/* * Copyright © 2019 Raspberry Pi * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "v3dv_private.h" #include "broadcom/cle/v3dx_pack.h" #include "drm-uapi/drm_fourcc.h" #include "util/format/u_format.h" #include "util/u_math.h" #include "vk_format_info.h" #include "vk_util.h" #include "vulkan/wsi/wsi_common.h" /** * Computes the HW's UIFblock padding for a given height/cpp. * * The goal of the padding is to keep pages of the same color (bank number) at * least half a page away from each other vertically when crossing between * columns of UIF blocks. */ static uint32_t v3d_get_ub_pad(uint32_t cpp, uint32_t height) { uint32_t utile_h = v3d_utile_height(cpp); uint32_t uif_block_h = utile_h * 2; uint32_t height_ub = height / uif_block_h; uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS; /* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */ if (height_offset_in_pc == 0) return 0; /* Try padding up to where we're offset by at least half a page. */ if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) { /* If we fit entirely in the page cache, don't pad. */ if (height_ub < PAGE_CACHE_UB_ROWS) return 0; else return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc; } /* If we're close to being aligned to page cache size, then round up * and rely on XOR. */ if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS) return PAGE_CACHE_UB_ROWS - height_offset_in_pc; /* Otherwise, we're far enough away (top and bottom) to not need any * padding. */ return 0; } static void v3d_setup_slices(struct v3dv_image *image) { assert(image->cpp > 0); uint32_t width = image->extent.width; uint32_t height = image->extent.height; uint32_t depth = image->extent.depth; /* Note that power-of-two padding is based on level 1. These are not * equivalent to just util_next_power_of_two(dimension), because at a * level 0 dimension of 9, the level 1 power-of-two padded value is 4, * not 8. */ uint32_t pot_width = 2 * util_next_power_of_two(u_minify(width, 1)); uint32_t pot_height = 2 * util_next_power_of_two(u_minify(height, 1)); uint32_t pot_depth = 2 * util_next_power_of_two(u_minify(depth, 1)); uint32_t utile_w = v3d_utile_width(image->cpp); uint32_t utile_h = v3d_utile_height(image->cpp); uint32_t uif_block_w = utile_w * 2; uint32_t uif_block_h = utile_h * 2; uint32_t block_width = vk_format_get_blockwidth(image->vk_format); uint32_t block_height = vk_format_get_blockheight(image->vk_format); assert(image->samples == VK_SAMPLE_COUNT_1_BIT || image->samples == VK_SAMPLE_COUNT_4_BIT); bool msaa = image->samples != VK_SAMPLE_COUNT_1_BIT; bool uif_top = msaa; assert(image->array_size > 0); assert(depth > 0); assert(image->levels >= 1); uint32_t offset = 0; for (int32_t i = image->levels - 1; i >= 0; i--) { struct v3d_resource_slice *slice = &image->slices[i]; uint32_t level_width, level_height, level_depth; if (i < 2) { level_width = u_minify(width, i); level_height = u_minify(height, i); } else { level_width = u_minify(pot_width, i); level_height = u_minify(pot_height, i); } if (i < 1) level_depth = u_minify(depth, i); else level_depth = u_minify(pot_depth, i); if (msaa) { level_width *= 2; level_height *= 2; } level_width = DIV_ROUND_UP(level_width, block_width); level_height = DIV_ROUND_UP(level_height, block_height); if (!image->tiled) { slice->tiling = VC5_TILING_RASTER; if (image->type == VK_IMAGE_TYPE_1D) level_width = align(level_width, 64 / image->cpp); } else { if ((i != 0 || !uif_top) && (level_width <= utile_w || level_height <= utile_h)) { slice->tiling = VC5_TILING_LINEARTILE; level_width = align(level_width, utile_w); level_height = align(level_height, utile_h); } else if ((i != 0 || !uif_top) && level_width <= uif_block_w) { slice->tiling = VC5_TILING_UBLINEAR_1_COLUMN; level_width = align(level_width, uif_block_w); level_height = align(level_height, uif_block_h); } else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) { slice->tiling = VC5_TILING_UBLINEAR_2_COLUMN; level_width = align(level_width, 2 * uif_block_w); level_height = align(level_height, uif_block_h); } else { /* We align the width to a 4-block column of UIF blocks, but we * only align height to UIF blocks. */ level_width = align(level_width, 4 * uif_block_w); level_height = align(level_height, uif_block_h); slice->ub_pad = v3d_get_ub_pad(image->cpp, level_height); level_height += slice->ub_pad * uif_block_h; /* If the padding set us to to be aligned to the page cache size, * then the HW will use the XOR bit on odd columns to get us * perfectly misaligned. */ if ((level_height / uif_block_h) % (VC5_PAGE_CACHE_SIZE / VC5_UIFBLOCK_ROW_SIZE) == 0) { slice->tiling = VC5_TILING_UIF_XOR; } else { slice->tiling = VC5_TILING_UIF_NO_XOR; } } } slice->offset = offset; slice->stride = level_width * image->cpp; slice->padded_height = level_height; if (slice->tiling == VC5_TILING_UIF_NO_XOR || slice->tiling == VC5_TILING_UIF_XOR) { slice->padded_height_of_output_image_in_uif_blocks = slice->padded_height / (2 * v3d_utile_height(image->cpp)); } slice->size = level_height * slice->stride; uint32_t slice_total_size = slice->size * level_depth; /* The HW aligns level 1's base to a page if any of level 1 or * below could be UIF XOR. The lower levels then inherit the * alignment for as long as necesary, thanks to being power of * two aligned. */ if (i == 1 && level_width > 4 * uif_block_w && level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) { slice_total_size = align(slice_total_size, VC5_UIFCFG_PAGE_SIZE); } offset += slice_total_size; } image->size = offset; /* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only * needs to be aligned to utile boundaries. Since tiles are laid out * from small to big in memory, we need to align the later UIF slices * to UIF blocks, if they were preceded by non-UIF-block-aligned LT * slices. * * We additionally align to 4k, which improves UIF XOR performance. */ image->alignment = image->tiling == VK_IMAGE_TILING_LINEAR ? image->cpp : 4096; uint32_t align_offset = align(image->slices[0].offset, image->alignment) - image->slices[0].offset; if (align_offset) { image->size += align_offset; for (int i = 0; i < image->levels; i++) image->slices[i].offset += align_offset; } /* Arrays and cube textures have a stride which is the distance from * one full mipmap tree to the next (64b aligned). For 3D textures, * we need to program the stride between slices of miplevel 0. */ if (image->type != VK_IMAGE_TYPE_3D) { image->cube_map_stride = align(image->slices[0].offset + image->slices[0].size, 64); image->size += image->cube_map_stride * (image->array_size - 1); } else { image->cube_map_stride = image->slices[0].size; } } uint32_t v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer) { const struct v3d_resource_slice *slice = &image->slices[level]; if (image->type == VK_IMAGE_TYPE_3D) return image->mem_offset + slice->offset + layer * slice->size; else return image->mem_offset + slice->offset + layer * image->cube_map_stride; } VkResult v3dv_CreateImage(VkDevice _device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { V3DV_FROM_HANDLE(v3dv_device, device, _device); struct v3dv_image *image = NULL; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO); v3dv_assert(pCreateInfo->mipLevels > 0); v3dv_assert(pCreateInfo->arrayLayers > 0); v3dv_assert(pCreateInfo->samples > 0); v3dv_assert(pCreateInfo->extent.width > 0); v3dv_assert(pCreateInfo->extent.height > 0); v3dv_assert(pCreateInfo->extent.depth > 0); /* When using the simulator the WSI common code will see that our * driver wsi device doesn't match the display device and because of that * it will not attempt to present directly from the swapchain images, * instead it