/* SPDX-License-Identifier: MIT */ /* * Copyright © 2023 Intel Corporation */ #ifndef _XE_DRM_H_ #define _XE_DRM_H_ #include "drm.h" #if defined(__cplusplus) extern "C" { #endif /* Please note that modifications to all structs defined here are * subject to backwards-compatibility constraints. */ /** * DOC: uevent generated by xe on it's pci node. * * XE_RESET_FAILED_UEVENT - Event is generated when attempt to reset gt * fails. The value supplied with the event is always "NEEDS_RESET". * Additional information supplied is tile id and gt id of the gt unit for * which reset has failed. */ #define XE_RESET_FAILED_UEVENT "DEVICE_STATUS" /** * struct xe_user_extension - Base class for defining a chain of extensions * * Many interfaces need to grow over time. In most cases we can simply * extend the struct and have userspace pass in more data. Another option, * as demonstrated by Vulkan's approach to providing extensions for forward * and backward compatibility, is to use a list of optional structs to * provide those extra details. * * The key advantage to using an extension chain is that it allows us to * redefine the interface more easily than an ever growing struct of * increasing complexity, and for large parts of that interface to be * entirely optional. The downside is more pointer chasing; chasing across * the boundary with pointers encapsulated inside u64. * * Example chaining: * * .. code-block:: C * * struct xe_user_extension ext3 { * .next_extension = 0, // end * .name = ..., * }; * struct xe_user_extension ext2 { * .next_extension = (uintptr_t)&ext3, * .name = ..., * }; * struct xe_user_extension ext1 { * .next_extension = (uintptr_t)&ext2, * .name = ..., * }; * * Typically the struct xe_user_extension would be embedded in some uAPI * struct, and in this case we would feed it the head of the chain(i.e ext1), * which would then apply all of the above extensions. * */ struct xe_user_extension { /** * @next_extension: * * Pointer to the next struct xe_user_extension, or zero if the end. */ __u64 next_extension; /** * @name: Name of the extension. * * Note that the name here is just some integer. * * Also note that the name space for this is not global for the whole * driver, but rather its scope/meaning is limited to the specific piece * of uAPI which has embedded the struct xe_user_extension. */ __u32 name; /** * @pad: MBZ * * All undefined bits must be zero. */ __u32 pad; }; /* * xe specific ioctls. * * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset * against DRM_COMMAND_BASE and should be between [0x0, 0x60). */ #define DRM_XE_DEVICE_QUERY 0x00 #define DRM_XE_GEM_CREATE 0x01 #define DRM_XE_GEM_MMAP_OFFSET 0x02 #define DRM_XE_VM_CREATE 0x03 #define DRM_XE_VM_DESTROY 0x04 #define DRM_XE_VM_BIND 0x05 #define DRM_XE_EXEC_QUEUE_CREATE 0x06 #define DRM_XE_EXEC_QUEUE_DESTROY 0x07 #define DRM_XE_EXEC 0x08 #define DRM_XE_EXEC_QUEUE_SET_PROPERTY 0x09 #define DRM_XE_WAIT_USER_FENCE 0x0a #define DRM_XE_VM_MADVISE 0x0b #define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x0c /* Must be kept compact -- no holes */ #define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query) #define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create) #define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset) #define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create) #define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy) #define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind) #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create) #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property) #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy) #define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec) #define DRM_IOCTL_XE_EXEC_QUEUE_SET_PROPERTY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_SET_PROPERTY, struct drm_xe_exec_queue_set_property) #define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence) #define DRM_IOCTL_XE_VM_MADVISE DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_MADVISE, struct drm_xe_vm_madvise) /** struct drm_xe_engine_class_instance - instance of an engine class */ struct drm_xe_engine_class_instance { #define DRM_XE_ENGINE_CLASS_RENDER 0 #define DRM_XE_ENGINE_CLASS_COPY 1 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3 #define DRM_XE_ENGINE_CLASS_COMPUTE 4 /* * Kernel only classes (not actual hardware engine class). Used for * creating ordered queues of VM bind operations. */ #define DRM_XE_ENGINE_CLASS_VM_BIND_ASYNC 5 #define DRM_XE_ENGINE_CLASS_VM_BIND_SYNC 6 __u16 engine_class; __u16 engine_instance; __u16 gt_id; __u16 rsvd; }; /** * enum drm_xe_memory_class - Supported memory classes. */ enum drm_xe_memory_class { /** @XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */ XE_MEM_REGION_CLASS_SYSMEM = 0, /** * @XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this * represents the memory that is local to the device, which we * call VRAM. Not valid on integrated platforms. */ XE_MEM_REGION_CLASS_VRAM }; /** * struct drm_xe_query_mem_region - Describes some region as known to * the driver. */ struct drm_xe_query_mem_region { /** * @mem_class: The memory class describing this region. * * See enum drm_xe_memory_class for supported values. */ __u16 mem_class; /** * @instance: The instance for this region. * * The @mem_class and @instance taken together will always give * a unique pair. */ __u16 instance; /** @pad: MBZ */ __u32 pad; /** * @min_page_size: Min page-size in bytes for this region. * * When the kernel allocates memory for this region, the * underlying pages will be at least @min_page_size in size. * * Important note: When userspace allocates a GTT address which * can point to memory allocated from this region, it must also * respect this minimum alignment. This is enforced by the * kernel. */ __u32 min_page_size; /** * @total_size: The usable size in bytes for this region. */ __u64 total_size; /** * @used: Estimate of the memory used in bytes for this region. * * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable * accounting. Without this the value here will always equal * zero. */ __u64 used; /** * @cpu_visible_size: How much of this region can be CPU * accessed, in bytes. * * This will always be <= @total_size, and the remainder (if * any) will not be CPU accessible. If the CPU accessible part * is smaller than @total_size then this is referred to as a * small BAR system. * * On systems without small BAR (full BAR), the probed_size will * always equal the @total_size, since all of it will be CPU * accessible. * * Note this is only tracked for XE_MEM_REGION_CLASS_VRAM * regions (for other types the value here will always equal * zero). */ __u64 cpu_visible_size; /** * @cpu_visible_used: Estimate of CPU visible memory used, in * bytes. * * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable * accounting. Without this the value here will always equal * zero. Note this is only currently tracked for * XE_MEM_REGION_CLASS_VRAM regions (for other types the value * here will always be zero). */ __u64 cpu_visible_used; /** @reserved: MBZ */ __u64 reserved[6]; }; /** * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps * * If a query is made with a struct drm_xe_device_query where .query is equal to * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles * in .data. struct drm_xe_query_engine_cycles is allocated by the user and * .data points to this allocated structure. * * The query returns the engine cycles and the frequency that can * be used to calculate the engine timestamp. In addition the * query returns a set of cpu timestamps that indicate when the command * streamer cycle count was captured. */ struct drm_xe_query_engine_cycles { /** * @eci: This is input by the user and is the engine for which command * streamer cycles is queried. */ struct drm_xe_engine_class_instance eci; /** * @clockid: This is input by the user and is the reference clock id for * CPU timestamp. For definition, see clock_gettime(2) and * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC, * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI. */ __s32 clockid; /** @width: Width of the engine cycle counter in