/* * Copyright © 2019 Raspberry Pi * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "v3dv_private.h" #include "vulkan/util/vk_util.h" #include "util/blob.h" #include "nir/nir_serialize.h" static const bool debug_cache = false; static const bool dump_stats = false; static const bool dump_stats_on_destroy = false; /* Shared for nir/variants */ #define V3DV_MAX_PIPELINE_CACHE_ENTRIES 4096 static uint32_t sha1_hash_func(const void *sha1) { return _mesa_hash_data(sha1, 20); } static bool sha1_compare_func(const void *sha1_a, const void *sha1_b) { return memcmp(sha1_a, sha1_b, 20) == 0; } struct serialized_nir { unsigned char sha1_key[20]; size_t size; char data[0]; }; static void cache_dump_stats(struct v3dv_pipeline_cache *cache) { fprintf(stderr, " NIR cache entries: %d\n", cache->nir_stats.count); fprintf(stderr, " NIR cache miss count: %d\n", cache->nir_stats.miss); fprintf(stderr, " NIR cache hit count: %d\n", cache->nir_stats.hit); fprintf(stderr, " cache entries: %d\n", cache->stats.count); fprintf(stderr, " cache miss count: %d\n", cache->stats.miss); fprintf(stderr, " cache hit count: %d\n", cache->stats.hit); } void v3dv_pipeline_cache_upload_nir(struct v3dv_pipeline *pipeline, struct v3dv_pipeline_cache *cache, nir_shader *nir, unsigned char sha1_key[20]) { if (!cache || !cache->nir_cache) return; if (cache->nir_stats.count > V3DV_MAX_PIPELINE_CACHE_ENTRIES) return; pthread_mutex_lock(&cache->mutex); struct hash_entry *entry = _mesa_hash_table_search(cache->nir_cache, sha1_key); pthread_mutex_unlock(&cache->mutex); if (entry) return; struct blob blob; blob_init(&blob); nir_serialize(&blob, nir, false); if (blob.out_of_memory) { blob_finish(&blob); return; } pthread_mutex_lock(&cache->mutex); /* Because ralloc isn't thread-safe, we have to do all this inside the * lock. We could unlock for the big memcpy but it's probably not worth * the hassle. */ entry = _mesa_hash_table_search(cache->nir_cache, sha1_key); if (entry) { blob_finish(&blob); pthread_mutex_unlock(&cache->mutex); return; } struct serialized_nir *snir = ralloc_size(cache->nir_cache, sizeof(*snir) + blob.size); memcpy(snir->sha1_key, sha1_key, 20); snir->size = blob.size; memcpy(snir->data, blob.data, blob.size); blob_finish(&blob); cache->nir_stats.count++; if (debug_cache) { char sha1buf[41]; _mesa_sha1_format(sha1buf, snir->sha1_key); fprintf(stderr, "pipeline cache %p, new nir entry %s\n", cache, sha1buf); if (dump_stats) cache_dump_stats(cache); } _mesa_hash_table_insert(cache->nir_cache, snir->sha1_key, snir); pthread_mutex_unlock(&cache->mutex); } nir_shader* v3dv_pipeline_cache_search_for_nir(struct v3dv_pipeline *pipeline, struct v3dv_pipeline_cache *cache, const nir_shader_compiler_options *nir_options, unsigned char sha1_key[20]) { if (!cache || !cache->nir_cache) return NULL; if (debug_cache) { char sha1buf[41]; _mesa_sha1_format(sha1buf, sha1_key); fprintf(stderr, "pipeline cache %p, search for nir %s\n", cache, sha1buf); } const struct serialized_nir *snir = NULL; pthread_mutex_lock(&cache->mutex); struct hash_entry *entry = _mesa_hash_table_search(cache->nir_cache, sha1_key); if (entry) snir = entry->data; pthread_mutex_unlock(&cache->mutex); if (snir) { struct blob_reader blob; blob_reader_init(&blob, snir->data, snir->size); /* We use context NULL as we want the p_stage to keep the reference to * nir, as we keep open the possibility of provide a shader variant * after cache creation */ nir_shader *nir = nir_deserialize(NULL, nir_options, &blob); if (blob.overrun) { ralloc_free(nir); } else { cache->nir_stats.hit++; if (debug_cache) { fprintf(stderr, "\tnir cache hit: %p\n", nir); if (dump_stats) cache_dump_stats(cache); } return nir; } } cache->nir_stats.miss++; if (debug_cache) { fprintf(stderr, "\tnir cache miss\n"); if (dump_stats) cache_dump_stats(cache); } return NULL; } void v3dv_pipeline_cache_init(struct v3dv_pipeline_cache *cache, struct v3dv_device *device, bool cache_enabled) { cache->device = device; pthread_mutex_init(&cache->mutex, NULL); if (cache_enabled) { cache->nir_cache = _mesa_hash_table_create(NULL, sha1_hash_func, sha1_compare_func); cache->nir_stats.miss = 0; cache->nir_stats.hit = 0; cache->nir_stats.count = 0; cache->cache = _mesa_hash_table_create(NULL, sha1_hash_func, sha1_compare_func); cache->stats.miss = 0; cache->stats.hit = 0; cache->stats.count = 0; } else { cache->nir_cache = NULL; cache->cache = NULL; } } static struct v3dv_pipeline_shared_data * v3dv_pipeline_shared_data_create_from_blob(struct v3dv_pipeline_cache *cache, struct blob_reader *blob); static void pipeline_cache_upload_shared_data(struct v3dv_pipeline_cache *cache, struct v3dv_pipeline_shared_data *shared_data, bool from_disk_cache); static bool v3dv_pipeline_shared_data_write_to_blob(const struct v3dv_pipeline_shared_data *cache_entry, struct blob *blob); /** * It searchs for pipeline cached data, and returns a v3dv_pipeline_shared_data with * it, or NULL if doesn't have it cached. On the former, it will increases the * ref_count, so caller is responsible to unref it. */ struct v3dv_pipeline_shared_data * v3dv_pipeline_cache_search_for_pipeline(struct v3dv_pipeline_cache *cache, unsigned char sha1_key[20]) { if (!cache || !cache->cache) return NULL; if (debug_cache) { char sha1buf[41]; _mesa_sha1_format(sha1buf, sha1_key); fprintf(stderr, "pipeline cache %p, search pipeline with key %s\n", cache, sha1buf); } pthread_mutex_lock(&cache->mutex); struct hash_entry *entry = _mesa_hash_table_search(cache->cache, sha1_key); if (entry) { struct v3dv_pipeline_shared_data *cache_entry = (struct v3dv_pipeline_shared_data *) entry->data; assert(cache_entry); cache->stats.hit++; if (debug_cache) { fprintf(stderr, "\tcache hit: %p\n", cache_entry); if (dump_stats) cache_dump_stats(cache); } v3dv_pipeline_shared_data_ref(cache_entry); pthread_mutex_unlock(&cache->mutex); return cache_entry; } cache->stats.miss++; if (debug_cache) { fprintf(stderr, "\tcache miss\n"); if (dump_stats) cache_dump_stats(cache); } pthread_mutex_unlock(&cache->mutex); #ifdef ENABLE_SHADER_CACHE struct v3dv_device *device = cache->device; struct disk_cache *disk_cache = device->pdevice->disk_cache; /* Note that the on-disk-cache can be independently disabled, while keeping * the pipeline cache working, by using the environment variable * MESA_GLSL_CACHE_DISABLE. In that case the calls to disk_cache_put/get * will not do anything. */ if (disk_cache && device->instance->pipeline_cache_enabled) { cache_key cache_key; disk_cache_compute_key(disk_cache, sha1_key, 20, cache_key); size_t buffer_size; uint8_t *buffer = disk_cache_get(disk_cache, cache_key, &buffer_size); if (buffer) { struct blob_reader blob; struct v3dv_pipeline_shared_data *shared_data; if (debug_cache) fprintf(stderr, "\ton-disk-cache hit\n"); blob_reader_init(&blob, buffer, buffer_size); shared_data = v3dv_pipeline_shared_data_create_from_blob(cache, &blob); free(buffer); if (shared_data) { if (cache) pipeline_cache_upload_shared_data(cache, shared_data, true); return shared_data; } } else { if (debug_cache) fprintf(stderr, "\ton-disk-cache miss\n"); } } #endif return NULL; } void v3dv_pipeline_shared_data_destroy(struct