will use the prime blit path (use_prime_blit flag in * struct wsi_swapchain), where it copies the contents of the swapchain * images to a linear buffer with appropriate row stride for presentation. * As a result, on that path, swapchain images do not have any special * requirements and are not created with the pNext structs below. */ uint64_t modifier = DRM_FORMAT_MOD_INVALID; if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); assert(mod_info); for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) { switch (mod_info->pDrmFormatModifiers[i]) { case DRM_FORMAT_MOD_LINEAR: if (modifier == DRM_FORMAT_MOD_INVALID) modifier = DRM_FORMAT_MOD_LINEAR; break; case DRM_FORMAT_MOD_BROADCOM_UIF: modifier = DRM_FORMAT_MOD_BROADCOM_UIF; break; } } } else { const struct wsi_image_create_info *wsi_info = vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA); if (wsi_info) modifier = DRM_FORMAT_MOD_LINEAR; } /* 1D and 1D_ARRAY textures are always raster-order */ VkImageTiling tiling; if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D) tiling = VK_IMAGE_TILING_LINEAR; else if (modifier == DRM_FORMAT_MOD_INVALID) tiling = pCreateInfo->tiling; else if (modifier == DRM_FORMAT_MOD_BROADCOM_UIF) tiling = VK_IMAGE_TILING_OPTIMAL; else tiling = VK_IMAGE_TILING_LINEAR; const struct v3dv_format *format = v3dv_get_format(pCreateInfo->format); v3dv_assert(format != NULL && format->supported); image = vk_object_zalloc(&device->vk, pAllocator, sizeof(*image), VK_OBJECT_TYPE_IMAGE); if (!image) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT || pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT); image->type = pCreateInfo->imageType; image->extent = pCreateInfo->extent; image->vk_format = pCreateInfo->format; image->format = format; image->aspects = vk_format_aspects(image->vk_format); image->levels = pCreateInfo->mipLevels; image->array_size = pCreateInfo->arrayLayers; image->samples = pCreateInfo->samples; image->usage = pCreateInfo->usage; image->flags = pCreateInfo->flags; image->drm_format_mod = modifier; image->tiling = tiling; image->tiled = tiling == VK_IMAGE_TILING_OPTIMAL; image->cpp = vk_format_get_blocksize(image->vk_format); v3d_setup_slices(image); *pImage = v3dv_image_to_handle(image); return VK_SUCCESS; } void v3dv_GetImageSubresourceLayout(VkDevice device, VkImage _image, const VkImageSubresource *subresource, VkSubresourceLayout *layout) { V3DV_FROM_HANDLE(v3dv_image, image, _image); const struct v3d_resource_slice *slice = &image->slices[subresource->mipLevel]; layout->offset = v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer); layout->rowPitch = slice->stride; layout->depthPitch = image->cube_map_stride; layout->arrayPitch = image->cube_map_stride; if (image->type != VK_IMAGE_TYPE_3D) { layout->size = slice->size; } else { /* For 3D images, the size of the slice represents the size of a 2D slice * in the 3D image, so we have to multiply by the depth extent of the * miplevel. For levels other than the first, we just compute the size * as the distance between consecutive levels (notice that mip levels are * arranged in memory from last to first). */ if (subresource->mipLevel == 0) { layout->size = slice->size * image->extent.depth; } else { const struct v3d_resource_slice *prev_slice = &image->slices[subresource->mipLevel - 1]; layout->size = prev_slice->offset - slice->offset; } } } VkResult v3dv_GetImageDrmFormatModifierPropertiesEXT( VkDevice device, VkImage _image, VkImageDrmFormatModifierPropertiesEXT *pProperties) { V3DV_FROM_HANDLE(v3dv_image, image, _image); assert(pProperties->sType == VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT); pProperties->drmFormatModifier = image->drm_format_mod; return VK_SUCCESS; } void v3dv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks* pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_image, image, _image); if (image == NULL) return; vk_object_free(&device->vk, pAllocator, image); } VkImageViewType v3dv_image_type_to_view_type(VkImageType type) { switch (type) { case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D; case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D; case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D; default: unreachable("Invalid image type"); } } /* * This method translates pipe_swizzle to the swizzle values used at the * packet TEXTURE_SHADER_STATE * * FIXME: C&P from v3d, common place? */ static uint32_t translate_swizzle(unsigned char pipe_swizzle) { switch (pipe_swizzle) { case PIPE_SWIZZLE_0: return 0; case PIPE_SWIZZLE_1: return 1; case PIPE_SWIZZLE_X: case PIPE_SWIZZLE_Y: case PIPE_SWIZZLE_Z: case PIPE_SWIZZLE_W: return 2 + pipe_swizzle; default: unreachable("unknown swizzle"); } } /* * Packs and ensure bo for the shader state (the latter can be temporal). */ static void pack_texture_shader_state_helper(struct v3dv_device *device, struct v3dv_image_view *image_view, bool for_cube_map_array_storage) { assert(!for_cube_map_array_storage || image_view->type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY); const uint32_t index = for_cube_map_array_storage ? 1 : 0; assert(image_view->image); const struct v3dv_image *image = image_view->image; assert(image->samples == VK_SAMPLE_COUNT_1_BIT || image->samples == VK_SAMPLE_COUNT_4_BIT); const uint32_t msaa_scale = image->samples == VK_SAMPLE_COUNT_1_BIT ? 1 : 2; v3dv_pack(image_view->texture_shader_state[index], TEXTURE_SHADER_STATE, tex) { tex.level_0_is_strictly_uif = (image->slices[0].tiling == VC5_TILING_UIF_XOR || image->slices[0].tiling == VC5_TILING_UIF_NO_XOR); tex.level_0_xor_enable = (image->slices[0].tiling == VC5_TILING_UIF_XOR); if (tex.level_0_is_strictly_uif) tex.level_0_ub_pad = image->slices[0].ub_pad; /* FIXME: v3d never sets uif_xor_disable, but uses it on the following * check so let's set the default value */ tex.uif_xor_disable = false; if (tex.uif_xor_disable || tex.level_0_is_strictly_uif) { tex.extended = true; } tex.base_level = image_view->base_level; tex.max_level = image_view->max_level; tex.swizzle_r = translate_swizzle(image_view->swizzle[0]); tex.swizzle_g = translate_swizzle(image_view->swizzle[1]); tex.swizzle_b = translate_swizzle(image_view->swizzle[2]); tex.swizzle_a = translate_swizzle(image_view->swizzle[3]); tex.texture_type = image_view->format->tex_type; if (image->type == VK_IMAGE_TYPE_3D) { tex.image_depth = image->extent.depth; } else { tex.image_depth = (image_view->last_layer - image_view->first_layer) + 1; } /* Empirical testing with CTS shows that when we are sampling from cube * arrays we want to set image depth to layers / 6, but not when doing * image load/store. */ if (image_view->type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY && !for_cube_map_array_storage) { assert(tex.image_depth % 6 == 0); tex.image_depth /= 6; } tex.image_height = image->extent.height * msaa_scale; tex.image_width = image->extent.width * msaa_scale; /* On 4.x, the height of a 1D texture is redefined to be the * upper 14 bits of the width (which is only usable with txf). */ if (image->type == VK_IMAGE_TYPE_1D) { tex.image_height = tex.image_width >> 14; } tex.image_width &= (1 << 14) - 1; tex.image_height &= (1 << 14) - 1; tex.array_stride_64_byte_aligned = image->cube_map_stride / 64; tex.srgb = vk_format_is_srgb(image_view->vk_format); /* At this point we don't have the job. That's the reason the first * parameter is NULL, to avoid a crash when cl_pack_emit_reloc tries to * add the bo to the job. This also means that we need to add manually * the image bo to the job using the texture. */ const uint32_t base_offset = image->mem->bo->offset + v3dv_layer_offset(image, 0, image_view->first_layer); tex.texture_base_pointer = v3dv_cl_address(NULL, base_offset); } } static void pack_texture_shader_state(struct v3dv_device *device, struct v3dv_image_view *iview) { pack_texture_shader_state_helper(device, iview, false); if (iview->type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) pack_texture_shader_state_helper(device, iview, true); } static enum pipe_swizzle vk_component_mapping_to_pipe_swizzle(VkComponentSwizzle comp, VkComponentSwizzle swz) { if (swz == VK_COMPONENT_SWIZZLE_IDENTITY) swz = comp; switch (swz) { case VK_COMPONENT_SWIZZLE_ZERO: return PIPE_SWIZZLE_0; case VK_COMPONENT_SWIZZLE_ONE: return PIPE_SWIZZLE_1; case VK_COMPONENT_SWIZZLE_R: return PIPE_SWIZZLE_X; case VK_COMPONENT_SWIZZLE_G: return PIPE_SWIZZLE_Y; case VK_COMPONENT_SWIZZLE_B: return PIPE_SWIZZLE_Z; case VK_COMPONENT_SWIZZLE_A: return PIPE_SWIZZLE_W; default: unreachable("Unknown VkComponentSwizzle"); }; } VkResult v3dv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image); struct v3dv_image_view *iview; iview = vk_object_zalloc(&device->vk, pAllocator, sizeof(*iview), VK_OBJECT_TYPE_IMAGE_VIEW); if (iview == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; assert(range->layerCount > 0); assert(range->baseMipLevel < image->levels); #ifdef DEBUG switch (image->type) { case VK_IMAGE_TYPE_1D: case VK_IMAGE_TYPE_2D: assert(range->baseArrayLayer + v3dv_layer_count(image, range) - 1 <= image->array_size); break; case VK_IMAGE_TYPE_3D: assert(range->baseArrayLayer + v3dv_layer_count(image, range) - 1 <= u_minify(image->extent.depth, range->baseMipLevel)); /* VK_KHR_maintenance1 */ assert(pCreateInfo->viewType != VK_IMAGE_VIEW_TYPE_2D || ((image->flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT) && range->levelCount == 1 && range->layerCount == 1)); assert(pCreateInfo->viewType != VK_IMAGE_VIEW_TYPE_2D_ARRAY || ((image->flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT) && range->levelCount == 1)); break; default: unreachable("bad VkImageType"); } #endif iview->image = image; iview->aspects = range->aspectMask; iview->type = pCreateInfo->viewType; iview->base_level = range->baseMipLevel; iview->max_level = iview->base_level + v3dv_level_count(image, range) - 1; iview->extent = (VkExtent3D) { .width = u_minify(image->extent.width , iview->base_level), .height = u_minify(image->extent.height, iview->base_level), .depth = u_minify(image->extent.depth , iview->base_level), }; iview->first_layer = range->baseArrayLayer; iview->last_layer = range->baseArrayLayer + v3dv_layer_count(image, range) - 1; iview->offset = v3dv_layer_offset(image, iview->base_level, iview->first_layer); /* If we have D24S8 format but the view only selects the stencil aspect * we want to re-interpret the format as RGBA8_UINT, then map our stencil * data reads to the R component and ignore the GBA channels that contain * the depth aspect data. */ VkFormat format; uint8_t image_view_swizzle[4]; if (pCreateInfo->format == VK_FORMAT_D24_UNORM_S8_UINT && range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) { format = VK_FORMAT_R8G8B8A8_UINT; image_view_swizzle[0] = PIPE_SWIZZLE_X; image_view_swizzle[1] = PIPE_SWIZZLE_0; image_view_swizzle[2] = PIPE_SWIZZLE_0; image_view_swizzle[3] = PIPE_SWIZZLE_1; } else { format = pCreateInfo->format; /* FIXME: we are doing this vk to pipe swizzle mapping just to call * util_format_compose_swizzles. Would be good to check if it would be * better to reimplement the latter using vk component */ image_view_swizzle[0] = vk_component_mapping_to_pipe_swizzle(VK_COMPONENT_SWIZZLE_R, pCreateInfo->components.r); image_view_swizzle[1] = vk_component_mapping_to_pipe_swizzle(VK_COMPONENT_SWIZZLE_G, pCreateInfo->components.g); image_view_swizzle[2] = vk_component_mapping_to_pipe_swizzle(VK_COMPONENT_SWIZZLE_B, pCreateInfo->components.b); image_view_swizzle[3] = vk_component_mapping_to_pipe_swizzle(VK_COMPONENT_SWIZZLE_A, pCreateInfo->components.a); } iview->vk_format = format; iview->format = v3dv_get_format(format); assert(iview->format && iview->format->supported); if (vk_format_is_depth_or_stencil(iview->vk_format)) { iview->internal_type = v3dv_get_internal_depth_type(iview->vk_format); } else { v3dv_get_internal_type_bpp_for_output_format(iview->format->rt_type, &iview->internal_type, &iview->internal_bpp); } const uint8_t *format_swizzle = v3dv_get_format_swizzle(format); util_format_compose_swizzles(format_swizzle, image_view_swizzle, iview->swizzle); iview->swap_rb = iview->swizzle[0] == PIPE_SWIZZLE_Z; pack_texture_shader_state(device, iview); *pView = v3dv_image_view_to_handle(iview); return VK_SUCCESS; } void v3dv_DestroyImageView(VkDevice _device, VkImageView imageView, const VkAllocationCallbacks* pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView); if (image_view == NULL) return; vk_object_free(&device->vk, pAllocator, image_view); } static void pack_texture_shader_state_from_buffer_view(struct v3dv_device *device, struct v3dv_buffer_view *buffer_view) { assert(buffer_view->buffer); const struct v3dv_buffer *buffer = buffer_view->buffer; v3dv_pack(buffer_view->texture_shader_state, TEXTURE_SHADER_STATE, tex) { tex.swizzle_r = translate_swizzle(PIPE_SWIZZLE_X); tex.swizzle_g = translate_swizzle(PIPE_SWIZZLE_Y); tex.swizzle_b = translate_swizzle(PIPE_SWIZZLE_Z); tex.swizzle_a = translate_swizzle(PIPE_SWIZZLE_W); tex.image_depth = 1; /* On 4.x, the height of a 1D texture is redefined to be the upper 14 * bits of the width (which is only usable with txf) (or in other words, * we are providing a 28 bit field for size, but split on the usual * 14bit height/width). */ tex.image_width = buffer_view->num_elements; tex.image_height = tex.image_width >> 14; tex.image_width &= (1 << 14) - 1; tex.image_height &= (1 << 14) - 1; tex.texture_type = buffer_view->format->tex_type; tex.srgb = vk_format_is_srgb(buffer_view->vk_format); /* At this point we don't have the job. That's the reason the first * parameter is NULL, to avoid a crash when cl_pack_emit_reloc tries to * add the bo to the job. This also means that we need to add manually * the image bo to the job using the texture. */ const uint32_t base_offset = buffer->mem->bo->offset + buffer->mem_offset + buffer_view->offset; tex.texture_base_pointer = v3dv_cl_address(NULL, base_offset); } } VkResult v3dv_CreateBufferView(VkDevice _device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { V3DV_FROM_HANDLE(v3dv_device, device, _device); const struct v3dv_buffer *buffer = v3dv_buffer_from_handle(pCreateInfo->buffer); struct v3dv_buffer_view *view = vk_object_zalloc(&device->vk, pAllocator, sizeof(*view), VK_OBJECT_TYPE_BUFFER_VIEW); if (!view) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); uint32_t range; if (pCreateInfo->range == VK_WHOLE_SIZE) range = buffer->size - pCreateInfo->offset; else range = pCreateInfo->range; enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format); uint32_t num_elements = range / util_format_get_blocksize(pipe_format); view->buffer = buffer; view->offset = pCreateInfo->offset; view->size = view->offset + range; view->num_elements = num_elements; view->vk_format = pCreateInfo->format; view->format = v3dv_get_format(view->vk_format); v3dv_get_internal_type_bpp_for_output_format(view->format->rt_type, &view->internal_type, &view->internal_bpp); if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT || buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) pack_texture_shader_state_from_buffer_view(device, view); *pView = v3dv_buffer_view_to_handle(view); return VK_SUCCESS; } void v3dv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView); if (buffer_view == NULL) return; vk_object_free(&device->vk, pAllocator, buffer_view); }