00); else SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x03, 0x00, ~0x40); break; case CHRONTEL_701x: if(!val) SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x02, 0x00, ~0x20); else SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x02, 0x20, 0x00); break; } } int SiS_GetCHTVcvbscolor(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & CRT2_TV))) { #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->chtvcvbscolor; else #endif return (int)pSiS->chtvcvbscolor; } else { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x03) & 0x40) >> 6) ^ 0x01); case CHRONTEL_701x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x02) & 0x20) >> 5) ^ 0x01); default: return (int)pSiS->chtvcvbscolor; } } } void SiS_SetCHTVtextenhance(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->chtvtextenhance = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->chtvtextenhance = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: val /= 6; if((val >= 0) && (val <= 2)) { UShort reg = 0; reg = SiS_GetCH70xx(pSiS->SiS_Pr, 0x01); reg = (reg & 0xf0) | ((reg & 0x03) << 2) | val; SiS_SetCH70xx(pSiS->SiS_Pr, 0x01, reg); } break; case CHRONTEL_701x: val /= 2; if((val >= 0) && (val <= 7)) { SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x03, val, 0xF8); } break; } } int SiS_GetCHTVtextenhance(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & CRT2_TV))) { #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->chtvtextenhance; else #endif return (int)pSiS->chtvtextenhance; } else { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: return (int)(((SiS_GetCH70xx(pSiS->SiS_Pr, 0x01) & 0x0c) >> 2) * 6); case CHRONTEL_701x: return (int)((SiS_GetCH70xx(pSiS->SiS_Pr, 0x03) & 0x07) * 2); default: return (int)pSiS->chtvtextenhance; } } } void SiS_SetCHTVcontrast(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->chtvcontrast = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->chtvcontrast = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_CHRONTEL)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif val /= 2; if((val >= 0) && (val <= 7)) { switch(pSiS->ChrontelType) { case CHRONTEL_700x: SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x11, val, 0xF8); break; case CHRONTEL_701x: SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x08, val, 0xF8); break; } SiS_DDC2Delay(pSiS->SiS_Pr, 1000); } } int SiS_GetCHTVcontrast(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif if(!((pSiS->VBFlags2 & VB2_CHRONTEL) && (pSiS->VBFlags & CRT2_TV))) { #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->chtvcontrast; else #endif return (int)pSiS->chtvcontrast; } else { #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: return (int)((SiS_GetCH70xx(pSiS->SiS_Pr, 0x11) & 0x07) * 2); case CHRONTEL_701x: return (int)((SiS_GetCH70xx(pSiS->SiS_Pr, 0x08) & 0x07) * 2); default: return (int)pSiS->chtvcontrast; } } } void SiS_SetSISTVedgeenhance(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->sistvedgeenhance = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->sistvedgeenhance = val; #endif if(!(pSiS->VBFlags2 & VB2_301)) return; if(!(pSiS->VBFlags & CRT2_TV)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif val /= 2; if((val >= 0) && (val <= 7)) { setSISIDXREG(SISPART2,0x3A, 0x1F, (val << 5)); } } int SiS_GetSISTVedgeenhance(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int result = pSiS->sistvedgeenhance; UChar temp; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) result = pSiSEnt->sistvedgeenhance; #endif if(!(pSiS->VBFlags2 & VB2_301)) return result; if(!(pSiS->VBFlags & CRT2_TV)) return result; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif inSISIDXREG(SISPART2, 0x3a, temp); return(int)(((temp & 0xe0) >> 5) * 2); } void SiS_SetSISTVantiflicker(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->sistvantiflicker = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->sistvantiflicker = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return; if(pSiS->VBFlags & TV_HIVISION) return; if((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & (TV_YPBPR525P | TV_YPBPR625P | TV_YPBPR750P | TV_YPBPR1080I))) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif /* Valid values: 0=off, 1=low, 2=med, 3=high, 4=adaptive */ if((val >= 0) && (val <= 4)) { setSISIDXREG(SISPART2,0x0A,0x8F, (val << 4)); } } int SiS_GetSISTVantiflicker(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int result = pSiS->sistvantiflicker; UChar temp; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) result = pSiSEnt->sistvantiflicker; #endif if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return result; if(!(pSiS->VBFlags & CRT2_TV)) return result; if(pSiS->VBFlags & TV_HIVISION) return result; if((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & (TV_YPBPR525P | TV_YPBPR625P | TV_YPBPR750P | TV_YPBPR1080I))) return result; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif inSISIDXREG(SISPART2, 0x0a, temp); return(int)((temp & 0x70) >> 4); } void SiS_SetSISTVsaturation(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->sistvsaturation = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->sistvsaturation = val; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return; if(pSiS->VBFlags2 & VB2_301) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif val /= 2; if((val >= 0) && (val <= 7)) { setSISIDXREG(SISPART4,0x21,0xF8, val); } } int SiS_GetSISTVsaturation(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int result = pSiS->sistvsaturation; UChar temp; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) result = pSiSEnt->sistvsaturation; #endif if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return result; if(pSiS->VBFlags2 & VB2_301) return result; if(!(pSiS->VBFlags & CRT2_TV)) return result; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif inSISIDXREG(SISPART4, 0x21, temp); return(int)((temp & 0x07) * 2); } void SiS_SetSISTVcolcalib(ScrnInfoPtr pScrn, int val, Bool coarse) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif int ccoarse, cfine, cbase = pSiS->sistvccbase; /* UChar temp; */ #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) cbase = pSiSEnt->sistvccbase; #endif if(coarse) { pSiS->sistvcolcalibc = ccoarse = val; cfine = pSiS->sistvcolcalibf; #ifdef SISDUALHEAD if(pSiSEnt) { pSiSEnt->sistvcolcalibc = val; if(pSiS->DualHeadMode) cfine = pSiSEnt->sistvcolcalibf; } #endif } else { pSiS->sistvcolcalibf = cfine = val; ccoarse = pSiS->sistvcolcalibc; #ifdef SISDUALHEAD if(pSiSEnt) { pSiSEnt->sistvcolcalibf = val; if(pSiS->DualHeadMode) ccoarse = pSiSEnt->sistvcolcalibc; } #endif } if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return; if(pSiS->VBFlags & (TV_HIVISION | TV_YPBPR)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif if((cfine >= -128) && (cfine <= 127) && (ccoarse >= -120) && (ccoarse <= 120)) { long finalcc = cbase + (((ccoarse * 256) + cfine) * 256); #if 0 inSISIDXREG(SISPART4,0x1f,temp); if(!(temp & 0x01)) { if(pSiS->VBFlags & TV_NTSC) finalcc += 0x21ed8620; else if(pSiS->VBFlags & TV_PALM) finalcc += ?; else if(pSiS->VBFlags & TV_PALM) finalcc += ?; else finalcc += 0x2a05d300; } #endif setSISIDXREG(SISPART2,0x31,0x80,((finalcc >> 24) & 0x7f)); outSISIDXREG(SISPART2,0x32,((finalcc >> 16) & 0xff)); outSISIDXREG(SISPART2,0x33,((finalcc >> 8) & 0xff)); outSISIDXREG(SISPART2,0x34,(finalcc & 0xff)); } } int SiS_GetSISTVcolcalib(ScrnInfoPtr pScrn, Bool coarse) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) if(coarse) return (int)pSiSEnt->sistvcolcalibc; else return (int)pSiSEnt->sistvcolcalibf; else #endif if(coarse) return (int)pSiS->sistvcolcalibc; else return (int)pSiS->sistvcolcalibf; } void SiS_SetSISTVcfilter(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->sistvcfilter = val ? 1 : 0; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->sistvcfilter = pSiS->sistvcfilter; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return; if(pSiS->VBFlags & (TV_HIVISION | TV_YPBPR)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif setSISIDXREG(SISPART2,0x30,~0x10,((pSiS->sistvcfilter << 4) & 0x10)); } int SiS_GetSISTVcfilter(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int result = pSiS->sistvcfilter; UChar temp; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) result = pSiSEnt->sistvcfilter; #endif if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return result; if(!(pSiS->VBFlags & CRT2_TV)) return result; if(pSiS->VBFlags & (TV_HIVISION | TV_YPBPR)) return result; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif inSISIDXREG(SISPART2, 0x30, temp); return (int)((temp & 0x10) ? 