v3dv_device *device, struct v3dv_pipeline_shared_data *shared_data) { assert(shared_data->ref_cnt == 0); for (uint8_t stage = 0; stage < BROADCOM_SHADER_STAGES; stage++) { if (shared_data->variants[stage] != NULL) v3dv_shader_variant_destroy(device, shared_data->variants[stage]); } if (shared_data->assembly_bo) v3dv_bo_free(device, shared_data->assembly_bo); vk_free(&device->vk.alloc, shared_data); } static struct v3dv_pipeline_shared_data * v3dv_pipeline_shared_data_new(struct v3dv_pipeline_cache *cache, const unsigned char sha1_key[20], struct v3dv_shader_variant **variants, const struct v3dv_descriptor_map *ubo_map, const struct v3dv_descriptor_map *ssbo_map, const struct v3dv_descriptor_map *sampler_map, const struct v3dv_descriptor_map *texture_map, const uint64_t *total_assembly, const uint32_t total_assembly_size) { size_t size = sizeof(struct v3dv_pipeline_shared_data); /* We create new_entry using the device alloc. Right now shared_data is ref * and unref by both the pipeline and the pipeline cache, so we can't * ensure that the cache or pipeline alloc will be available on the last * unref. */ struct v3dv_pipeline_shared_data *new_entry = vk_zalloc2(&cache->device->vk.alloc, NULL, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (new_entry == NULL) return NULL; new_entry->ref_cnt = 1; memcpy(new_entry->sha1_key, sha1_key, 20); memcpy(&new_entry->ubo_map, ubo_map, sizeof(struct v3dv_descriptor_map)); memcpy(&new_entry->ssbo_map, ssbo_map, sizeof(struct v3dv_descriptor_map)); memcpy(&new_entry->sampler_map, sampler_map, sizeof(struct v3dv_descriptor_map)); memcpy(&new_entry->texture_map, texture_map, sizeof(struct v3dv_descriptor_map)); for (uint8_t stage = 0; stage < BROADCOM_SHADER_STAGES; stage++) new_entry->variants[stage] = variants[stage]; struct v3dv_bo *bo = v3dv_bo_alloc(cache->device, total_assembly_size, "pipeline shader assembly", true); if (!bo) { fprintf(stderr, "failed to allocate memory for shaders assembly\n"); v3dv_pipeline_shared_data_unref(cache->device, new_entry); return NULL; } bool ok = v3dv_bo_map(cache->device, bo, total_assembly_size); if (!ok) { fprintf(stderr, "failed to map source shader buffer\n"); v3dv_pipeline_shared_data_unref(cache->device, new_entry); return NULL; } memcpy(bo->map, total_assembly, total_assembly_size); new_entry->assembly_bo = bo; return new_entry; } static void pipeline_cache_upload_shared_data(struct v3dv_pipeline_cache *cache, struct v3dv_pipeline_shared_data *shared_data, bool from_disk_cache) { assert(shared_data); if (!cache || !cache->cache) return; if (cache->stats.count > V3DV_MAX_PIPELINE_CACHE_ENTRIES) return; pthread_mutex_lock(&cache->mutex); struct hash_entry *entry = _mesa_hash_table_search(cache->cache, shared_data->sha1_key); if (entry) { pthread_mutex_unlock(&cache->mutex); return; } v3dv_pipeline_shared_data_ref(shared_data); _mesa_hash_table_insert(cache->cache, shared_data->sha1_key, shared_data); cache->stats.count++; if (debug_cache) { char sha1buf[41]; _mesa_sha1_format(sha1buf, shared_data->sha1_key); fprintf(stderr, "pipeline cache %p, new cache entry with sha1 key %s:%p\n\n", cache, sha1buf, shared_data); if (dump_stats) cache_dump_stats(cache); } pthread_mutex_unlock(&cache->mutex); #ifdef ENABLE_SHADER_CACHE /* If we are being called from a on-disk-cache hit, we can skip writing to * the disk cache */ if (from_disk_cache) return; struct v3dv_device *device = cache->device; struct disk_cache *disk_cache = device->pdevice->disk_cache; if (disk_cache) { struct blob binary; blob_init(&binary); if (v3dv_pipeline_shared_data_write_to_blob(shared_data, &binary)) { cache_key cache_key; disk_cache_compute_key(disk_cache, shared_data->sha1_key, 20, cache_key); disk_cache_put(disk_cache, cache_key, binary.data, binary.size, NULL); if (debug_cache) { char sha1buf[41]; _mesa_sha1_format(sha1buf, shared_data->sha1_key); fprintf(stderr, "on-disk-cache, new cache entry with sha1 key %s:%p\n\n", sha1buf, shared_data); } } blob_finish(&binary); } #endif } /* Uploads all the "cacheable" or shared data from the pipeline */ void v3dv_pipeline_cache_upload_pipeline(struct v3dv_pipeline *pipeline, struct v3dv_pipeline_cache *cache) { pipeline_cache_upload_shared_data(cache, pipeline->shared_data, false); } static struct serialized_nir* serialized_nir_create_from_blob(struct v3dv_pipeline_cache *cache, struct blob_reader *blob) { const unsigned char *sha1_key = blob_read_bytes(blob, 20); uint32_t snir_size = blob_read_uint32(blob); const char* snir_data = blob_read_bytes(blob, snir_size); if (blob->overrun) return NULL; struct serialized_nir *snir = ralloc_size(cache->nir_cache, sizeof(*snir) + snir_size); memcpy(snir->sha1_key, sha1_key, 20); snir->size = snir_size; memcpy(snir->data, snir_data, snir_size); return snir; } static struct v3dv_shader_variant* shader_variant_create_from_blob(struct v3dv_device *device, struct blob_reader *blob) { VkResult result; broadcom_shader_stage stage = blob_read_uint32(blob); uint32_t prog_data_size = blob_read_uint32(blob); /* FIXME: as we include the stage perhaps we can avoid prog_data_size? */ assert(prog_data_size == v3d_prog_data_size(broadcom_shader_stage_to_gl(stage))); const void *prog_data = blob_read_bytes(blob, prog_data_size); if (blob->overrun) return NULL; uint32_t ulist_count = blob_read_uint32(blob); uint32_t contents_size = sizeof(enum quniform_contents) * ulist_count; const void *contents_data = blob_read_bytes(blob, contents_size); if (blob->overrun) return NULL; uint ulist_data_size = sizeof(uint32_t) * ulist_count; const void *ulist_data_data = blob_read_bytes(blob, ulist_data_size); if (blob->overrun) return NULL; uint32_t assembly_offset = blob_read_uint32(blob); uint32_t qpu_insts_size = blob_read_uint32(blob); /* shader_variant_create expects a newly created prog_data for their own, * as it is what the v3d compiler returns. So we are also allocating one * (including the uniform list) and filled it up with the data that we read * from the blob */ struct v3d_prog_data *new_prog_data = rzalloc_size(NULL, prog_data_size); memcpy(new_prog_data, prog_data, prog_data_size); struct v3d_uniform_list *ulist = &new_prog_data->uniforms; ulist->count = ulist_count; ulist->contents = ralloc_array(new_prog_data, enum quniform_contents, ulist->count); memcpy(ulist->contents, contents_data, contents_size); ulist->data = ralloc_array(new_prog_data, uint32_t, ulist->count); memcpy(ulist->data, ulist_data_data, ulist_data_size); return v3dv_shader_variant_create(device, stage, new_prog_data, prog_data_size, assembly_offset, NULL, qpu_insts_size, &result); } static struct v3dv_pipeline_shared_data * v3dv_pipeline_shared_data_create_from_blob(struct v3dv_pipeline_cache *cache, struct blob_reader *blob) { const unsigned char *sha1_key = blob_read_bytes(blob, 20); const struct v3dv_descriptor_map *ubo_map = blob_read_bytes(blob, sizeof(struct v3dv_descriptor_map)); const struct v3dv_descriptor_map *ssbo_map = blob_read_bytes(blob, sizeof(struct v3dv_descriptor_map)); const struct v3dv_descriptor_map *sampler_map = blob_read_bytes(blob, sizeof(struct v3dv_descriptor_map)); const struct v3dv_descriptor_map *texture_map = blob_read_bytes(blob, sizeof(struct v3dv_descriptor_map)); if (blob->overrun) return NULL; uint8_t variant_count = blob_read_uint8(blob); struct v3dv_shader_variant *variants[BROADCOM_SHADER_STAGES] = { 0 }; for (uint8_t count = 0; count < variant_count; count++) { uint8_t stage = blob_read_uint8(blob); struct v3dv_shader_variant *variant = shader_variant_create_from_blob(cache->device, blob); variants[stage] = variant; } uint32_t total_assembly_size = blob_read_uint32(blob); const uint64_t *total_assembly = blob_read_bytes(blob, total_assembly_size); if (blob->overrun) return NULL; return v3dv_pipeline_shared_data_new(cache, sha1_key, variants, ubo_map, ssbo_map, sampler_map, texture_map, total_assembly, total_assembly_size); } static void pipeline_cache_load(struct v3dv_pipeline_cache *cache, size_t size, const void *data) { struct v3dv_device *device = cache->device; struct v3dv_physical_device *pdevice = &device->instance->physicalDevice; struct vk_pipeline_cache_header header; if (cache->cache == NULL || cache->nir_cache == NULL) return; struct blob_reader blob; blob_reader_init(&blob, data, size); blob_copy_bytes(&blob, &header, sizeof(header)); if (size < sizeof(header)) return; memcpy(&header, data, sizeof(header)); if (header.header_size < sizeof(header)) return; if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) return; if (header.vendor_id != v3dv_physical_device_vendor_id(pdevice)) return; if (header.device_id != v3dv_physical_device_device_id(pdevice)) return; if (memcmp(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE) != 0) return; uint32_t nir_count = blob_read_uint32(&blob); if (blob.overrun) return; for (uint32_t i = 0; i < nir_count; i++) { struct serialized_nir *snir = serialized_nir_create_from_blob(cache, &blob); if (!snir) break; _mesa_hash_table_insert(cache->nir_cache, snir->sha1_key, snir); cache->nir_stats.count++; } uint32_t count = blob_read_uint32(&blob); if (blob.overrun) return; for (uint32_t i = 0; i < count; i++) { struct v3dv_pipeline_shared_data *cache_entry = v3dv_pipeline_shared_data_create_from_blob(cache, &blob); if (!cache_entry) break; _mesa_hash_table_insert(cache->cache, cache_entry->sha1_key, cache_entry); cache->stats.count++; } if (debug_cache) { fprintf(stderr, "pipeline cache %p, loaded %i nir shaders and " "%i entries\n", cache, nir_count, count); if (dump_stats) cache_dump_stats(cache); } } VkResult v3dv_CreatePipelineCache(VkDevice _device, const VkPipelineCacheCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineCache *pPipelineCache) { V3DV_FROM_HANDLE(v3dv_device, device, _device); struct v3dv_pipeline_cache *cache; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO); assert(pCreateInfo->flags == 0); cache = vk_object_zalloc(&device->vk, pAllocator, sizeof(*cache), VK_OBJECT_TYPE_PIPELINE_CACHE); if (cache == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); v3dv_pipeline_cache_init(cache, device, device->instance->pipeline_cache_enabled); if (pCreateInfo->initialDataSize > 0) { pipeline_cache_load(cache, pCreateInfo->initialDataSize, pCreateInfo->pInitialData); } *pPipelineCache = v3dv_pipeline_cache_to_handle(cache); return VK_SUCCESS; } void v3dv_pipeline_cache_finish(struct v3dv_pipeline_cache *cache) { pthread_mutex_destroy(&cache->mutex); if (dump_stats_on_destroy) cache_dump_stats(cache); if (cache->nir_cache) { hash_table_foreach(cache->nir_cache, entry) ralloc_free(entry->data); _mesa_hash_table_destroy(cache->nir_cache, NULL); } if (cache->cache) { hash_table_foreach(cache->cache, entry) { struct v3dv_pipeline_shared_data *cache_entry = entry->data; if (cache_entry) v3dv_pipeline_shared_data_unref(cache->device, cache_entry); } _mesa_hash_table_destroy(cache->cache, NULL); } } void v3dv_DestroyPipelineCache(VkDevice _device, VkPipelineCache _cache, const VkAllocationCallbacks *pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_pipeline_cache, cache, _cache); if (!cache) return; v3dv_pipeline_cache_finish(cache); vk_object_free(&device->vk, pAllocator, cache); } VkResult v3dv_MergePipelineCaches(VkDevice device, VkPipelineCache dstCache, uint32_t srcCacheCount, const VkPipelineCache *pSrcCaches) { V3DV_FROM_HANDLE(v3dv_pipeline_cache, dst, dstCache); if (!dst->cache || !dst->nir_cache) return VK_SUCCESS; for (uint32_t i = 0; i < srcCacheCount; i++) { V3DV_FROM_HANDLE(v3dv_pipeline_cache, src, pSrcCaches[i]); if (!src->cache || !src->nir_cache) continue; hash_table_foreach(src->nir_cache, entry) { struct serialized_nir *src_snir = entry->data; assert(src_snir); if (_mesa_hash_table_search(dst->nir_cache, src_snir->sha1_key)) continue; /* FIXME: we are using serialized nir shaders because they are * convenient to create and store on the cache, but requires to do a * copy here (and some other places) of the serialized NIR. Perhaps * it would make sense to move to handle the NIR shaders with shared * structures with ref counts, as the variants. */ struct serialized_nir *snir_dst = ralloc_size(dst->nir_cache, sizeof(*snir_dst) + src_snir->size); memcpy(snir_dst->sha1_key, src_snir->sha1_key, 20); snir_dst->size = src_snir->size; memcpy(snir_dst->data, src_snir->data, src_snir->size); _mesa_hash_table_insert(dst->nir_cache, snir_dst->sha1_key, snir_dst); dst->nir_stats.count++; if (debug_cache) { char sha1buf[41]; _mesa_sha1_format(sha1buf, snir_dst->sha1_key); fprintf(stderr, "pipeline cache %p, added nir entry %s " "from pipeline cache %p\n", dst, sha1buf, src); if (dump_stats) cache_dump_stats(dst); } } hash_table_foreach(src->cache, entry) { struct v3dv_pipeline_shared_data *cache_entry = entry->data; assert(cache_entry); if (_mesa_hash_table_search(dst->cache, cache_entry->sha1_key)) continue; v3dv_pipeline_shared_data_ref(cache_entry); _mesa_hash_table_insert(dst->cache, cache_entry->sha1_key, cache_entry); dst->stats.count++; if (debug_cache) { char sha1buf[41]; _mesa_sha1_format(sha1buf, cache_entry->sha1_key); fprintf(stderr, "pipeline cache %p, added entry %s " "from pipeline cache %p\n", dst, sha1buf, src); if (dump_stats) cache_dump_stats(dst); } } } return VK_SUCCESS; } static bool shader_variant_write_to_blob(const struct v3dv_shader_variant *variant, struct blob *blob) { blob_write_uint32(blob, variant->stage); blob_write_uint32(blob, variant->prog_data_size); blob_write_bytes(blob, variant->prog_data.base, variant->prog_data_size); struct v3d_uniform_list *ulist = &variant->prog_data.base->uniforms; blob_write_uint32(blob, ulist->count); blob_write_bytes(blob, ulist->contents, sizeof(enum quniform_contents) * ulist->count); blob_write_bytes(blob, ulist->data, sizeof(uint32_t) * ulist->count); blob_write_uint32(blob, variant->assembly_offset); blob_write_uint32(blob, variant->qpu_insts_size); return !blob->out_of_memory; } static bool v3dv_pipeline_shared_data_write_to_blob(const struct v3dv_pipeline_shared_data *cache_entry, struct blob *blob) { blob_write_bytes(blob, cache_entry->sha1_key, 20); blob_write_bytes(blob, &cache_entry->ubo_map, sizeof(struct v3dv_descriptor_map)); blob_write_bytes(blob, &cache_entry->ssbo_map, sizeof(struct v3dv_descriptor_map)); blob_write_bytes(blob, &cache_entry->sampler_map, sizeof(struct