/* * Copyright (C) 2012-2018 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "util/os_mman.h" #include "freedreno_drmif.h" #include "freedreno_priv.h" simple_mtx_t table_lock = SIMPLE_MTX_INITIALIZER; simple_mtx_t fence_lock = SIMPLE_MTX_INITIALIZER; /* set buffer name, and add to table, call w/ table_lock held: */ static void set_name(struct fd_bo *bo, uint32_t name) { bo->name = name; /* add ourself into the handle table: */ _mesa_hash_table_insert(bo->dev->name_table, &bo->name, bo); } static struct fd_bo zombie; /* lookup a buffer, call w/ table_lock held: */ static struct fd_bo * lookup_bo(struct hash_table *tbl, uint32_t key) { struct fd_bo *bo = NULL; struct hash_entry *entry; simple_mtx_assert_locked(&table_lock); entry = _mesa_hash_table_search(tbl, &key); if (entry) { bo = entry->data; /* We could be racing with final unref in another thread, and won * the table_lock preventing the other thread from being able to * remove an object it is about to free. Fortunately since table * lookup and removal are protected by the same lock (and table * removal happens before obj free) we can easily detect this by * checking for refcnt==0 (ie. 1 after p_atomic_inc_return). */ if (p_atomic_inc_return(&bo->refcnt) == 1) { /* Restore the zombified reference count, so if another thread * that ends up calling lookup_bo() gets the table_lock before * the thread deleting the bo does, it doesn't mistakenly see * that the BO is live. * * We are holding the table_lock here so we can't be racing * with another caller of lookup_bo() */ p_atomic_dec(&bo->refcnt); return &zombie; } if (!list_is_empty(&bo->node)) { mesa_logw("bo was in cache, size=%u, alloc_flags=0x%x\n", bo->size, bo->alloc_flags); } /* don't break the bucket if this bo was found in one */ list_delinit(&bo->node); } return bo; } void fd_bo_init_common(struct fd_bo *bo, struct fd_device *dev) { /* Backend should have initialized these: */ assert(bo->size); assert(bo->handle); assert(bo->funcs); bo->dev = dev; bo->iova = bo->funcs->iova(bo); bo->reloc_flags = FD_RELOC_FLAGS_INIT; p_atomic_set(&bo->refcnt, 1); list_inithead(&bo->node); bo->max_fences = 1; bo->fences = &bo->_inline_fence; VG_BO_ALLOC(bo); } /* allocate a new buffer object, call w/ table_lock held */ static struct fd_bo * import_bo_from_handle(struct fd_device *dev, uint32_t size, uint32_t handle) { struct fd_bo *bo; simple_mtx_assert_locked(&table_lock); bo = dev->funcs->bo_from_handle(dev, size, handle); if (!bo) { struct drm_gem_close req = { .handle = handle, }; drmIoctl(dev->fd, DRM_IOCTL_GEM_CLOSE, &req); return NULL; } bo->alloc_flags |= FD_BO_SHARED; /* add ourself into the handle table: */ _mesa_hash_table_insert(dev->handle_table, &bo->handle, bo); return bo; } static struct fd_bo * bo_new(struct fd_device *dev, uint32_t size, uint32_t flags, struct fd_bo_cache *cache) { struct fd_bo *bo = NULL; if (size < FD_BO_HEAP_BLOCK_SIZE) { if ((flags == 0) && dev->default_heap) return fd_bo_heap_alloc(dev->default_heap, size); if ((flags == RING_FLAGS) && dev->ring_heap) return fd_bo_heap_alloc(dev->ring_heap, size); } /* demote cached-coherent to WC if not supported: */ if ((flags & FD_BO_CACHED_COHERENT) && !dev->has_cached_coherent) flags &= ~FD_BO_CACHED_COHERENT; bo = fd_bo_cache_alloc(cache, &size, flags); if (bo) return bo; bo = dev->funcs->bo_new(dev, size, flags); if (!bo) return NULL; simple_mtx_lock(&table_lock); /* add ourself into the handle table: */ _mesa_hash_table_insert(dev->handle_table, &bo->handle, bo); simple_mtx_unlock(&table_lock); bo->alloc_flags = flags; return bo; } struct fd_bo * _fd_bo_new(struct fd_device *dev, uint32_t size, uint32_t flags) { struct fd_bo *bo = bo_new(dev, size, flags, &dev->bo_cache); if (bo) bo->bo_reuse = BO_CACHE; return bo; } void _fd_bo_set_name(struct fd_bo *bo, const char *fmt, va_list