1 : 0); } void SiS_SetSISTVyfilter(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif UChar p35,p36,p37,p38,p48,p49,p4a,p30; int i,j; pSiS->sistvyfilter = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->sistvyfilter = pSiS->sistvyfilter; #endif if(!(pSiS->VBFlags & CRT2_TV)) return; if(!(pSiS->VBFlags2 & VB2_SISBRIDGE)) return; if(pSiS->VBFlags & (TV_HIVISION | TV_YPBPR)) return; p35 = pSiS->p2_35; p36 = pSiS->p2_36; p37 = pSiS->p2_37; p38 = pSiS->p2_38; p48 = pSiS->p2_48; p49 = pSiS->p2_49; p4a = pSiS->p2_4a; p30 = pSiS->p2_30; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) { p35 = pSiSEnt->p2_35; p36 = pSiSEnt->p2_36; p37 = pSiSEnt->p2_37; p38 = pSiSEnt->p2_38; p48 = pSiSEnt->p2_48; p49 = pSiSEnt->p2_49; p4a = pSiSEnt->p2_4a; p30 = pSiSEnt->p2_30; } #endif p30 &= 0x20; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif switch(pSiS->sistvyfilter) { case 0: andSISIDXREG(SISPART2,0x30,0xdf); break; case 1: outSISIDXREG(SISPART2,0x35,p35); outSISIDXREG(SISPART2,0x36,p36); outSISIDXREG(SISPART2,0x37,p37); outSISIDXREG(SISPART2,0x38,p38); if(!(pSiS->VBFlags2 & VB2_301)) { outSISIDXREG(SISPART2,0x48,p48); outSISIDXREG(SISPART2,0x49,p49); outSISIDXREG(SISPART2,0x4a,p4a); } setSISIDXREG(SISPART2,0x30,0xdf,p30); break; case 2: case 3: case 4: case 5: case 6: case 7: case 8: if(!(pSiS->VBFlags & (TV_PALM | TV_PALN | TV_NTSCJ))) { int yindex301 = -1, yindex301B = -1; UChar p3d4_34; inSISIDXREG(SISCR,0x34,p3d4_34); switch((p3d4_34 & 0x7f)) { case 0x59: /* 320x200 */ case 0x41: case 0x4f: case 0x50: /* 320x240 */ case 0x56: case 0x53: yindex301 = (pSiS->VBFlags & TV_NTSC) ? 0 : 4; break; case 0x2f: /* 640x400 */ case 0x5d: case 0x5e: case 0x2e: /* 640x480 */ case 0x44: case 0x62: yindex301 = (pSiS->VBFlags & TV_NTSC) ? 1 : 5; yindex301B = (pSiS->VBFlags & TV_NTSC) ? 0 : 4; break; case 0x31: /* 720x480 */ case 0x33: case 0x35: case 0x32: /* 720x576 */ case 0x34: case 0x36: case 0x5f: /* 768x576 */ case 0x60: case 0x61: yindex301 = (pSiS->VBFlags & TV_NTSC) ? 2 : 6; yindex301B = (pSiS->VBFlags & TV_NTSC) ? 1 : 5; break; case 0x51: /* 400x300 */ case 0x57: case 0x54: case 0x30: /* 800x600 */ case 0x47: case 0x63: yindex301 = (pSiS->VBFlags & TV_NTSC) ? 3 : 7; yindex301B = (pSiS->VBFlags & TV_NTSC) ? 2 : 6; break; case 0x52: /* 512x384 */ case 0x58: case 0x5c: case 0x38: /* 1024x768 */ case 0x4a: case 0x64: yindex301B = (pSiS->VBFlags & TV_NTSC) ? 3 : 7; break; } if(pSiS->VBFlags2 & VB2_301) { if(yindex301 >= 0) { for(i=0, j=0x35; i<=3; i++, j++) { outSISIDXREG(SISPART2,j,(SiSTVFilter301[yindex301].filter[pSiS->sistvyfilter-2][i])); } } } else { if(yindex301B >= 0) { for(i=0, j=0x35; i<=3; i++, j++) { outSISIDXREG(SISPART2,j,(SiSTVFilter301B[yindex301B].filter[pSiS->sistvyfilter-2][i])); } for(i=4, j=0x48; i<=6; i++, j++) { outSISIDXREG(SISPART2,j,(SiSTVFilter301B[yindex301B].filter[pSiS->sistvyfilter-2][i])); } } } orSISIDXREG(SISPART2,0x30,0x20); } } } int SiS_GetSISTVyfilter(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->sistvyfilter; else #endif return (int)pSiS->sistvyfilter; } void SiS_SetSIS6326TVantiflicker(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); UChar tmp; pSiS->sistvantiflicker = val; if(!(pSiS->SiS6326Flags & SIS6326_TVDETECTED)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif tmp = SiS6326GetTVReg(pScrn,0x00); if(!(tmp & 0x04)) return; /* Valid values: 0=off, 1=low, 2=med, 3=high, 4=adaptive */ if(val >= 0 && val <= 4) { tmp &= 0x1f; tmp |= (val << 5); SiS6326SetTVReg(pScrn,0x00,tmp); } } int SiS_GetSIS6326TVantiflicker(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); UChar tmp; if(!(pSiS->SiS6326Flags & SIS6326_TVDETECTED)) { return (int)pSiS->sistvantiflicker; } #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif tmp = SiS6326GetTVReg(pScrn,0x00); if(!(tmp & 0x04)) { return (int)pSiS->sistvantiflicker; } else { return (int)((tmp >> 5) & 0x07); } } void SiS_SetSIS6326TVenableyfilter(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); UChar tmp; if(val) val = 1; pSiS->sis6326enableyfilter = val; if(!(pSiS->SiS6326Flags & SIS6326_TVDETECTED)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif tmp = SiS6326GetTVReg(pScrn,0x00); if(!(tmp & 0x04)) return; tmp = SiS6326GetTVReg(pScrn,0x43); tmp &= ~0x10; tmp |= ((val & 0x01) << 4); SiS6326SetTVReg(pScrn,0x43,tmp); } int SiS_GetSIS6326TVenableyfilter(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); UChar tmp; if(!(pSiS->SiS6326Flags & SIS6326_TVDETECTED)) { return (int)pSiS->sis6326enableyfilter; } #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif tmp = SiS6326GetTVReg(pScrn,0x00); if(!(tmp & 0x04)) { return (int)pSiS->sis6326enableyfilter; } else { tmp = SiS6326GetTVReg(pScrn,0x43); return (int)((tmp >> 4) & 0x01); } } void SiS_SetSIS6326TVyfilterstrong(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); UChar tmp; if(val) val = 1; pSiS->sis6326yfilterstrong = val; if(!(pSiS->SiS6326Flags & SIS6326_TVDETECTED)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif tmp = SiS6326GetTVReg(pScrn,0x00); if(!(tmp & 0x04)) return; tmp = SiS6326GetTVReg(pScrn,0x43); if(tmp & 0x10) { tmp &= ~0x40; tmp |= ((val & 0x01) << 6); SiS6326SetTVReg(pScrn,0x43,tmp); } } int SiS_GetSIS6326TVyfilterstrong(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); UChar tmp; if(!(pSiS->SiS6326Flags & SIS6326_TVDETECTED)) { return (int)pSiS->sis6326yfilterstrong; } #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif tmp = SiS6326GetTVReg(pScrn,0x00); if(!(tmp & 0x04)) { return (int)pSiS->sis6326yfilterstrong; } else { tmp = SiS6326GetTVReg(pScrn,0x43); if(!(tmp & 0x10)) { return (int)pSiS->sis6326yfilterstrong; } else { return (int)((tmp >> 6) & 0x01); } } } void SiS_SetTVxposoffset(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif pSiS->tvxpos = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->tvxpos = val; #endif if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { if(pSiS->VBFlags & CRT2_TV) { if(pSiS->VBFlags2 & VB2_CHRONTEL) { int x = pSiS->tvx; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) x = pSiSEnt->tvx; #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: if((val >= -32) && (val <= 32)) { x += val; if(x < 0) x = 0; SiS_SetCH700x(pSiS->SiS_Pr, 0x0a, (x & 0xff)); SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x08, ((x & 0x0100) >> 7), 0xFD); } break; case CHRONTEL_701x: /* Not supported by hardware */ break; } } else if(pSiS->VBFlags2 & VB2_SISBRIDGE) { if((val >= -32) && (val <= 32)) { UChar p2_1f,p2_20,p2_2b,p2_42,p2_43; UShort temp; int mult; p2_1f = pSiS->p2_1f; p2_20 = pSiS->p2_20; p2_2b = pSiS->p2_2b; p2_42 = pSiS->p2_42; p2_43 = pSiS->p2_43; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) { p2_1f = pSiSEnt->p2_1f; p2_20 = pSiSEnt->p2_20; p2_2b = pSiSEnt->p2_2b; p2_42 = pSiSEnt->p2_42; p2_43 = pSiSEnt->p2_43; } #endif mult = 2; if(pSiS->VBFlags & TV_YPBPR) { if(pSiS->VBFlags & (TV_YPBPR1080I | TV_YPBPR750P)) { mult = 4; } } temp = p2_1f | ((p2_20 & 0xf0) << 4); temp += (val * mult); p2_1f = temp & 0xff; p2_20 = (temp & 0xf00) >> 4; p2_2b = ((p2_2b & 0x0f) + (val * mult)) & 0x0f; temp = p2_43 | ((p2_42 & 0xf0) << 4); temp += (val * mult); p2_43 = temp & 0xff; p2_42 = (temp & 0xf00) >> 4; SISWaitRetraceCRT2(pScrn); outSISIDXREG(SISPART2,0x1f,p2_1f); setSISIDXREG(SISPART2,0x20,0x0F,p2_20); setSISIDXREG(SISPART2,0x2b,0xF0,p2_2b); setSISIDXREG(SISPART2,0x42,0x0F,p2_42); outSISIDXREG(SISPART2,0x43,p2_43); } } } } else if(pSiS->Chipset == PCI_CHIP_SIS6326) { if(pSiS->SiS6326Flags & SIS6326_TVDETECTED) { UChar tmp; UShort temp1, temp2, temp3; tmp = SiS6326GetTVReg(pScrn,0x00); if(tmp & 0x04) { temp1 = pSiS->tvx1; temp2 = pSiS->tvx2; temp3 = pSiS->tvx3; if((val >= -16) && (val <= 16)) { if(val > 0) { temp1 += (val * 4); temp2 += (val * 4); while((temp1 > 0x0fff) || (temp2 > 0x0fff)) { temp1 -= 4; temp2 -= 4; } } else { val = -val; temp3 += (val * 4); while(temp3 > 0x03ff) { temp3 -= 4; } } } SiS6326SetTVReg(pScrn,0x3a,(temp1 & 0xff)); tmp = SiS6326GetTVReg(pScrn,0x3c); tmp &= 0xf0; tmp |= ((temp1 & 0x0f00) >> 8); SiS6326SetTVReg(pScrn,0x3c,tmp); SiS6326SetTVReg(pScrn,0x26,(temp2 & 0xff)); tmp = SiS6326GetTVReg(pScrn,0x27); tmp &= 0x0f; tmp |= ((temp2 & 0x0f00) >> 4); SiS6326SetTVReg(pScrn,0x27,tmp); SiS6326SetTVReg(pScrn,0x12,(temp3 & 0xff)); tmp = SiS6326GetTVReg(pScrn,0x13); tmp &= ~0xC0; tmp |= ((temp3 & 0x0300) >> 2); SiS6326SetTVReg(pScrn,0x13,tmp); } } } } int SiS_GetTVxposoffset(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->tvxpos; else #endif return (int)pSiS->tvxpos; } void SiS_SetTVyposoffset(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif pSiS->tvypos = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->tvypos = val; #endif if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { if(pSiS->VBFlags & CRT2_TV) { if(pSiS->VBFlags2 & VB2_CHRONTEL) { int y = pSiS->tvy; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) y = pSiSEnt->tvy; #endif switch(pSiS->ChrontelType) { case CHRONTEL_700x: if((val >= -32) && (val <= 32)) { y -= val; if(y < 0) y = 0; SiS_SetCH700x(pSiS->SiS_Pr, 0x0b, (y & 0xff)); SiS_SetCH70xxANDOR(pSiS->SiS_Pr, 0x08, ((y & 0x0100) >> 8), 0xFE); } break; case CHRONTEL_701x: /* Not supported by hardware */ break; } } else if(pSiS->VBFlags2 & VB2_SISBRIDGE) { if((val >= -32) && (val <= 32)) { char p2_01, p2_02; if( (pSiS->VBFlags & TV_HIVISION) || ((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & (TV_YPBPR1080I|TV_YPBPR750P))) ) { val *= 2; } else { val /= 2; /* 4 */ } p2_01 = pSiS->p2_01; p2_02 = pSiS->p2_02; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) { p2_01 = pSiSEnt->p2_01; p2_02 = pSiSEnt->p2_02; } #endif p2_01 += val; /* val * 2 */ p2_02 += val; /* val * 2 */ if(!