v3dv_descriptor_map)); blob_write_bytes(blob, &cache_entry->texture_map, sizeof(struct v3dv_descriptor_map)); uint8_t variant_count = 0; for (uint8_t stage = 0; stage < BROADCOM_SHADER_STAGES; stage++) { if (cache_entry->variants[stage] == NULL) continue; variant_count++; } /* Right now we only support compute pipeline, or graphics pipeline with * vertex, vertex bin, and fragment shader. */ assert(variant_count == 3 || (variant_count == 1 && cache_entry->variants[BROADCOM_SHADER_COMPUTE])); blob_write_uint8(blob, variant_count); uint32_t total_assembly_size = 0; for (uint8_t stage = 0; stage < BROADCOM_SHADER_STAGES; stage++) { if (cache_entry->variants[stage] == NULL) continue; blob_write_uint8(blob, stage); if (!shader_variant_write_to_blob(cache_entry->variants[stage], blob)) return false; total_assembly_size += cache_entry->variants[stage]->qpu_insts_size; } blob_write_uint32(blob, total_assembly_size); assert(cache_entry->assembly_bo->map); assert(cache_entry->assembly_bo->size >= total_assembly_size); blob_write_bytes(blob, cache_entry->assembly_bo->map, total_assembly_size); return !blob->out_of_memory; } VkResult v3dv_GetPipelineCacheData(VkDevice _device, VkPipelineCache _cache, size_t *pDataSize, void *pData) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_pipeline_cache, cache, _cache); struct blob blob; if (pData) { blob_init_fixed(&blob, pData, *pDataSize); } else { blob_init_fixed(&blob, NULL, SIZE_MAX); } struct v3dv_physical_device *pdevice = &device->instance->physicalDevice; VkResult result = VK_SUCCESS; pthread_mutex_lock(&cache->mutex); struct vk_pipeline_cache_header header = { .header_size = sizeof(struct vk_pipeline_cache_header), .header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE, .vendor_id = v3dv_physical_device_vendor_id(pdevice), .device_id = v3dv_physical_device_device_id(pdevice), }; memcpy(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE); blob_write_bytes(&blob, &header, sizeof(header)); uint32_t nir_count = 0; intptr_t nir_count_offset = blob_reserve_uint32(&blob); if (nir_count_offset < 0) { *pDataSize = 0; blob_finish(&blob); pthread_mutex_unlock(&cache->mutex); return VK_INCOMPLETE; } if (cache->nir_cache) { hash_table_foreach(cache->nir_cache, entry) { const struct serialized_nir *snir = entry->data; size_t save_size = blob.size; blob_write_bytes(&blob, snir->sha1_key, 20); blob_write_uint32(&blob, snir->size); blob_write_bytes(&blob, snir->data, snir->size); if (blob.out_of_memory) { blob.size = save_size; pthread_mutex_unlock(&cache->mutex); result = VK_INCOMPLETE; break; } nir_count++; } } blob_overwrite_uint32(&blob, nir_count_offset, nir_count); uint32_t count = 0; intptr_t count_offset = blob_reserve_uint32(&blob); if (count_offset < 0) { *pDataSize = 0; blob_finish(&blob); pthread_mutex_unlock(&cache->mutex); return VK_INCOMPLETE; } if (cache->cache) { hash_table_foreach(cache->cache, entry) { struct v3dv_pipeline_shared_data *cache_entry = entry->data; size_t save_size = blob.size; if (!v3dv_pipeline_shared_data_write_to_blob(cache_entry, &blob)) { /* If it fails reset to the previous size and bail */ blob.size = save_size; pthread_mutex_unlock(&cache->mutex); result = VK_INCOMPLETE; break; } count++; } } blob_overwrite_uint32(&blob, count_offset, count); *pDataSize = blob.size; blob_finish(&blob); if (debug_cache) { assert(count <= cache->stats.count); fprintf(stderr, "GetPipelineCacheData: serializing cache %p, " "%i nir shader entries " "%i entries, %u DataSize\n", cache, nir_count, count, (uint32_t) *pDataSize); } pthread_mutex_unlock(&cache->mutex); return result; }