bits. */ __u32 width; /** * @engine_cycles: Engine cycles as read from its register * at 0x358 offset. */ __u64 engine_cycles; /** @engine_frequency: Frequency of the engine cycles in Hz. */ __u64 engine_frequency; /** * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before * reading the engine_cycles register using the reference clockid set by the * user. */ __u64 cpu_timestamp; /** * @cpu_delta: Time delta in ns captured around reading the lower dword * of the engine_cycles register. */ __u64 cpu_delta; }; /** * struct drm_xe_query_mem_usage - describe memory regions and usage * * If a query is made with a struct drm_xe_device_query where .query * is equal to DRM_XE_DEVICE_QUERY_MEM_USAGE, then the reply uses * struct drm_xe_query_mem_usage in .data. */ struct drm_xe_query_mem_usage { /** @num_regions: number of memory regions returned in @regions */ __u32 num_regions; /** @pad: MBZ */ __u32 pad; /** @regions: The returned regions for this device */ struct drm_xe_query_mem_region regions[]; }; /** * struct drm_xe_query_config - describe the device configuration * * If a query is made with a struct drm_xe_device_query where .query * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses * struct drm_xe_query_config in .data. */ struct drm_xe_query_config { /** @num_params: number of parameters returned in info */ __u32 num_params; /** @pad: MBZ */ __u32 pad; #define XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0 #define XE_QUERY_CONFIG_FLAGS 1 #define XE_QUERY_CONFIG_FLAGS_HAS_VRAM (0x1 << 0) #define XE_QUERY_CONFIG_MIN_ALIGNMENT 2 #define XE_QUERY_CONFIG_VA_BITS 3 #define XE_QUERY_CONFIG_GT_COUNT 4 #define XE_QUERY_CONFIG_MEM_REGION_COUNT 5 #define XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 6 #define XE_QUERY_CONFIG_NUM_PARAM (XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY + 1) /** @info: array of elements containing the config info */ __u64 info[]; }; /** * struct drm_xe_query_gt - describe an individual GT. * * To be used with drm_xe_query_gt_list, which will return a list with all the * existing GT individual descriptions. * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for * implementing graphics and/or media operations. */ struct drm_xe_query_gt { #define XE_QUERY_GT_TYPE_MAIN 0 #define XE_QUERY_GT_TYPE_REMOTE 1 #define XE_QUERY_GT_TYPE_MEDIA 2 /** @type: GT type: Main, Remote, or Media */ __u16 type; /** @gt_id: Unique ID of this GT within the PCI Device */ __u16 gt_id; /** @clock_freq: A clock frequency for timestamp */ __u32 clock_freq; /** * @native_mem_regions: Bit mask of instances from * drm_xe_query_mem_usage that lives on the same GPU/Tile and have * direct access. */ __u64 native_mem_regions; /** * @slow_mem_regions: Bit mask of instances from * drm_xe_query_mem_usage that this GT can indirectly access, although * they live on a different GPU/Tile. */ __u64 slow_mem_regions; /** * @inaccessible_mem_regions: Bit mask of instances from * drm_xe_query_mem_usage that is not accessible by this GT at all. */ __u64 inaccessible_mem_regions; /** @reserved: Reserved */ __u64 reserved[8]; }; /** * struct drm_xe_query_gt_list - A list with GT description items. * * If a query is made with a struct drm_xe_device_query where .query * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct * drm_xe_query_gt_list in .data. */ struct drm_xe_query_gt_list { /** @num_gt: number of GT items returned in gt_list */ __u32 num_gt; /** @pad: MBZ */ __u32 pad; /** @gt_list: The GT list returned for this device */ struct drm_xe_query_gt gt_list[]; }; /** * struct drm_xe_query_topology_mask - describe the topology mask of a GT * * This is the hardware topology which reflects the internal physical * structure of the GPU. * * If a query is made with a struct drm_xe_device_query where .query * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses * struct drm_xe_query_topology_mask in .data. */ struct drm_xe_query_topology_mask { /** @gt_id: GT ID the mask is associated with */ __u16 gt_id; /* * To query the mask of Dual Sub Slices (DSS) available for geometry * operations. For example