(pSiS->VBFlags & (TV_YPBPR | TV_HIVISION))) { while((p2_01 <= 0) || (p2_02 <= 0)) { p2_01 += 2; p2_02 += 2; } } else if((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & TV_YPBPR1080I)) { while(p2_01 <= 8) { p2_01 += 2; p2_02 += 2; } } else if((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & TV_YPBPR750P)) { while(p2_01 <= 10) { p2_01 += 2; p2_02 += 2; } } SISWaitRetraceCRT2(pScrn); outSISIDXREG(SISPART2,0x01,p2_01); outSISIDXREG(SISPART2,0x02,p2_02); } } } } else if(pSiS->Chipset == PCI_CHIP_SIS6326) { if(pSiS->SiS6326Flags & SIS6326_TVDETECTED) { UChar tmp; int temp1, limit; tmp = SiS6326GetTVReg(pScrn,0x00); if(tmp & 0x04) { if((val >= -16) && (val <= 16)) { temp1 = (UShort)pSiS->tvy1; limit = (pSiS->SiS6326Flags & SIS6326_TVPAL) ? 625 : 525; if(val > 0) { temp1 += (val * 4); if(temp1 > limit) temp1 -= limit; } else { val = -val; temp1 -= (val * 2); if(temp1 <= 0) temp1 += (limit -1); } SiS6326SetTVReg(pScrn,0x11,(temp1 & 0xff)); tmp = SiS6326GetTVReg(pScrn,0x13); tmp &= ~0x30; tmp |= ((temp1 & 0x300) >> 4); SiS6326SetTVReg(pScrn,0x13,tmp); if(temp1 == 1) tmp = 0x10; else { if(pSiS->SiS6326Flags & SIS6326_TVPAL) { if((temp1 <= 3) || (temp1 >= (limit - 2))) tmp = 0x08; else if(temp1 < 22) tmp = 0x02; else tmp = 0x04; } else { if((temp1 <= 5) || (temp1 >= (limit - 4))) tmp = 0x08; else if(temp1 < 19) tmp = 0x02; else tmp = 0x04; } } SiS6326SetTVReg(pScrn,0x21,tmp); } } } } } int SiS_GetTVyposoffset(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->tvypos; else #endif return (int)pSiS->tvypos; } void SiS_SetTVxscale(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif pSiS->tvxscale = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->tvxscale = val; #endif if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { if((pSiS->VBFlags & CRT2_TV) && (pSiS->VBFlags2 & VB2_SISBRIDGE)) { if((val >= -16) && (val <= 16)) { UChar p2_44,p2_45,p2_46; int scalingfactor, mult; p2_44 = pSiS->p2_44; p2_45 = pSiS->p2_45 & 0x3f; p2_46 = pSiS->p2_46 & 0x07; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) { p2_44 = pSiSEnt->p2_44; p2_45 = pSiSEnt->p2_45 & 0x3f; p2_46 = pSiSEnt->p2_46 & 0x07; } #endif scalingfactor = (p2_46 << 13) | ((p2_45 & 0x1f) << 8) | p2_44; mult = 64; if(pSiS->VBFlags & TV_YPBPR) { if(pSiS->VBFlags & TV_YPBPR1080I) { mult = 190; } else if(pSiS->VBFlags & TV_YPBPR750P) { mult = 360; } } else if(pSiS->VBFlags & TV_HIVISION) { mult = 190; } if(val < 0) { p2_45 &= 0xdf; scalingfactor += ((-val) * mult); if(scalingfactor > 0xffff) scalingfactor = 0xffff; } else if(val > 0) { p2_45 &= 0xdf; scalingfactor -= (val * mult); if(scalingfactor < 1) scalingfactor = 1; } p2_44 = scalingfactor & 0xff; p2_45 &= 0xe0; p2_45 |= ((scalingfactor >> 8) & 0x1f); p2_46 = ((scalingfactor >> 13) & 0x07); SISWaitRetraceCRT2(pScrn); outSISIDXREG(SISPART2,0x44,p2_44); setSISIDXREG(SISPART2,0x45,0xC0,p2_45); if(!(pSiS->VBFlags2 & VB2_301)) { setSISIDXREG(SISPART2,0x46,0xF8,p2_46); } } } } } int SiS_GetTVxscale(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->tvxscale; else #endif return (int)pSiS->tvxscale; } void SiS_SetTVyscale(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif if(val < -4) val = -4; if(val > 3) val = 3; pSiS->tvyscale = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->tvyscale = val; #endif if(pSiS->VGAEngine == SIS_300_VGA || pSiS->VGAEngine == SIS_315_VGA) { if((pSiS->VBFlags & CRT2_TV) && (pSiS->VBFlags2 & VB2_SISBRIDGE)) { int srindex = -1, newvde, i = 0, j, vlimit, temp, vdediv; int hdclk = 0; UChar p3d4_34; Bool found = FALSE; Bool usentsc = FALSE; Bool is750p = FALSE; Bool is1080i = FALSE; Bool skipmoveup = FALSE; SiS_UnLockCRT2(pSiS->SiS_Pr); if((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & TV_YPBPR525P)) { vlimit = 525 - 7; vdediv = 1; usentsc = TRUE; } else if((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & TV_YPBPR625P)) { vlimit = 625 - 7; vdediv = 1; } else if((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & TV_YPBPR750P)) { vlimit = 750 - 7; vdediv = 1; is750p = TRUE; } else if(((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & TV_YPBPR1080I)) || (pSiS->VBFlags & TV_HIVISION)) { vlimit = (1125 - 7) / 2; vdediv = 2; is1080i = TRUE; } else { if( ((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & TV_YPBPR525I)) || ((!(pSiS->VBFlags & TV_YPBPR)) && (pSiS->VBFlags & (TV_NTSC | TV_PALM))) ) { usentsc = TRUE; } vlimit = usentsc ? 259 : 309; vdediv = 2; } inSISIDXREG(SISCR,0x34,p3d4_34); switch((p3d4_34 & 0x7f)) { case 0x50: /* 320x240 */ case 0x56: case 0x53: hdclk = 1; /* fall through */ case 0x2e: /* 640x480 */ case 0x44: case 0x62: if(is1080i) { srindex = 98; } else if(is750p) { srindex = 42; } else { srindex = usentsc ? 0 : 21; } break; case 0x31: /* 720x480 */ case 0x33: case 0x35: if(is1080i) { /* n/a */ } else if(is750p) { srindex = 49; } else { srindex = usentsc ? 7 : 21; } break; case 0x32: /* 720x576 */ case 0x34: case 0x36: case 0x5f: /* 768x576 */ case 0x60: case 0x61: if(is1080i) { /* n/a */ } else if(is750p) { srindex = 56; } else { srindex = usentsc ? 147 : 28; } break; case 0x70: /* 800x480 */ case 0x7a: case 0x76: if(is1080i) { srindex = 105; } else if(is750p) { srindex = 63; } else { srindex = usentsc ? 175 : 21; } break; case 0x51: /* 400x300 - hdclk mode */ case 0x57: case 0x54: hdclk = 1; /* fall through */ case 0x30: /* 800x600 */ case 0x47: case 0x63: if(is1080i) { srindex = 112; } else if(is750p) { srindex = 70; } else { srindex = usentsc ? 14 : 35; } break; case 0x1d: /* 960x540 */ case 0x1e: case 0x1f: if(is1080i) { srindex = 196; skipmoveup = TRUE; } break; case 0x20: /* 960x600 */ case 0x21: case 0x22: if(pSiS->VGAEngine == SIS_315_VGA && is1080i) { srindex = 203; } break; case 0x71: /* 1024x576 */ case 0x74: case 0x77: if(is1080i) { srindex = 119; } else if(is750p) { srindex = 77; } else { srindex = usentsc ? 182 : 189; } break; case 0x52: /* 512x384 */ case 0x58: case 0x5c: hdclk = 1; /* fall through */ case 0x38: /* 1024x768 */ case 0x4a: case 0x64: if(is1080i) { srindex = 126; } else if(is750p) { srindex = 84; } else if(!usentsc) { srindex = 154; } else if(vdediv == 1) { if(!hdclk) srindex = 168; } else { if(!hdclk) srindex = 161; } break; case 0x79: /* 1280x720 */ case 0x75: case 0x78: if(is1080i) { srindex = 133; } else if(is750p) { srindex = 91; } break; case 0x3a: /* 1280x1024 */ case 0x4d: case 0x65: if(is1080i) { srindex = 140; } break; } if(srindex < 0) return; if(pSiS->tvyscale != 0) { for(j = 0; j <= 1; j++) { for(i = 0; i <= 6; i++) { if(SiSTVVScale[srindex+i].sindex == pSiS->tvyscale) { found = TRUE; break; } } if(found) break; if(pSiS->tvyscale > 0) pSiS->tvyscale--; else pSiS->tvyscale++; } } #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->tvyscale = pSiS->tvyscale; #endif if(pSiS->tvyscale == 0) { UChar p2_0a = pSiS->p2_0a; UChar p2_2f = pSiS->p2_2f; UChar p2_30 = pSiS->p2_30; UChar p2_46 = pSiS->p2_46; UChar p2_47 = pSiS->p2_47; UChar p1scaling[9], p4scaling[9]; UChar *p2scaling; for(i = 0; i < 9; i++) { p1scaling[i] = pSiS->scalingp1[i]; p4scaling[i] = pSiS->scalingp4[i]; } p2scaling = &pSiS->scalingp2[0]; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) { p2_0a = pSiSEnt->p2_0a; p2_2f = pSiSEnt->p2_2f; p2_30 = pSiSEnt->p2_30; p2_46 = pSiSEnt->p2_46; p2_47 = pSiSEnt->p2_47; for(i = 0; i < 9; i++) { p1scaling[i] = pSiSEnt->scalingp1[i]; p4scaling[i] = pSiSEnt->scalingp4[i]; } p2scaling = &pSiSEnt->scalingp2[0]; } #endif SISWaitRetraceCRT2(pScrn); if(pSiS->VBFlags2 & VB2_SISTAP4SCALER) { for(i = 0; i < 64; i++) { outSISIDXREG(SISPART2,(0xc0 + i),p2scaling[i]); } } for(i = 0; i < 9; i++) { outSISIDXREG(SISPART1,SiSScalingP1Regs[i],p1scaling[i]); } for(i = 0; i < 9; i++) { outSISIDXREG(SISPART4,SiSScalingP4Regs[i],p4scaling[i]); } setSISIDXREG(SISPART2,0x0a,0x7f,(p2_0a & 0x80)); outSISIDXREG(SISPART2,0x2f,p2_2f); setSISIDXREG(SISPART2,0x30,0x3f,(p2_30 & 0xc0)); if(!(pSiS->VBFlags2 & VB2_301)) { setSISIDXREG(SISPART2,0x46,0x9f,(p2_46 & 0x60)); outSISIDXREG(SISPART2,0x47,p2_47); } } else { int realvde, myypos, watchdog = 32; unsigned short temp1, temp2, vgahde, vgaht, vgavt; int p1div = 1; ULong calctemp; srindex += i; newvde = SiSTVVScale[srindex].ScaleVDE; realvde = SiSTVVScale[srindex].RealVDE; if(vdediv == 1) p1div = 2; if(!skipmoveup) { do { inSISIDXREG(SISPART2,0x01,temp); temp = vlimit - ((temp & 0x7f) / p1div); if((temp - (((newvde / vdediv) - 2) + 9)) > 0) break; myypos = pSiS->tvypos - 1; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) myypos = pSiSEnt->tvypos - 1; #endif SiS_SetTVyposoffset(pScrn, myypos); } while(watchdog--); } SISWaitRetraceCRT2(pScrn); if(pSiS->VBFlags2 & VB2_SISTAP4SCALER) { SiS_CalcXTapScaler(pSiS->SiS_Pr, realvde, newvde, 4, FALSE); } if(!(pSiS->VBFlags2 & VB2_301)) { temp = (newvde / vdediv) - 3; setSISIDXREG(SISPART2,0x46,0x9f,((temp & 0x0300) >> 3)); outSISIDXREG(SISPART2,0x47,(temp & 0xff)); } inSISIDXREG(SISPART1,0x0a,temp1); inSISIDXREG(SISPART1,0x0c,temp2); vgahde = ((temp2 & 0xf0) << 4) | temp1; if(pSiS->VGAEngine == SIS_300_VGA) { vgahde -= 12; } else { vgahde -= 16; if(hdclk) vgahde <<= 1; } vgaht = SiSTVVScale[srindex].reg[0]; temp1 = vgaht; if((pSiS->VGAEngine == SIS_315_VGA) && hdclk) temp1 >>= 1; temp1--; outSISIDXREG(SISPART1,0x08,(temp1 & 0xff)); setSISIDXREG(SISPART1,0x09,0x0f,((temp1 >> 4) & 0xf0)); temp2 = (vgaht - vgahde) >> 2; if(pSiS->VGAEngine == SIS_300_VGA) { temp1 = vgahde + 12 + temp2; temp2 = temp1 + (temp2 << 1); } else { temp1 = vgahde; if(hdclk) { temp1 >>= 1; temp2 >>= 1; } temp2 >>= 1; temp1 = temp1 + 16 + temp2; temp2 = temp1 + temp2; } outSISIDXREG(SISPART1,0x0b,(temp1 & 0xff)); setSISIDXREG(SISPART1,0x0c,0xf0,((temp1 >> 8) & 0x0f)); outSISIDXREG(SISPART1,0x0d,(temp2 & 0xff)); vgavt = SiSTVVScale[srindex].reg[1]; temp1 = vgavt - 1; if(pSiS->VGAEngine == SIS_315_VGA) temp1--; outSISIDXREG(SISPART1,0x0e,(temp1 & 0xff)); setSISIDXREG(SISPART1,0x12,0xf8,((temp1 >> 8 ) & 0x07)); if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->ChipType >= SIS_661)) { temp1 = (vgavt + SiSTVVScale[srindex].RealVDE) >> 1; temp2 = ((vgavt - SiSTVVScale[srindex].RealVDE) >> 4) + temp1 + 1; } else { temp1 = (vgavt - SiSTVVScale[srindex].RealVDE) >> 2; temp2 = (temp1 < 4) ? 4 : temp1; temp1 += SiSTVVScale[srindex].RealVDE; temp2 = (temp2 >> 2) + temp1 + 1; } outSISIDXREG(SISPART1,0x10,(temp1 & 0xff)); setSISIDXREG(SISPART1,0x11,0x8f,((temp1 >> 4) & 0x70)); setSISIDXREG(SISPART1,0x11,0xf0,(temp2 & 0x0f)); setSISIDXREG(SISPART2,0x0a,0x7f,((SiSTVVScale[srindex].reg[2] >> 8) & 0x80)); outSISIDXREG(SISPART2,0x2f,((newvde / vdediv) - 2)); setSISIDXREG(SISPART2,0x30,0x3f,((((newvde / vdediv) - 2) >> 2) & 0xc0)); outSISIDXREG(SISPART4,0x13,(SiSTVVScale[srindex].reg[2] & 0xff)); outSISIDXREG(SISPART4,0x14,(SiSTVVScale[srindex].reg[3] & 0xff)); setSISIDXREG(SISPART4,0x15,0x7f,((SiSTVVScale[srindex].reg[3] >> 1) & 0x80)); temp1 = vgaht - 1; outSISIDXREG(SISPART4,0x16,(temp1 & 0xff)); setSISIDXREG(SISPART4,0x15,0x87,((temp1 >> 5) & 0x78)); temp1 = vgavt - 1; outSISIDXREG(SISPART4,0x17,(temp1 & 0xff)); setSISIDXREG(SISPART4,0x15,0xf8,((temp1 >> 8) & 0x07)); outSISIDXREG(SISPART4,0x18,0x00); setSISIDXREG(SISPART4,0x19,0xf0,0x00); inSISIDXREG(SISPART4,0x0e,temp1); if(is1080i) { if(!(temp1 & 0xe0)) newvde >>= 1; } temp = 0x40; if(realvde <= newvde) temp = 0; else realvde -= newvde; calctemp = (realvde * 256 * 1024) / newvde; if((realvde * 256 * 1024) % newvde) calctemp++; outSISIDXREG(SISPART4,0x1b,(calctemp & 0xff)); outSISIDXREG(SISPART4,0x1a,((calctemp >> 8) & 0xff)); setSISIDXREG(SISPART4,0x19,0x8f,(((calctemp >> 12) & 0x70) | temp)); } } } } int SiS_GetTVyscale(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) return (int)pSiSEnt->tvyscale; else #endif return (int)pSiS->tvyscale; } void SiS_SetSISCRT1SaturationGain(ScrnInfoPtr pScrn, int val) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif pSiS->siscrt1satgain = val; #ifdef SISDUALHEAD if(pSiSEnt) pSiSEnt->siscrt1satgain = val; #endif if(!(pSiS->SiS_SD3_Flags & SiS_SD3_CRT1SATGAIN)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif if((val >= 0) && (val <= 7)) { setSISIDXREG(SISCR,0x53,0xE3, (val << 2)); } } int SiS_GetSISCRT1SaturationGain(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int result = pSiS->siscrt1satgain; UChar temp; #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiSEnt && pSiS->DualHeadMode) result = pSiSEnt->siscrt1satgain; #endif if(!(pSiS->SiS_SD3_Flags & SiS_SD3_CRT1SATGAIN)) return result; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif inSISIDXREG(SISCR, 0x53, temp); return (int)((temp >> 2) & 0x07); } /* Calc dotclock from registers */ static int SiSGetClockFromRegs(UChar sr2b, UChar sr2c) { float num, denum, postscalar, divider; int myclock; divider = (sr2b & 0x80) ? 2.0 : 1.0; postscalar = (sr2c & 0x80) ? ( (((sr2c >> 5) & 0x03) == 0x02) ? 6.0 : 8.0 ) : ( ((sr2c >> 5) & 0x03) + 1.0 ); num = (sr2b & 0x7f) + 1.0; denum = (sr2c & 0x1f) + 1.0; myclock = (int)((14318 * (divider / postscalar) * (num / denum)) / 1000); return myclock; } #ifdef SISDUALHEAD static void SiS_SetDHFlags(SISPtr pSiS, unsigned int misc, unsigned int sd2) { SISEntPtr pSiSEnt = pSiS->entityPrivate; if(pSiS->DualHeadMode) { if(pSiSEnt->pScrn_1) { SISPTR(pSiSEnt->pScrn_1)->MiscFlags |= misc; SISPTR(pSiSEnt->pScrn_1)->SiS_SD2_Flags |= sd2; } if(pSiSEnt->pScrn_2) { SISPTR(pSiSEnt->pScrn_2)->MiscFlags |= misc; SISPTR(pSiSEnt->pScrn_2)->SiS_SD2_Flags |= sd2; } } } #endif /* PostSetMode: * -) Disable CRT1 for saving bandwidth. This doesn't work with VESA; * VESA uses the bridge in SlaveMode and switching CRT1 off while * the bridge is in SlaveMode not that clever... * -) Check if overlay can be used (depending on dotclock) * -) Check if Panel Scaler is active on LVDS for overlay re-scaling * -) Save TV registers for further processing * -) Apply TV settings */ static void SiSPostSetMode(ScrnInfoPtr pScrn, SISRegPtr sisReg) { SISPtr pSiS = SISPTR(pScrn); #ifdef SISDUALHEAD SISEntPtr pSiSEnt = pSiS->entityPrivate; #endif UChar usScratchCR17, sr2b, sr2c, tmpreg; int myclock1, myclock2, mycoldepth1, mycoldepth2, temp; Bool flag = FALSE; Bool doit = TRUE; Bool IsInSlaveMode; #ifdef TWDEBUG xf86DrvMsg(pScrn->scrnIndex, X_INFO, "CRT1off is %d\n", pSiS->CRT1off); #endif pSiS->CRT1isoff = pSiS->CRT1off; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif SiSFixupSR11(pScrn); IsInSlaveMode = SiSBridgeIsInSlaveMode(pScrn); if((!pSiS->UseVESA) && (pSiS->VBFlags & CRT2_ENABLE)) { if(pSiS->VBFlags != pSiS->VBFlags_backup) { pSiS->VBFlags = pSiS->VBFlags_backup; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "VBFlags restored to %0x\n", pSiS->VBFlags); } /* -) We can't switch off CRT1 if bridge is in SlaveMode. * -) If we change to a SlaveMode-Mode (like 512x384), we * need to adapt VBFlags for eg. Xv. */ #ifdef SISDUALHEAD if(!pSiS->DualHeadMode) { #endif if(IsInSlaveMode) { doit = FALSE; temp = pSiS->VBFlags; pSiS->VBFlags &= (~VB_DISPMODE_SINGLE); pSiS->VBFlags |= (VB_DISPMODE_MIRROR | DISPTYPE_DISP1); if(temp != pSiS->VBFlags) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "VBFlags changed to 0x%0x\n", pSiS->VBFlags); } } #ifdef SISDUALHEAD } #endif if(pSiS->VGAEngine == SIS_315_VGA) { if((pSiS->CRT1off) && (doit)) { orSISIDXREG(SISCR,pSiS->myCR63,0x40); orSISIDXREG(SISSR,0x1f,0xc0); andSISIDXREG(SISSR,0x07,~0x10); andSISIDXREG(SISSR,0x06,0xe2); andSISIDXREG(SISSR,0x31,0xcf); outSISIDXREG(SISSR,0x2b,0x1b); outSISIDXREG(SISSR,0x2c,0xe1); outSISIDXREG(SISSR,0x2d,0x01); outSISIDXREG(SISSR, 0x00, 0x01); /* Synchronous Reset */ usleep(10000); outSISIDXREG(SISSR, 0x00, 0x03); /* End Reset */ } else { andSISIDXREG(SISCR,pSiS->myCR63,0xBF); andSISIDXREG(SISSR,0x1f,0x3f); orSISIDXREG(SISSR,0x07,0x10); } } else { if(doit) { inSISIDXREG(SISCR, 0x17, usScratchCR17); if(pSiS->CRT1off) { if(usScratchCR17 & 0x80) { flag = TRUE; usScratchCR17 &= ~0x80; } orSISIDXREG(SISSR,0x1f,0xc0); } else { if(!(usScratchCR17 & 0x80)) { flag = TRUE; usScratchCR17 |= 0x80; } andSISIDXREG(SISSR,0x1f,0x3f); } /* Reset only if status changed */ if(flag) { outSISIDXREG(SISCR, 0x17, usScratchCR17); outSISIDXREG(SISSR, 0x00, 0x01); /* Synchronous Reset */ usleep(10000); outSISIDXREG(SISSR, 0x00, 0x03); /* End Reset */ } } } } /* Set bridge to "disable CRT2" mode if CRT2 is disabled, LCD-A is enabled */ /* (Not needed for CRT1=VGA since CRT2 will really be disabled then) */ #ifdef SISDUALHEAD if(!pSiS->DualHeadMode) { #endif if((pSiS->VGAEngine == SIS_315_VGA) && (pSiS->VBFlags2 & VB2_SISLCDABRIDGE)) { if((!pSiS->UseVESA) && (!