a query response containing the following * in mask: * DSS_GEOMETRY ff ff ff ff 00 00 00 00 * means 32 DSS are available for geometry. */ #define XE_TOPO_DSS_GEOMETRY (1 << 0) /* * To query the mask of Dual Sub Slices (DSS) available for compute * operations. For example a query response containing the following * in mask: * DSS_COMPUTE ff ff ff ff 00 00 00 00 * means 32 DSS are available for compute. */ #define XE_TOPO_DSS_COMPUTE (1 << 1) /* * To query the mask of Execution Units (EU) available per Dual Sub * Slices (DSS). For example a query response containing the following * in mask: * EU_PER_DSS ff ff 00 00 00 00 00 00 * means each DSS has 16 EU. */ #define XE_TOPO_EU_PER_DSS (1 << 2) /** @type: type of mask */ __u16 type; /** @num_bytes: number of bytes in requested mask */ __u32 num_bytes; /** @mask: little-endian mask of @num_bytes */ __u8 mask[]; }; /** * struct drm_xe_device_query - main structure to query device information * * If size is set to 0, the driver fills it with the required size for the * requested type of data to query. If size is equal to the required size, * the queried information is copied into data. * * For example the following code snippet allows retrieving and printing * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES: * * .. code-block:: C * * struct drm_xe_engine_class_instance *hwe; * struct drm_xe_device_query query = { * .extensions = 0, * .query = DRM_XE_DEVICE_QUERY_ENGINES, * .size = 0, * .data = 0, * }; * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); * hwe = malloc(query.size); * query.data = (uintptr_t)hwe; * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); * int num_engines = query.size / sizeof(*hwe); * for (int i = 0; i < num_engines; i++) { * printf("Engine %d: %s\n", i, * hwe[i].engine_class == DRM_XE_ENGINE_CLASS_RENDER ? "RENDER": * hwe[i].engine_class == DRM_XE_ENGINE_CLASS_COPY ? "COPY": * hwe[i].engine_class == DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE": * hwe[i].engine_class == DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE": * hwe[i].engine_class == DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE": * "UNKNOWN"); * } * free(hwe); */ struct drm_xe_device_query { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; #define DRM_XE_DEVICE_QUERY_ENGINES 0 #define DRM_XE_DEVICE_QUERY_MEM_USAGE 1 #define DRM_XE_DEVICE_QUERY_CONFIG 2 #define DRM_XE_DEVICE_QUERY_GT_LIST 3 #define DRM_XE_DEVICE_QUERY_HWCONFIG 4 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6 /** @query: The type of data to query */ __u32 query; /** @size: Size of the queried data */ __u32 size; /** @data: Queried data is placed here */ __u64 data; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_gem_create { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** * @size: Requested size for the object * * The (page-aligned) allocated size for the object will be returned. */ __u64 size; #define XE_GEM_CREATE_FLAG_DEFER_BACKING (0x1 << 24) #define XE_GEM_CREATE_FLAG_SCANOUT (0x1 << 25) /* * When using VRAM as a possible placement, ensure that the corresponding VRAM * allocation will always use the CPU accessible part of VRAM. This is important * for small-bar systems (on full-bar systems this gets turned into a noop). * * Note: System memory can be used as an extra placement if the kernel should * spill the allocation to system memory, if space can't be made available in * the CPU accessible part of VRAM (giving the same behaviour as the i915 * interface, see I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS). * * Note: For clear-color CCS surfaces the kernel needs to read the clear-color * value stored in the buffer, and on discrete platforms we need to use VRAM for * display surfaces, therefore the kernel requires setting this flag for such * objects, otherwise an error is thrown on small-bar systems. */ #define XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (0x1 << 26) /** * @flags: Flags, currently a mask of memory instances of where BO can * be placed */ __u32 flags; /** * @vm_id: Attached VM, if any * * If a VM is specified, this