(pSiS->VBFlags & CRT2_ENABLE)) && (pSiS->VBFlags & CRT1_LCDA)) { if(!IsInSlaveMode) { andSISIDXREG(SISPART4,0x0d,~0x07); } } } #ifdef SISDUALHEAD } #endif /* Reset flags */ pSiS->MiscFlags &= ~( MISC_CRT1OVERLAY | MISC_CRT2OVERLAY | MISC_CRT1OVERLAYGAMMA | MISC_SIS760ONEOVERLAY | MISC_PANELLINKSCALER | MISC_STNMODE | MISC_TVNTSC1024); pSiS->SiS_SD2_Flags &= ~SiS_SD2_SIS760ONEOVL; #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiSEnt->pScrn_1) { SISPTR(pSiSEnt->pScrn_1)->MiscFlags &= ~(MISC_SIS760ONEOVERLAY | MISC_CRT1OVERLAY | MISC_CRT2OVERLAY | MISC_CRT1OVERLAYGAMMA | MISC_PANELLINKSCALER | MISC_STNMODE | MISC_TVNTSC1024); SISPTR(pSiSEnt->pScrn_1)->SiS_SD2_Flags &= ~SiS_SD2_SIS760ONEOVL; } if(pSiSEnt->pScrn_2) { SISPTR(pSiSEnt->pScrn_2)->MiscFlags &= ~(MISC_SIS760ONEOVERLAY | MISC_CRT1OVERLAY | MISC_CRT2OVERLAY | MISC_CRT1OVERLAYGAMMA | MISC_PANELLINKSCALER | MISC_STNMODE | MISC_TVNTSC1024); SISPTR(pSiSEnt->pScrn_2)->SiS_SD2_Flags &= ~SiS_SD2_SIS760ONEOVL; } } #endif /* Determine if the video overlay can be used */ if(!pSiS->NoXvideo) { int clklimit1=0, clklimit2=0, clklimitg=0; Bool OverlayHandled = FALSE; inSISIDXREG(SISSR,0x2b,sr2b); inSISIDXREG(SISSR,0x2c,sr2c); myclock1 = myclock2 = SiSGetClockFromRegs(sr2b, sr2c); inSISIDXREG(SISSR,0x06,tmpreg); switch((tmpreg & 0x1c) >> 2) { case 0: mycoldepth1 = 1; break; case 1: case 2: mycoldepth1 = 2; break; default: mycoldepth1 = 4; } mycoldepth2 = mycoldepth1; if((!IsInSlaveMode) && (pSiS->VBFlags & CRT2_ENABLE)) { if(pSiS->VBFlags2 & VB2_SISBRIDGE) { inSISIDXREG(SISPART4,0x0a,sr2b); inSISIDXREG(SISPART4,0x0b,sr2c); } else { inSISIDXREG(SISSR,0x2e,sr2b); inSISIDXREG(SISSR,0x2f,sr2c); } myclock2 = SiSGetClockFromRegs(sr2b, sr2c); inSISIDXREG(SISPART1,0x00,tmpreg); tmpreg &= 0x0f; switch(tmpreg) { case 8: mycoldepth2 = 1; break; case 4: case 2: mycoldepth2 = 2; break; default: mycoldepth2 = 4; } } switch(pSiS->ChipType) { case SIS_300: case SIS_540: case SIS_630: case SIS_730: clklimit1 = clklimit2 = clklimitg = 150; break; case SIS_550: case SIS_650: case SIS_740: clklimit1 = clklimit2 = 175; /* verified for 65x */ clklimitg = 166; /* ? */ break; case SIS_661: case SIS_741: clklimit1 = clklimit2 = 190; /* ? */ clklimitg = 180; /* ? */ break; case SIS_760: case SIS_761: clklimit1 = clklimit2 = 190; /* ? */ if(pSiS->ChipFlags & SiSCF_760LFB) { /* LFB only or hybrid */ clklimit1 = clklimit2 = 220; /* ? */ } clklimitg = 200; /* ? */ if(pSiS->SiS_SD2_Flags & SiS_SD2_SUPPORT760OO) { /* UMA only */ Bool OnlyOne = FALSE, NoOverlay = FALSE; int dotclocksum = 0; if(pSiS->VBFlags & DISPTYPE_CRT1) dotclocksum += myclock1; if((!IsInSlaveMode) && (pSiS->VBFlags & CRT2_ENABLE)) dotclocksum += myclock2; /* TODO: Find out under what circumstances only one * overlay is usable in UMA-only mode. * This is not entirely accurate; the overlay * scaler also requires some time, so even though * the dotclocks are below these values, some * distortions in the overlay may occure. * Solution: Don't use a 760 with shared memory. */ if( (pSiS->VBFlags & DISPTYPE_CRT1) && (pSiS->VBFlags & CRT2_ENABLE) && (mycoldepth1 != mycoldepth2) ) { /* 0. If coldepths are different (only possible in dual head mode), * I have no idea to calculate the limits; hence, allow only one * overlay in all cases. */ OnlyOne = TRUE; } else if(pSiS->MemClock < 150000) { /* 1. MCLK <150: If someone seriously considers using such * slow RAM, so be it. Only one overlay in call cases. */ OnlyOne = TRUE; } else if(pSiS->MemClock < 170000) { /* 2. MCLK 166 */ switch(pSiS->CurrentLayout.bitsPerPixel) { case 32: if(dotclocksum > 133) OnlyOne = TRUE; /* One overlay; verified */ if(dotclocksum > 180) NoOverlay = TRUE; /* No overlay; verified */ break; case 16: if(dotclocksum > 175) OnlyOne = TRUE; /* One overlay; verified */ if(dotclocksum > 260) NoOverlay = TRUE;; /* No overlay; FIXME */ break; } } else if(pSiS->MemClock < 210000) { /* 3. MCLK 200 */ switch(pSiS->CurrentLayout.bitsPerPixel) { case 32: if(dotclocksum > 160) OnlyOne = TRUE; /* One overlay; FIXME */ if(dotclocksum > 216) NoOverlay = TRUE;; /* No overlay; FIXME */ break; case 16: if(dotclocksum > 210) OnlyOne = TRUE; /* One overlay; FIXME */ if(dotclocksum > 312) NoOverlay = TRUE;; /* No overlay; FIXME */ break; } } if(OnlyOne || NoOverlay) { ULong tmpflags = 0; if(!NoOverlay) { if(myclock1 <= clklimit1) tmpflags |= MISC_CRT1OVERLAY; if(myclock2 <= clklimit2) tmpflags |= MISC_CRT2OVERLAY; if(myclock1 <= clklimitg) tmpflags |= MISC_CRT1OVERLAYGAMMA; pSiS->MiscFlags |= tmpflags; } pSiS->MiscFlags |= MISC_SIS760ONEOVERLAY; pSiS->SiS_SD2_Flags |= SiS_SD2_SIS760ONEOVL; #ifdef SISDUALHEAD SiS_SetDHFlags(pSiS, (tmpflags | MISC_SIS760ONEOVERLAY), SiS_SD2_SIS760ONEOVL); #endif OverlayHandled = TRUE; } xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, 3, "SiS76x/UMA: %s video overlay(s) available in current mode\n", NoOverlay ? "no" : ((pSiS->MiscFlags & MISC_SIS760ONEOVERLAY) ? "one" : "two")); #ifdef TWDEBUG xf86DrvMsg(0, 0, "SiS760: Memclock %d, c1 %d/%d c2 %d/%d, sum %d / %x\n", pSiS->MemClock, myclock1, mycoldepth1, myclock2, mycoldepth2, dotclocksum, pSiS->SiS_SD2_Flags); #endif } break; case SIS_660: clklimit1 = clklimit2 = 200; /* ? */ if(pSiS->ChipFlags & SiSCF_760LFB) { /* LFB only */ clklimit1 = clklimit2 = 220; } clklimitg = 200; /* ? */ break; case SIS_315H: case SIS_315: case SIS_315PRO: case SIS_330: clklimit1 = clklimit2 = 180; /* ? */ clklimitg = 166; /* ? */ break; case SIS_340: /* ? */ case XGI_20: case XGI_40: clklimit1 = clklimit2 = 240; /* ? */ clklimitg = 200; /* ? */ break; } if(!OverlayHandled) { ULong tmpflags = 0; if(myclock1 <= clklimit1) tmpflags |= MISC_CRT1OVERLAY; if(myclock2 <= clklimit2) tmpflags |= MISC_CRT2OVERLAY; if(myclock1 <= clklimitg) tmpflags |= MISC_CRT1OVERLAYGAMMA; pSiS->MiscFlags |= tmpflags; #ifdef SISDUALHEAD SiS_SetDHFlags(pSiS, tmpflags, 0); #endif if(!(pSiS->MiscFlags & MISC_CRT1OVERLAY)) { #ifdef SISDUALHEAD if((!pSiS->DualHeadMode) || (pSiS->SecondHead)) #endif xf86DrvMsgVerb(pScrn->scrnIndex, X_WARNING, 3, "Current dotclock (%dMhz) too high for video overlay on CRT1\n", myclock1); } if((pSiS->VBFlags & CRT2_ENABLE) && (!(pSiS->MiscFlags & MISC_CRT2OVERLAY))) { #ifdef SISDUALHEAD if((!pSiS->DualHeadMode) || (!pSiS->SecondHead)) #endif xf86DrvMsgVerb(pScrn->scrnIndex, X_WARNING, 3, "Current dotclock (%dMhz) too high for video overlay on CRT2\n", myclock2); } } } /* Determine if the Panel Link scaler is active */ if(pSiS->VBFlags & (CRT2_LCD | CRT1_LCDA)) { ULong tmpflags = 0; if(pSiS->VGAEngine == SIS_300_VGA) { if(pSiS->VBFlags2 & (VB2_LVDS | VB2_30xBDH)) { inSISIDXREG(SISPART1,0x1e,tmpreg); tmpreg &= 0x3f; if(tmpreg) tmpflags |= MISC_PANELLINKSCALER; } } else { if((pSiS->VBFlags2 & (VB2_LVDS | VB2_30xBDH)) || (pSiS->VBFlags & CRT1_LCDA)) { inSISIDXREG(SISPART1,0x35,tmpreg); tmpreg &= 0x04; if(!tmpreg) tmpflags |= MISC_PANELLINKSCALER; } } pSiS->MiscFlags |= tmpflags; #ifdef SISDUALHEAD SiS_SetDHFlags(pSiS, tmpflags, 0); #endif } /* Determine if STN is active */ if(pSiS->ChipType == SIS_550) { if((pSiS->VBFlags & CRT2_LCD) && (pSiS->FSTN || pSiS->DSTN)) { inSISIDXREG(SISCR,0x34,tmpreg); tmpreg &= 0x7f; if(tmpreg == 0x5a || tmpreg == 0x5b) { pSiS->MiscFlags |= MISC_STNMODE; #ifdef SISDUALHEAD SiS_SetDHFlags(pSiS, MISC_STNMODE, 0); #endif } } } /* Determine if our very special TV mode is active */ if((pSiS->VBFlags2 & VB2_SISBRIDGE) && (pSiS->VBFlags & CRT2_TV) && (!(pSiS->VBFlags & TV_HIVISION))) { if( ((pSiS->VBFlags & TV_YPBPR) && (pSiS->VBFlags & TV_YPBPR525I)) || ((!(pSiS->VBFlags & TV_YPBPR)) && (pSiS->VBFlags & (TV_NTSC | TV_PALM))) ) { inSISIDXREG(SISCR,0x34,tmpreg); tmpreg &= 0x7f; if((tmpreg == 0x64) || (tmpreg == 0x4a) || (tmpreg == 0x38)) { pSiS->MiscFlags |= MISC_TVNTSC1024; #ifdef SISDUALHEAD SiS_SetDHFlags(pSiS, MISC_TVNTSC1024, 0); #endif } } } if(pSiS->VGAEngine == SIS_315_VGA) { int i; #ifdef SISVRAMQ /* Re-Enable and reset command queue */ SiSEnableTurboQueue(pScrn); #endif /* Get HWCursor register contents for backup */ for(i = 0; i < 16; i++) { pSiS->HWCursorBackup[i] = SIS_MMIO_IN32(pSiS->IOBase, 0x8500 + (i << 2)); } if(pSiS->ChipType >= SIS_330) { /* Enable HWCursor protection (Y pos as trigger) */ andSISIDXREG(SISCR, 0x5b, ~0x30); } } /* Re-initialize accelerator engine */ /* (We are sync'ed here) */ if(!pSiS->NoAccel) { if(pSiS->InitAccel) { (pSiS->InitAccel)(pScrn); } } /* Set display device gamma (for SISCTRL) */ if(pSiS->VBFlags & CRT1_LCDA) pSiS->CRT1MonGamma = pSiS->CRT2LCDMonitorGamma; else pSiS->CRT1MonGamma = pSiS->CRT1VGAMonitorGamma; if(pSiS->VBFlags & CRT2_LCD) pSiS->CRT2MonGamma = pSiS->CRT2LCDMonitorGamma; else if(pSiS->VBFlags & CRT2_TV) { if(pSiS->VBFlags & TV_YPBPR) pSiS->CRT2MonGamma = 2200; /* */ else if(pSiS->VBFlags & TV_HIVISION) pSiS->CRT2MonGamma = 2200; /* ? */ else if(pSiS->VBFlags & TV_NTSC) pSiS->CRT2MonGamma = 2200; /* NTSC */ else pSiS->CRT2MonGamma = 2800; /* All PAL modes? */ } else if(pSiS->VBFlags & CRT2_VGA) pSiS->CRT2MonGamma = pSiS->CRT2VGAMonitorGamma; else pSiS->CRT2MonGamma = 0; /* Unknown */ /* Reset XV display properties (such as number of overlays, etc) */ /* (And copy monitor gamma) */ #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiSEnt->pScrn_1) { if(SISPTR(pSiSEnt->pScrn_1)->ResetXvDisplay) { (SISPTR(pSiSEnt->pScrn_1)->ResetXvDisplay)(pSiSEnt->pScrn_1); } SISPTR(pSiSEnt->pScrn_1)->CRT1MonGamma = pSiS->CRT1MonGamma; SISPTR(pSiSEnt->pScrn_1)->CRT2MonGamma = pSiS->CRT2MonGamma; } if(pSiSEnt->pScrn_2) { if(SISPTR(pSiSEnt->pScrn_2)->ResetXvDisplay) { (SISPTR(pSiSEnt->pScrn_1)->ResetXvDisplay)(pSiSEnt->pScrn_2); } SISPTR(pSiSEnt->pScrn_2)->CRT1MonGamma = pSiS->CRT1MonGamma; SISPTR(pSiSEnt->pScrn_2)->CRT2MonGamma = pSiS->CRT2MonGamma; } } else { #endif if(pSiS->ResetXvDisplay) { (pSiS->ResetXvDisplay)(pScrn); } #ifdef SISDUALHEAD } #endif /* Reset XV gamma correction */ if(pSiS->ResetXvGamma) { (pSiS->ResetXvGamma)(pScrn); } /* Reset various display parameters */ { int val = pSiS->siscrt1satgain; #ifdef SISDUALHEAD if(pSiS->DualHeadMode && pSiSEnt) val = pSiSEnt->siscrt1satgain; #endif SiS_SetSISCRT1SaturationGain(pScrn, val); } /* Apply TV settings given by options Do this even in DualHeadMode: - if this is called by SetModeCRT1, CRT2 mode has been reset by SetModeCRT1 - if this is called by SetModeCRT2, CRT2 mode has changed (duh!) -> Hence, in both cases, the settings must be re-applied. */ if(pSiS->VBFlags & CRT2_TV) { int val; if(pSiS->VBFlags2 & VB2_CHRONTEL) { int mychtvlumabandwidthcvbs = pSiS->chtvlumabandwidthcvbs; int mychtvlumabandwidthsvideo = pSiS->chtvlumabandwidthsvideo; int mychtvlumaflickerfilter = pSiS->chtvlumaflickerfilter; int mychtvchromabandwidth = pSiS->chtvchromabandwidth; int mychtvchromaflickerfilter = pSiS->chtvchromaflickerfilter; int mychtvcvbscolor = pSiS->chtvcvbscolor; int mychtvtextenhance = pSiS->chtvtextenhance; int mychtvcontrast = pSiS->chtvcontrast; int mytvxpos = pSiS->tvxpos; int mytvypos = pSiS->tvypos; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) { mychtvlumabandwidthcvbs = pSiSEnt->chtvlumabandwidthcvbs; mychtvlumabandwidthsvideo = pSiSEnt->chtvlumabandwidthsvideo; mychtvlumaflickerfilter = pSiSEnt->chtvlumaflickerfilter; mychtvchromabandwidth = pSiSEnt->chtvchromabandwidth; mychtvchromaflickerfilter = pSiSEnt->chtvchromaflickerfilter; mychtvcvbscolor = pSiSEnt->chtvcvbscolor; mychtvtextenhance = pSiSEnt->chtvtextenhance; mychtvcontrast = pSiSEnt->chtvcontrast; mytvxpos = pSiSEnt->tvxpos; mytvypos = pSiSEnt->tvypos; } #endif if((val = mychtvlumabandwidthcvbs) != -1) { SiS_SetCHTVlumabandwidthcvbs(pScrn, val); } if((val = mychtvlumabandwidthsvideo) != -1) { SiS_SetCHTVlumabandwidthsvideo(pScrn, val); } if((val = mychtvlumaflickerfilter) != -1) { SiS_SetCHTVlumaflickerfilter(pScrn, val); } if((val = mychtvchromabandwidth) != -1) { SiS_SetCHTVchromabandwidth(pScrn, val); } if((val = mychtvchromaflickerfilter) != -1) { SiS_SetCHTVchromaflickerfilter(pScrn, val); } if((val = mychtvcvbscolor) != -1) { SiS_SetCHTVcvbscolor(pScrn, val); } if((val = mychtvtextenhance) != -1) { SiS_SetCHTVtextenhance(pScrn, val); } if((val = mychtvcontrast) != -1) { SiS_SetCHTVcontrast(pScrn, val); } /* Backup default TV position registers */ switch(pSiS->ChrontelType) { case CHRONTEL_700x: pSiS->tvx = SiS_GetCH700x(pSiS->SiS_Pr, 0x0a); pSiS->tvx |= (((SiS_GetCH700x(pSiS->SiS_Pr, 0x08) & 0x02) >> 1) << 8); pSiS->tvy = SiS_GetCH700x(pSiS->SiS_Pr, 0x0b); pSiS->tvy |= ((SiS_GetCH700x(pSiS->SiS_Pr, 0x08) & 0x01) << 8); #ifdef SISDUALHEAD if(pSiSEnt) { pSiSEnt->tvx = pSiS->tvx; pSiSEnt->tvy = pSiS->tvy; } #endif break; case CHRONTEL_701x: /* Not supported by hardware */ break; } if((val = mytvxpos) != 0) { SiS_SetTVxposoffset(pScrn, val); } if((val = mytvypos) != 0) { SiS_SetTVyposoffset(pScrn, val); } } if(pSiS->VBFlags2 & VB2_301) { int mysistvedgeenhance = pSiS->sistvedgeenhance; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) { mysistvedgeenhance = pSiSEnt->sistvedgeenhance; } #endif if((val = mysistvedgeenhance) != -1) { SiS_SetSISTVedgeenhance(pScrn, val); } } if(pSiS->VBFlags2 & VB2_SISBRIDGE) { int mysistvantiflicker = pSiS->sistvantiflicker; int mysistvsaturation = pSiS->sistvsaturation; int mysistvcolcalibf = pSiS->sistvcolcalibf; int mysistvcolcalibc = pSiS->sistvcolcalibc; int mysistvcfilter = pSiS->sistvcfilter; int mysistvyfilter = pSiS->sistvyfilter; int mytvxpos = pSiS->tvxpos; int mytvypos = pSiS->tvypos; int mytvxscale = pSiS->tvxscale; int mytvyscale = pSiS->tvyscale; int i; ULong cbase; UChar ctemp; #ifdef SISDUALHEAD if(pSiSEnt && pSiS->DualHeadMode) { mysistvantiflicker = pSiSEnt->sistvantiflicker; mysistvsaturation = pSiSEnt->sistvsaturation; mysistvcolcalibf = pSiSEnt->sistvcolcalibf; mysistvcolcalibc = pSiSEnt->sistvcolcalibc; mysistvcfilter = pSiSEnt->sistvcfilter; mysistvyfilter = pSiSEnt->sistvyfilter; mytvxpos = pSiSEnt->tvxpos; mytvypos = pSiSEnt->tvypos; mytvxscale = pSiSEnt->tvxscale; mytvyscale = pSiSEnt->tvyscale; } #endif /* Backup default TV position, scale and colcalib registers */ inSISIDXREG(SISPART2,0x1f,pSiS->p2_1f); inSISIDXREG(SISPART2,0x20,pSiS->p2_20); inSISIDXREG(SISPART2,0x2b,pSiS->p2_2b); inSISIDXREG(SISPART2,0x42,pSiS->p2_42); inSISIDXREG(SISPART2,0x43,pSiS->p2_43); inSISIDXREG(SISPART2,0x01,pSiS->p2_01); inSISIDXREG(SISPART2,0x02,pSiS->p2_02); inSISIDXREG(SISPART2,0x44,pSiS->p2_44); inSISIDXREG(SISPART2,0x45,pSiS->p2_45); if(!(pSiS->VBFlags2 & VB2_301)) { inSISIDXREG(SISPART2,0x46,pSiS->p2_46); } else { pSiS->p2_46 = 0; } inSISIDXREG(SISPART2,0x0a,pSiS->p2_0a); inSISIDXREG(SISPART2,0x31,cbase); cbase = (cbase & 0x7f) << 8; inSISIDXREG(SISPART2,0x32,ctemp); cbase = (cbase | ctemp) << 8; inSISIDXREG(SISPART2,0x33,ctemp); cbase = (cbase | ctemp) << 8; inSISIDXREG(SISPART2,0x34,ctemp); pSiS->sistvccbase = (cbase | ctemp); inSISIDXREG(SISPART2,0x35,pSiS->p2_35); inSISIDXREG(SISPART2,0x36,pSiS->p2_36); inSISIDXREG(SISPART2,0x37,pSiS->p2_37); inSISIDXREG(SISPART2,0x38,pSiS->p2_38); if(!(pSiS->VBFlags2 & VB2_301)) { inSISIDXREG(SISPART2,0x47,pSiS->p2_47); inSISIDXREG(SISPART2,0x48,pSiS->p2_48); inSISIDXREG(SISPART2,0x49,pSiS->p2_49); inSISIDXREG(SISPART2,0x4a,pSiS->p2_4a); } inSISIDXREG(SISPART2,0x2f,pSiS->p2_2f); inSISIDXREG(SISPART2,0x30,pSiS->p2_30); for(i=0; i<9; i++) { inSISIDXREG(SISPART1,SiSScalingP1Regs[i],pSiS->scalingp1[i]); } for(i=0; i<9; i++) { inSISIDXREG(SISPART4,SiSScalingP4Regs[i],pSiS->scalingp4[i]); } if(pSiS->VBFlags2 & VB2_SISTAP4SCALER) { for(i=0; i<64; i++) { inSISIDXREG(SISPART2,(0xc0 + i),pSiS->scalingp2[i]); } } #ifdef SISDUALHEAD if(pSiSEnt) { pSiSEnt->p2_1f = pSiS->p2_1f; pSiSEnt->p2_20 = pSiS->p2_20; pSiSEnt->p2_42 = pSiS->p2_42; pSiSEnt->p2_43 = pSiS->p2_43; pSiSEnt->p2_2b = pSiS->p2_2b; pSiSEnt->p2_01 = pSiS->p2_01; pSiSEnt->p2_02 = pSiS->p2_02; pSiSEnt->p2_44 = pSiS->p2_44; pSiSEnt->p2_45 = pSiS->p2_45; pSiSEnt->p2_46 = pSiS->p2_46; pSiSEnt->p2_0a = pSiS->p2_0a; pSiSEnt->sistvccbase = pSiS->sistvccbase; pSiSEnt->p2_35 = pSiS->p2_35; pSiSEnt->p2_36 = pSiS->p2_36; pSiSEnt->p2_37 = pSiS->p2_37; pSiSEnt->p2_38 = pSiS->p2_38; pSiSEnt->p2_48 = pSiS->p2_48; pSiSEnt->p2_49 = pSiS->p2_49; pSiSEnt->p2_4a = pSiS->p2_4a; pSiSEnt->p2_2f = pSiS->p2_2f; pSiSEnt->p2_30 = pSiS->p2_30; pSiSEnt->p2_47 = pSiS->p2_47; for(i=0; i<9; i++) { pSiSEnt->scalingp1[i] = pSiS->scalingp1[i]; } for(i=0; i<9; i++) { pSiSEnt->scalingp4[i] = pSiS->scalingp4[i]; } if(pSiS->VBFlags2 & VB2_SISTAP4SCALER) { for(i=0; i<64; i++) { pSiSEnt->scalingp2[i] = pSiS->scalingp2[i]; } } } #endif if((val = mysistvantiflicker) != -1) { SiS_SetSISTVantiflicker(pScrn, val); } if((val = mysistvsaturation) != -1) { SiS_SetSISTVsaturation(pScrn, val); } if((val = mysistvcfilter) != -1) { SiS_SetSISTVcfilter(pScrn, val); } if((val = mysistvyfilter) != 1) { SiS_SetSISTVyfilter(pScrn, val); } if((val = mysistvcolcalibc) != 0) { SiS_SetSISTVcolcalib(pScrn, val, TRUE); } if((val = mysistvcolcalibf) != 0) { SiS_SetSISTVcolcalib(pScrn, val, FALSE); } if((val = mytvxpos) != 0) { SiS_SetTVxposoffset(pScrn, val); } if((val = mytvypos) != 0) { SiS_SetTVyposoffset(pScrn, val); } if((val = mytvxscale) != 0) { SiS_SetTVxscale(pScrn, val); } if((val = mytvyscale) != 0) { SiS_SetTVyscale(pScrn, val); } } } } /* Post-set SiS6326 TV registers */ static void SiS6326PostSetMode(ScrnInfoPtr pScrn, SISRegPtr sisReg) { SISPtr pSiS = SISPTR(pScrn); UChar tmp; int val; if(!