BO must: * * 1. Only ever be bound to that VM. * 2. Cannot be exported as a PRIME fd. */ __u32 vm_id; /** * @handle: Returned handle for the object. * * Object handles are nonzero. */ __u32 handle; /** @pad: MBZ */ __u32 pad; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_gem_mmap_offset { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @handle: Handle for the object being mapped. */ __u32 handle; /** @flags: Must be zero */ __u32 flags; /** @offset: The fake offset to use for subsequent mmap call */ __u64 offset; /** @reserved: Reserved */ __u64 reserved[2]; }; /** struct drm_xe_ext_set_property - XE set property extension */ struct drm_xe_ext_set_property { /** @base: base user extension */ struct xe_user_extension base; /** @property: property to set */ __u32 property; /** @pad: MBZ */ __u32 pad; /** @value: property value */ __u64 value; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_vm_create { #define XE_VM_EXTENSION_SET_PROPERTY 0 /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; #define DRM_XE_VM_CREATE_SCRATCH_PAGE (0x1 << 0) #define DRM_XE_VM_CREATE_COMPUTE_MODE (0x1 << 1) #define DRM_XE_VM_CREATE_ASYNC_DEFAULT (0x1 << 2) #define DRM_XE_VM_CREATE_FAULT_MODE (0x1 << 3) /** @flags: Flags */ __u32 flags; /** @vm_id: Returned VM ID */ __u32 vm_id; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_vm_destroy { /** @vm_id: VM ID */ __u32 vm_id; /** @pad: MBZ */ __u32 pad; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_vm_bind_op { /** * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP */ __u32 obj; /** @pad: MBZ */ __u32 pad; union { /** * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE, * ignored for unbind */ __u64 obj_offset; /** @userptr: user pointer to bind on */ __u64 userptr; }; /** * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL */ __u64 range; /** @addr: Address to operate on, MBZ for UNMAP_ALL */ __u64 addr; /** * @tile_mask: Mask for which tiles to create binds for, 0 == All tiles, * only applies to creating new VMAs */ __u64 tile_mask; #define XE_VM_BIND_OP_MAP 0x0 #define XE_VM_BIND_OP_UNMAP 0x1 #define XE_VM_BIND_OP_MAP_USERPTR 0x2 #define XE_VM_BIND_OP_UNMAP_ALL 0x3 #define XE_VM_BIND_OP_PREFETCH 0x4 /** @op: Bind operation to perform */ __u32 op; #define XE_VM_BIND_FLAG_READONLY (0x1 << 0) #define XE_VM_BIND_FLAG_ASYNC (0x1 << 1) /* * Valid on a faulting VM only, do the MAP operation immediately rather * than deferring the MAP to the page fault handler. */ #define XE_VM_BIND_FLAG_IMMEDIATE (0x1 << 2) /* * When the NULL flag is set, the page tables are setup with a special * bit which indicates writes are dropped and all reads return zero. In * the future, the NULL flags will only be valid for XE_VM_BIND_OP_MAP * operations, the BO handle MBZ, and the BO offset MBZ. This flag is * intended to implement VK sparse bindings. */ #define XE_VM_BIND_FLAG_NULL (0x1 << 3) /** @flags: Bind flags */ __u32 flags; /** @mem_region: Memory region to prefetch VMA to, instance not a mask */ __u32 region; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_vm_bind { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @vm_id: The ID of the VM to bind to */ __u32 vm_id; /** * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND * and exec queue must have same vm_id. If zero, the default VM bind engine * is used. */ __u32 exec_queue_id; /** @num_binds: number of binds in this IOCTL */ __u32 num_binds; /** @pad: MBZ */ __u32 pad; union { /** @bind: used if num_binds == 1 */ struct drm_xe_vm_bind_op bind; /** * @vector_of_binds: userptr to array of struct * drm_xe_vm_bind_op if num_binds > 1 */ __u64 vector_of_binds; }; /** @num_syncs: amount of syncs to wait on */ __u32 num_syncs; /** @pad2: MBZ */ __u32 pad2; /** @syncs: pointer to struct drm_xe_sync array */ __u64 syncs; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_exec_queue_set_property - exec queue set property * * Same namespace for extensions as drm_xe_exec_queue_create */ struct drm_xe_exec_queue_set_property { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @exec_queue_id: Exec queue