(pSiS->SiS6326Flags & SIS6326_TVDETECTED)) return; #ifdef UNLOCK_ALWAYS sisSaveUnlockExtRegisterLock(pSiS, NULL, NULL); #endif /* Backup default TV position registers */ pSiS->tvx1 = SiS6326GetTVReg(pScrn,0x3a); pSiS->tvx1 |= ((SiS6326GetTVReg(pScrn,0x3c) & 0x0f) << 8); pSiS->tvx2 = SiS6326GetTVReg(pScrn,0x26); pSiS->tvx2 |= ((SiS6326GetTVReg(pScrn,0x27) & 0xf0) << 4); pSiS->tvx3 = SiS6326GetTVReg(pScrn,0x12); pSiS->tvx3 |= ((SiS6326GetTVReg(pScrn,0x13) & 0xC0) << 2); pSiS->tvy1 = SiS6326GetTVReg(pScrn,0x11); pSiS->tvy1 |= ((SiS6326GetTVReg(pScrn,0x13) & 0x30) << 4); /* Handle TVPosOffset options (BEFORE switching on TV) */ if((val = pSiS->tvxpos) != 0) { SiS_SetTVxposoffset(pScrn, val); } if((val = pSiS->tvypos) != 0) { SiS_SetTVyposoffset(pScrn, val); } /* Switch on TV output. This is rather complicated, but * if we don't do it, TV output will flicker terribly. */ if(pSiS->SiS6326Flags & SIS6326_TVON) { orSISIDXREG(SISSR, 0x01, 0x20); tmp = SiS6326GetTVReg(pScrn,0x00); tmp &= ~0x04; while(!(inSISREG(SISINPSTAT) & 0x08)); /* Wait while NOT vb */ SiS6326SetTVReg(pScrn,0x00,tmp); for(val=0; val < 2; val++) { while(!(inSISREG(SISINPSTAT) & 0x08)); /* Wait while NOT vb */ while(inSISREG(SISINPSTAT) & 0x08); /* wait while vb */ } SiS6326SetTVReg(pScrn, 0x00, sisReg->sis6326tv[0]); tmp = inSISREG(SISINPSTAT); outSISREG(SISAR, 0x20); tmp = inSISREG(SISINPSTAT); while(inSISREG(SISINPSTAT) & 0x01); while(!(inSISREG(SISINPSTAT) & 0x01)); andSISIDXREG(SISSR, 0x01, ~0x20); for(val=0; val < 10; val++) { while(!(inSISREG(SISINPSTAT) & 0x08)); /* Wait while NOT vb */ while(inSISREG(SISINPSTAT) & 0x08); /* wait while vb */ } andSISIDXREG(SISSR, 0x01, ~0x20); } tmp = SiS6326GetTVReg(pScrn,0x00); if(!(tmp & 0x04)) return; /* Apply TV settings given by options */ if((val = pSiS->sistvantiflicker) != -1) { SiS_SetSIS6326TVantiflicker(pScrn, val); } if((val = pSiS->sis6326enableyfilter) != -1) { SiS_SetSIS6326TVenableyfilter(pScrn, val); } if((val = pSiS->sis6326yfilterstrong) != -1) { SiS_SetSIS6326TVyfilterstrong(pScrn, val); } } /* Check if video bridge is in slave mode */ Bool SiSBridgeIsInSlaveMode(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); UChar usScrP1_00; if(!(pSiS->VBFlags2 & VB2_VIDEOBRIDGE)) return FALSE; inSISIDXREG(SISPART1,0x00,usScrP1_00); if( ((pSiS->VGAEngine == SIS_300_VGA) && (usScrP1_00 & 0xa0) == 0x20) || ((pSiS->VGAEngine == SIS_315_VGA) && (usScrP1_00 & 0x50) == 0x10) ) { return TRUE; } return FALSE; } /* Build a list of the VESA modes the BIOS reports as valid */ static void SiSBuildVesaModeList(ScrnInfoPtr pScrn, vbeInfoPtr pVbe, VbeInfoBlock *vbe) { SISPtr pSiS = SISPTR(pScrn); int i = 0; while(vbe->VideoModePtr[i] != 0xffff) { sisModeInfoPtr m; VbeModeInfoBlock *mode; int id = vbe->VideoModePtr[i++]; if((mode = VBEGetModeInfo(pVbe, id)) == NULL) { continue; } m = xnfcalloc(sizeof(sisModeInfoRec), 1); if(!m) { VBEFreeModeInfo(mode); continue; } m->width = mode->XResolution; m->height = mode->YResolution; m->bpp = mode->BitsPerPixel; m->n = id; m->next = pSiS->SISVESAModeList; pSiS->SISVESAModeList = m; VBEFreeModeInfo(mode); xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "VESA BIOS supports mode number 0x%x: %ix%i (%i bpp)\n", m->n, m->width, m->height, m->bpp); } } /* Get VESA mode number from given resolution/depth */ static UShort SiSCalcVESAModeIndex(ScrnInfoPtr pScrn, DisplayModePtr mode) { SISPtr pSiS = SISPTR(pScrn); sisModeInfoPtr m = pSiS->SISVESAModeList; UShort i = (pScrn->bitsPerPixel+7)/8 - 1; UShort ModeNumber = 0; int j; while(m) { if( (pScrn->bitsPerPixel == m->bpp) && (mode->HDisplay == m->width) && (mode->VDisplay == m->height) ) return m->n; m = m->next; } xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "No valid VESA BIOS mode found for %dx%d (%d bpp)\n", mode->HDisplay, mode->VDisplay, pScrn->bitsPerPixel); if(!pSiS->ROM661New) { /* VESA numbers changed! */ j = 0; while(VESAModeIndices[j] != 9999) { if( (mode->HDisplay == VESAModeIndices[j]) && (mode->VDisplay == VESAModeIndices[j+1]) ) { ModeNumber = VESAModeIndices[j + 2 + i]; break; } j += 6; } if(!ModeNumber) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "No valid mode found for %dx%dx%d in built-in table either.\n", mode->HDisplay, mode->VDisplay, pScrn->bitsPerPixel); } } return(ModeNumber); } UShort SiS_GetModeNumber(ScrnInfoPtr pScrn, DisplayModePtr mode, unsigned int VBFlags) { SISPtr pSiS = SISPTR(pScrn); UShort i = (pSiS->CurrentLayout.bitsPerPixel+7)/8 - 1; BOOLEAN FSTN = pSiS->FSTN ? TRUE : FALSE; #ifdef SISDUALHEAD if(pSiS->DualHeadMode && pSiS->SecondHead) FSTN = FALSE; #endif return(SiS_GetModeID(pSiS->VGAEngine, VBFlags, mode->HDisplay, mode->VDisplay, i, FSTN, pSiS->LCDwidth, pSiS->LCDheight)); } static Bool SiSValidLCDUserMode(SISPtr pSiS, unsigned int VBFlags, DisplayModePtr mode, Bool isforlcda) { if(mode->Flags & V_INTERLACE) return FALSE; if(mode->HDisplay > 2048) return FALSE; if(mode->VDisplay > 1536) return FALSE; if(pSiS->VBFlags2 & VB2_LCD162MHZBRIDGE) { if(mode->Clock > 162500) return FALSE; #ifdef VB_FORBID_CRT2LCD_OVER_1600 if(!isforlcda) { if(mode->HDisplay > 1600) return FALSE; } #endif } else { /* 301, 301B, 302B (no LCDA!) */ if(mode->Clock > 130000) return FALSE; if(mode->Clock > 111000) { xf86DrvMsg(pSiS->pScrn->scrnIndex, X_WARNING, "WARNING: Mode clock beyond video bridge specs (%dMHz). Hardware damage might occure.\n", mode->Clock / 1000); } if(mode->HDisplay > 1600) return FALSE; if(mode->VDisplay > 1024) return FALSE; } return TRUE; } static Bool SiSValidVGA2UserMode(SISPtr pSiS, unsigned int VBFlags, DisplayModePtr mode) { if(mode->Flags & V_INTERLACE) return FALSE; if(mode->HDisplay > 2048) return FALSE; if(mode->VDisplay > 1536) return FALSE; if(pSiS->VBFlags2 & VB2_RAMDAC202MHZBRIDGE) { if(mode->Clock > 203000) return FALSE; } else if(pSiS->VBFlags2 & VB2_30xBLV) { if(mode->Clock > 162500) return FALSE; } else { if(mode->Clock > 135500) return FALSE; } return TRUE; } UShort SiS_CheckModeCRT1(ScrnInfoPtr pScrn, DisplayModePtr mode, unsigned int VBFlags, Bool havecustommodes) { SISPtr pSiS = SISPTR(pScrn); UShort i = (pSiS->CurrentLayout.bitsPerPixel+7)/8 - 1; int j; if(!(VBFlags & CRT1_LCDA)) { if((havecustommodes) && (!(mode->type & M_T_DEFAULT))) { return 0xfe; } } else if(pSiS->VBFlags2 & VB2_SISTMDSLCDABRIDGE) { if(pSiS->ChipType < SIS_661) { /* < 661 only? */ if(!(mode->type & M_T_DEFAULT)) { if(mode->HTotal > 2055) return 0; /* (Default mode will be caught in mode switching code) */ } } if(pSiS->SiS_Pr->CP_HaveCustomData) { for(j=0; j<7; j++) { if((pSiS->SiS_Pr->CP_DataValid[j]) && (mode->HDisplay == pSiS->SiS_Pr->CP_HDisplay[j]) && (mode->VDisplay == pSiS->SiS_Pr->CP_VDisplay[j]) && (mode->type & M_T_BUILTIN)) return 0xfe; } } if((pSiS->AddedPlasmaModes) && (mode->type & M_T_BUILTIN)) return 0xfe; if((havecustommodes) && (pSiS->LCDwidth) && /* = test if LCD present */ (!(mode->type & M_T_DEFAULT)) && (SiSValidLCDUserMode(pSiS, VBFlags, mode, TRUE))) return 0xfe; if((mode->HDisplay > pSiS->LCDwidth) || (mode->VDisplay > pSiS->LCDheight)) { return 0; } } else { if((mode->HDisplay > pSiS->LCDwidth) || (mode->VDisplay > pSiS->LCDheight)) { return 0; } } return(SiS_GetModeID(pSiS->VGAEngine, VBFlags, mode->HDisplay, mode->VDisplay, i, pSiS->FSTN, pSiS->LCDwidth, pSiS->LCDheight)); } UShort SiS_CheckModeCRT2(ScrnInfoPtr pScrn, DisplayModePtr mode, unsigned int VBFlags, Bool havecustommodes) { SISPtr pSiS = SISPTR(pScrn); UShort i = (pSiS->CurrentLayout.bitsPerPixel+7)/8 - 1; UShort ModeIndex = 0; int j; #ifdef TWDEBUG xf86DrvMsg(0, X_INFO, "Inside CheckCalcModeIndex (VBFlags %lx, mode %dx%d)\n", VBFlags,mode->HDisplay, mode->VDisplay); #endif if(VBFlags & CRT2_LCD) { /* CRT2 is LCD */ if((pSiS->VBFlags2 & VB2_SISTMDSBRIDGE) && (!(pSiS->VBFlags2 & VB2_30xBDH))) { if(pSiS->SiS_Pr->CP_HaveCustomData) { for(j=0; j<7; j++) { if((pSiS->SiS_Pr->CP_DataValid[j]) && (mode->HDisplay == pSiS->SiS_Pr->CP_HDisplay[j]) && (mode->VDisplay == pSiS->SiS_Pr->CP_VDisplay[j]) && #ifdef VB_FORBID_CRT2LCD_OVER_1600 (mode->HDisplay <= 1600) && #endif (mode->type & M_T_BUILTIN)) return 0xfe; } } /* All plasma modes have HDisplay <= 1600 */ if((pSiS->AddedPlasmaModes) && (mode->type & M_T_BUILTIN)) return 0xfe; if((havecustommodes) && (pSiS->LCDwidth) && /* = test if LCD present */ (!