ID */ __u32 exec_queue_id; #define XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0 #define XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1 #define XE_EXEC_QUEUE_SET_PROPERTY_PREEMPTION_TIMEOUT 2 #define XE_EXEC_QUEUE_SET_PROPERTY_PERSISTENCE 3 #define XE_EXEC_QUEUE_SET_PROPERTY_JOB_TIMEOUT 4 #define XE_EXEC_QUEUE_SET_PROPERTY_ACC_TRIGGER 5 #define XE_EXEC_QUEUE_SET_PROPERTY_ACC_NOTIFY 6 #define XE_EXEC_QUEUE_SET_PROPERTY_ACC_GRANULARITY 7 /** @property: property to set */ __u32 property; /** @value: property value */ __u64 value; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_exec_queue_create { #define XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0 /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @width: submission width (number BB per exec) for this exec queue */ __u16 width; /** @num_placements: number of valid placements for this exec queue */ __u16 num_placements; /** @vm_id: VM to use for this exec queue */ __u32 vm_id; /** @flags: MBZ */ __u32 flags; /** @exec_queue_id: Returned exec queue ID */ __u32 exec_queue_id; /** * @instances: user pointer to a 2-d array of struct * drm_xe_engine_class_instance * * length = width (i) * num_placements (j) * index = j + i * width */ __u64 instances; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_exec_queue_get_property { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @exec_queue_id: Exec queue ID */ __u32 exec_queue_id; #define XE_EXEC_QUEUE_GET_PROPERTY_BAN 0 /** @property: property to get */ __u32 property; /** @value: property value */ __u64 value; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_exec_queue_destroy { /** @exec_queue_id: Exec queue ID */ __u32 exec_queue_id; /** @pad: MBZ */ __u32 pad; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_sync { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; #define DRM_XE_SYNC_SYNCOBJ 0x0 #define DRM_XE_SYNC_TIMELINE_SYNCOBJ 0x1 #define DRM_XE_SYNC_DMA_BUF 0x2 #define DRM_XE_SYNC_USER_FENCE 0x3 #define DRM_XE_SYNC_SIGNAL 0x10 __u32 flags; /** @pad: MBZ */ __u32 pad; union { __u32 handle; /** * @addr: Address of user fence. When sync passed in via exec * IOCTL this a GPU address in the VM. When sync passed in via * VM bind IOCTL this is a user pointer. In either case, it is * the users responsibility that this address is present and * mapped when the user fence is signalled. Must be qword * aligned. */ __u64 addr; }; __u64 timeline_value; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_exec { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @exec_queue_id: Exec queue ID for the batch buffer */ __u32 exec_queue_id; /** @num_syncs: Amount of struct drm_xe_sync in array. */ __u32 num_syncs; /** @syncs: Pointer to struct drm_xe_sync array. */ __u64 syncs; /** * @address: address of batch buffer if num_batch_buffer == 1 or an * array of batch buffer addresses */ __u64 address; /** * @num_batch_buffer: number of batch buffer in this exec, must match * the width of the engine */ __u16 num_batch_buffer; /** @pad: MBZ */ __u16 pad[3]; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_wait_user_fence - wait user fence * * Wait on user fence, XE will wake-up on every HW engine interrupt in the * instances list and check if user fence is complete:: * * (*addr & MASK) OP (VALUE & MASK) * * Returns to user on user fence completion or timeout. */ struct drm_xe_wait_user_fence { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** * @addr: user pointer address to wait on, must qword aligned */ __u64 addr; #define DRM_XE_UFENCE_WAIT_EQ 0 #define DRM_XE_UFENCE_WAIT_NEQ 1 #define DRM_XE_UFENCE_WAIT_GT 2 #define DRM_XE_UFENCE_WAIT_GTE 3 #define DRM_XE_UFENCE_WAIT_LT 4 #define DRM_XE_UFENCE_WAIT_LTE 5 /** @op: wait operation (type of comparison) */ __u16 op; #define DRM_XE_UFENCE_WAIT_SOFT_OP (1 << 0) /* e.g. Wait on VM bind */ #define DRM_XE_UFENCE_WAIT_ABSTIME (1 << 1) /** @flags: wait flags */ __u16 flags; /** @pad: MBZ */ __u32 pad; /** @value: compare value */ __u64 value; #define DRM_XE_UFENCE_WAIT_U8 0xffu #define DRM_XE_UFENCE_WAIT_U16 0xffffu #define