(mode->type & M_T_DEFAULT)) && (SiSValidLCDUserMode(pSiS, VBFlags, mode, FALSE))) return 0xfe; } if( ((mode->HDisplay <= pSiS->LCDwidth) && (mode->VDisplay <= pSiS->LCDheight)) || ((pSiS->SiS_Pr->SiS_CustomT == CUT_PANEL848) && (((mode->HDisplay == 1360) && (mode->HDisplay == 768)) || ((mode->HDisplay == 1024) && (mode->HDisplay == 768)) || ((mode->HDisplay == 800) && (mode->HDisplay == 600)))) || ((pSiS->SiS_Pr->SiS_CustomT == CUT_PANEL856) && (((mode->HDisplay == 1024) && (mode->HDisplay == 768)) || ((mode->HDisplay == 800) && (mode->HDisplay == 600)))) ) { ModeIndex = SiS_GetModeID_LCD(pSiS->VGAEngine, VBFlags, mode->HDisplay, mode->VDisplay, i, pSiS->FSTN, pSiS->SiS_Pr->SiS_CustomT, pSiS->LCDwidth, pSiS->LCDheight, pSiS->VBFlags2); } } else if(VBFlags & CRT2_TV) { /* CRT2 is TV */ ModeIndex = SiS_GetModeID_TV(pSiS->VGAEngine, VBFlags, mode->HDisplay, mode->VDisplay, i, pSiS->VBFlags2); } else if(VBFlags & CRT2_VGA) { /* CRT2 is VGA2 */ if((pSiS->AddedPlasmaModes) && (mode->type & M_T_BUILTIN)) return 0xfe; if((havecustommodes) && (!(mode->type & M_T_DEFAULT)) && (SiSValidVGA2UserMode(pSiS, VBFlags, mode))) return 0xfe; ModeIndex = SiS_GetModeID_VGA2(pSiS->VGAEngine, VBFlags, mode->HDisplay, mode->VDisplay, i, pSiS->VBFlags2); } else { /* no CRT2 */ /* Return a valid mode number */ ModeIndex = 0xfe; } return(ModeIndex); } /* Calculate the vertical refresh rate from a mode */ float SiSCalcVRate(DisplayModePtr mode) { float hsync, refresh = 0; if(mode->HSync > 0.0) hsync = mode->HSync; else if(mode->HTotal > 0) hsync = (float)mode->Clock / (float)mode->HTotal; else hsync = 0.0; if(mode->VTotal > 0) refresh = hsync * 1000.0 / mode->VTotal; if(mode->Flags & V_INTERLACE) refresh *= 2.0; if(mode->Flags & V_DBLSCAN) refresh /= 2.0; if(mode->VScan > 1) refresh /= mode->VScan; if(mode->VRefresh > 0.0) refresh = mode->VRefresh; if(hsync == 0.0 || refresh == 0.0) return 0.0; return refresh; } /* Calculate CR33 (rate index) for CRT1. * Calculation is done using currentmode, therefore it is * recommended to set VertRefresh and HorizSync to correct * values in config file. */ UChar SISSearchCRT1Rate(ScrnInfoPtr pScrn, DisplayModePtr mode) { SISPtr pSiS = SISPTR(pScrn); int i = 0, irefresh; UShort xres = mode->HDisplay; UShort yres = mode->VDisplay; UChar index, defindex; Bool checksis730 = FALSE; defindex = (xres == 800 || xres == 1024 || xres == 1280) ? 0x02 : 0x01; irefresh = (int)SiSCalcVRate(mode); if(!irefresh) return defindex; /* SiS730 has troubles on CRT2 if CRT1 is at 32bpp */ if( (pSiS->ChipType == SIS_730) && (pSiS->VBFlags2 & VB2_VIDEOBRIDGE) && (pSiS->CurrentLayout.bitsPerPixel == 32) ) { #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) { checksis730 = TRUE; } } else #endif if((!pSiS->UseVESA) && (pSiS->VBFlags & CRT2_ENABLE) && (!pSiS->CRT1off)) { checksis730 = TRUE; } } #ifdef TWDEBUG xf86DrvMsg(0, X_INFO, "Debug: CalcVRate returned %d\n", irefresh); #endif /* We need the REAL refresh rate here */ if(mode->Flags & V_INTERLACE) irefresh /= 2; /* Do not multiply by 2 when DBLSCAN! */ #ifdef TWDEBUG xf86DrvMsg(0, X_INFO, "Debug: Rate after correction = %d\n", irefresh); #endif index = 0; while((sisx_vrate[i].idx != 0) && (sisx_vrate[i].xres <= xres)) { if((sisx_vrate[i].xres == xres) && (sisx_vrate[i].yres == yres)) { if((checksis730 == FALSE) || (sisx_vrate[i].SiS730valid32bpp == TRUE)) { if(sisx_vrate[i].refresh == irefresh) { index = sisx_vrate[i].idx; break; } else if(sisx_vrate[i].refresh > irefresh) { if((sisx_vrate[i].refresh - irefresh) <= 3) { index = sisx_vrate[i].idx; } else if( ((checksis730 == FALSE) || (sisx_vrate[i - 1].SiS730valid32bpp == TRUE)) && ((irefresh - sisx_vrate[i - 1].refresh) <= 2) && (sisx_vrate[i].idx != 1) ) { index = sisx_vrate[i - 1].idx; } break; } else if((irefresh - sisx_vrate[i].refresh) <= 2) { index = sisx_vrate[i].idx; break; } } } i++; } if(index > 0) return index; else return defindex; } void SISWaitRetraceCRT1(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int watchdog; UChar temp; inSISIDXREG(SISCR,0x17,temp); if(!(temp & 0x80)) return; inSISIDXREG(SISSR,0x1f,temp); if(temp & 0xc0) return; watchdog = 65536; while((inSISREG(SISINPSTAT) & 0x08) && --watchdog); watchdog = 65536; while((!(inSISREG(SISINPSTAT) & 0x08)) && --watchdog); } void SISWaitRetraceCRT2(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); int watchdog; UChar temp, reg; if(SiSBridgeIsInSlaveMode(pScrn)) { SISWaitRetraceCRT1(pScrn); return; } switch(pSiS->VGAEngine) { case SIS_300_VGA: reg = 0x25; break; case SIS_315_VGA: reg = 0x30; break; default: return; } watchdog = 65536; do { inSISIDXREG(SISPART1, reg, temp); if(!(temp & 0x02)) break; } while(--watchdog); watchdog = 65536; do { inSISIDXREG(SISPART1, reg, temp); if(temp & 0x02) break; } while(--watchdog); } static void SISWaitVBRetrace(ScrnInfoPtr pScrn) { SISPtr pSiS = SISPTR(pScrn); if((pSiS->VGAEngine == SIS_300_VGA) || (pSiS->VGAEngine == SIS_315_VGA)) { #ifdef SISDUALHEAD if(pSiS->DualHeadMode) { if(pSiS->SecondHead) SISWaitRetraceCRT1(pScrn); else SISWaitRetraceCRT2(pScrn); } else { #endif if(pSiS->VBFlags & DISPTYPE_DISP1) { SISWaitRetraceCRT1(pScrn); } if(pSiS->VBFlags & DISPTYPE_DISP2) { if(!(SiSBridgeIsInSlaveMode(pScrn))) { SISWaitRetraceCRT2(pScrn); } } #ifdef SISDUALHEAD } #endif } else { SISWaitRetraceCRT1(pScrn); } } #define MODEID_OFF 0x449 UChar SiS_GetSetBIOSScratch(ScrnInfoPtr pScrn, UShort offset, UChar value) { UChar ret = 0; #ifdef SIS_USE_BIOS_SCRATCH UChar *base; #endif /* For some reasons (like detecting the current display mode), * we need to read (or write-back) values from the BIOS * scratch area. This area is only valid for the primary * graphics card. For the secondary, we just return some * defaults and ignore requests to write data. As regards * the display mode: If sisfb is loaded for the secondary * card, it very probably has set a mode, but in any case * informed us via its info packet. So this here will not be * called for mode detection in this case. */ switch(offset) { case 0x489: ret = 0x11; /* Default VGA Info */ break; case MODEID_OFF: ret = 0x03; /* Default current display mode */ break; } #ifdef SIS_USE_BIOS_SCRATCH if(SISPTR(pScrn)->Primary) { base = xf86MapVidMem(pScrn->scrnIndex, VIDMEM_MMIO, 0, 0x2000); if(!base) { SISErrorLog(pScrn, "(Could not map BIOS scratch area)\n"); return ret; } ret = *(base + offset); /* value != 0xff means: set register */ if(value != 0xff) { *(base + offset) = value; } xf86UnMapVidMem(pScrn->scrnIndex, base, 0x2000); } #endif return ret; } UChar SiS_GetSetModeID(ScrnInfoPtr pScrn, UChar id) { return(SiS_GetSetBIOSScratch(pScrn, MODEID_OFF, id)); } void SiSMemCopyToVideoRam(SISPtr pSiS, UChar *to, UChar *from, int size) { if((ULong)to & 15) (*pSiS->SiSFastMemCopy)(to, from, size); else (*pSiS->SiSFastVidCopy)(to, from, size); } void SiSMemCopyFromVideoRam(SISPtr pSiS, UChar *to, UChar *from, int size) { if((ULong)to & 15) (*pSiS->SiSFastMemCopyFrom)(to, from, size); else (*pSiS->SiSFastVidCopyFrom)(to, from, size); } void sisSaveUnlockExtRegisterLock(SISPtr pSiS, UChar *reg1, UChar *reg2) { register UChar val; ULong mylockcalls; #ifdef TWDEBUG UChar val1, val2; int i; #endif pSiS->lockcalls++; mylockcalls = pSiS->lockcalls; /* check if already unlocked */ inSISIDXREG(SISSR, 0x05, val); if(val != 0xa1) { /* save State */ if(reg1) *reg1 = val; /* unlock */ outSISIDXREG(SISSR, 0x05, 0x86); /* Now check again */ inSISIDXREG(SISSR, 0x05, val); if(val != 0xA1) { xf86DrvMsg(pSiS->pScrn->scrnIndex, X_WARNING, "Failed to unlock SR registers at relocated i/o ports\n"); #ifdef TWDEBUG for(i = 0; i <= 0x3f; i++) { inSISIDXREG(SISSR, i, val1); inSISIDXREG(0x3c4, i, val2); xf86DrvMsg(pSiS->pScrn->scrnIndex, X_INFO, "SR%02d: RelIO=0x%02x 0x3c4=0x%02x (%ld)\n", i, val1, val2, mylockcalls); } #endif /* Emergency measure: unlock at 0x3c4, and try to enable relocated IO ports */ switch(pSiS->VGAEngine) { case SIS_OLD_VGA: case SIS_530_VGA: outSISIDXREG(0x3c4, 0x05, 0x86); andSISIDXREG(0x3c4, 0x33, ~0x20); break; case SIS_300_VGA: case SIS_315_VGA: outSISIDXREG(0x3c4, 0x05, 0x86); orSISIDXREG(0x3c4, 0x20, 0x20); break; } outSISIDXREG(SISSR, 0x05, 0x86); inSISIDXREG(SISSR, 0x05, val); if(val != 0xa1) { SISErrorLog(pSiS->pScrn, "Failed to unlock SR registers (%p, %lx, 0x%02x; %ld)\n", (void *)pSiS, (ULong)pSiS->RelIO, val, mylockcalls); /* Now await doom... */ } } } if((pSiS->VGAEngine == SIS_OLD_VGA) || (pSiS->VGAEngine == SIS_530_VGA)) { inSISIDXREG(SISCR, 0x80, val); if(val != 0xa1) { /* save State */ if(reg2) *reg2 = val; outSISIDXREG(SISCR, 0x80, 0x86); inSISIDXREG(SISCR, 0x80, val); if(val != 0xA1) { SISErrorLog(pSiS->pScrn, "Failed to unlock cr registers (%p, %lx, 0x%02x)\n", (void *)pSiS, (ULong)pSiS->RelIO, val); } } } } void sisRestoreExtRegisterLock(SISPtr pSiS, UChar reg1, UChar reg2) { /* restore lock */ #ifndef UNLOCK_ALWAYS outSISIDXREG(SISSR, 0x05, reg1 == 0xA1 ? 0x86 : 0x00); if((pSiS->VGAEngine == SIS_OLD_VGA) || (pSiS->VGAEngine == SIS_530_VGA)) { outSISIDXREG(SISCR, 0x80, reg2 == 0xA1 ? 0x86 : 0x00); } #endif }