DRM_XE_UFENCE_WAIT_U32 0xffffffffu #define DRM_XE_UFENCE_WAIT_U64 0xffffffffffffffffu /** @mask: comparison mask */ __u64 mask; /** * @timeout: how long to wait before bailing, value in nanoseconds. * Without DRM_XE_UFENCE_WAIT_ABSTIME flag set (relative timeout) * it contains timeout expressed in nanoseconds to wait (fence will * expire at now() + timeout). * When DRM_XE_UFENCE_WAIT_ABSTIME flat is set (absolute timeout) wait * will end at timeout (uses system MONOTONIC_CLOCK). * Passing negative timeout leads to neverending wait. * * On relative timeout this value is updated with timeout left * (for restarting the call in case of signal delivery). * On absolute timeout this value stays intact (restarted call still * expire at the same point of time). */ __s64 timeout; /** * @num_engines: number of engine instances to wait on, must be zero * when DRM_XE_UFENCE_WAIT_SOFT_OP set */ __u64 num_engines; /** * @instances: user pointer to array of drm_xe_engine_class_instance to * wait on, must be NULL when DRM_XE_UFENCE_WAIT_SOFT_OP set */ __u64 instances; /** @reserved: Reserved */ __u64 reserved[2]; }; struct drm_xe_vm_madvise { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @vm_id: The ID VM in which the VMA exists */ __u32 vm_id; /** @pad: MBZ */ __u32 pad; /** @range: Number of bytes in the VMA */ __u64 range; /** @addr: Address of the VMA to operation on */ __u64 addr; /* * Setting the preferred location will trigger a migrate of the VMA * backing store to new location if the backing store is already * allocated. * * For DRM_XE_VM_MADVISE_PREFERRED_MEM_CLASS usage, see enum * drm_xe_memory_class. */ #define DRM_XE_VM_MADVISE_PREFERRED_MEM_CLASS 0 #define DRM_XE_VM_MADVISE_PREFERRED_GT 1 /* * In this case lower 32 bits are mem class, upper 32 are GT. * Combination provides a single IOCTL plus migrate VMA to preferred * location. */ #define DRM_XE_VM_MADVISE_PREFERRED_MEM_CLASS_GT 2 /* * The CPU will do atomic memory operations to this VMA. Must be set on * some devices for atomics to behave correctly. */ #define DRM_XE_VM_MADVISE_CPU_ATOMIC 3 /* * The device will do atomic memory operations to this VMA. Must be set * on some devices for atomics to behave correctly. */ #define DRM_XE_VM_MADVISE_DEVICE_ATOMIC 4 /* * Priority WRT to eviction (moving from preferred memory location due * to memory pressure). The lower the priority, the more likely to be * evicted. */ #define DRM_XE_VM_MADVISE_PRIORITY 5 #define DRM_XE_VMA_PRIORITY_LOW 0 /* Default */ #define DRM_XE_VMA_PRIORITY_NORMAL 1 /* Must be user with elevated privileges */ #define DRM_XE_VMA_PRIORITY_HIGH 2 /* Pin the VMA in memory, must be user with elevated privileges */ #define DRM_XE_VM_MADVISE_PIN 6 /** @property: property to set */ __u32 property; /** @pad2: MBZ */ __u32 pad2; /** @value: property value */ __u64 value; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * DOC: XE PMU event config IDs * * Check 'man perf_event_open' to use the ID's XE_PMU_XXXX listed in xe_drm.h * in 'struct perf_event_attr' as part of perf_event_open syscall to read a * particular event. * * For example to open the XE_PMU_INTERRUPTS(0): * * .. code-block:: C * * struct perf_event_attr attr; * long long count; * int cpu = 0; * int fd; * * memset(&attr, 0, sizeof(struct perf_event_attr)); * attr.type = type; // eg: /sys/bus/event_source/devices/xe_0000_56_00.0/type * attr.read_format = PERF_FORMAT_TOTAL_TIME_ENABLED; * attr.use_clockid = 1; * attr.clockid = CLOCK_MONOTONIC; * attr.config = XE_PMU_INTERRUPTS(0); * * fd = syscall(__NR_perf_event_open, &attr, -1, cpu, -1, 0); */ /* * Top bits of every counter are GT id. */ #define __XE_PMU_GT_SHIFT (56) #define ___XE_PMU_OTHER(gt, x) \ (((__u64)(x)) | ((__u64)(gt) << __XE_PMU_GT_SHIFT)) #define XE_PMU_INTERRUPTS(gt) ___XE_PMU_OTHER(gt, 0) #define XE_PMU_RENDER_GROUP_BUSY(gt) ___XE_PMU_OTHER(gt, 1) #define XE_PMU_COPY_GROUP_BUSY(gt) ___XE_PMU_OTHER(gt, 2) #define XE_PMU_MEDIA_GROUP_BUSY(gt) ___XE_PMU_OTHER(gt, 3) #define XE_PMU_ANY_ENGINE_GROUP_BUSY(gt) ___XE_PMU_OTHER(gt, 4) #if defined(__cplusplus) } #endif #endif /* _XE_DRM_H_ */