ap) { bo->funcs->set_name(bo, fmt, ap); } /* internal function to allocate bo's that use the ringbuffer cache * instead of the normal bo_cache. The purpose is, because cmdstream * bo's get vmap'd on the kernel side, and that is expensive, we want * to re-use cmdstream bo's for cmdstream and not unrelated purposes. */ struct fd_bo * fd_bo_new_ring(struct fd_device *dev, uint32_t size) { struct fd_bo *bo = bo_new(dev, size, RING_FLAGS, &dev->ring_cache); if (bo) { bo->bo_reuse = RING_CACHE; bo->reloc_flags |= FD_RELOC_DUMP; fd_bo_set_name(bo, "cmdstream"); } return bo; } struct fd_bo * fd_bo_from_handle(struct fd_device *dev, uint32_t handle, uint32_t size) { struct fd_bo *bo = NULL; simple_mtx_lock(&table_lock); bo = lookup_bo(dev->handle_table, handle); if (bo) goto out_unlock; bo = import_bo_from_handle(dev, size, handle); VG_BO_ALLOC(bo); out_unlock: simple_mtx_unlock(&table_lock); /* We've raced with the handle being closed, so the handle is no longer * valid. Friends don't let friends share handles. */ if (bo == &zombie) return NULL; return bo; } struct fd_bo * fd_bo_from_dmabuf(struct fd_device *dev, int fd) { int ret, size; uint32_t handle; struct fd_bo *bo; restart: simple_mtx_lock(&table_lock); ret = drmPrimeFDToHandle(dev->fd, fd, &handle); if (ret) { simple_mtx_unlock(&table_lock); return NULL; } bo = lookup_bo(dev->handle_table, handle); if (bo) goto out_unlock; /* lseek() to get bo size */ size = lseek(fd, 0, SEEK_END); lseek(fd, 0, SEEK_CUR); bo = import_bo_from_handle(dev, size, handle); VG_BO_ALLOC(bo); out_unlock: simple_mtx_unlock(&table_lock); if (bo == &zombie) goto restart; return bo; } struct fd_bo * fd_bo_from_name(struct fd_device *dev, uint32_t name) { struct drm_gem_open req = { .name = name, }; struct fd_bo *bo; simple_mtx_lock(&table_lock); /* check name table first, to see if bo is already open: */ bo = lookup_bo(dev->name_table, name); if (bo) goto out_unlock; restart: if (drmIoctl(dev->fd, DRM_IOCTL_GEM_OPEN, &req)) { ERROR_MSG("gem-open failed: %s", strerror(errno)); goto out_unlock; } bo = lookup_bo(dev->handle_table, req.handle); if (bo) goto out_unlock; bo = import_bo_from_handle(dev, req.size, req.handle); if (bo) { set_name(bo, name); VG_BO_ALLOC(bo); } out_unlock: simple_mtx_unlock(&table_lock); if (bo == &zombie) goto restart; return bo; } void fd_bo_mark_for_dump(struct fd_bo *bo) { bo->reloc_flags |= FD_RELOC_DUMP; } struct fd_bo * fd_bo_ref(struct fd_bo *bo) { ref(&bo->refcnt); return bo; } static void bo_finalize(struct fd_bo *bo) { if (bo->funcs->finalize) bo->funcs->finalize(bo); } static void dev_flush(struct fd_device *dev) { if (dev->funcs->flush) dev->funcs->flush(dev); } static void bo_del(struct fd_bo *bo) { bo->funcs->destroy(bo); } static bool try_recycle(struct fd_bo *bo) { struct fd_device *dev = bo->dev; /* No point in BO cache for suballocated buffers: */ if (suballoc_bo(bo)) return false; if (bo->bo_reuse == BO_CACHE) return fd_bo_cache_free(&dev->bo_cache, bo) == 0; if (bo->bo_reuse == RING_CACHE) return fd_bo_cache_free(&dev->ring_cache, bo) == 0; return false; } void fd_bo_del(struct fd_bo *bo) { if (!unref(&bo->refcnt)) return; if (try_recycle(bo)) return; struct fd_device *dev = bo->dev; bo_finalize(bo); dev_flush(dev); bo_del(bo); } void fd_bo_del_array(struct fd_bo **bos, int count) { if (!count) return; struct fd_device *dev = bos[0]->dev; /* * First pass, remove objects from the table that either (a) still have * a live reference, or (b) no longer have a reference but are released * to the BO cache: */ for (int i = 0; i < count; i++) { if (!unref(&bos[i]->refcnt) || try_recycle(bos[i])) { bos[i--] = bos[--count]; } else { /* We are going to delete this one, so finalize it first: */ bo_finalize(bos[i]); } } dev_flush(dev); /* * Second pass, delete all of the objects remaining after first pass. */ for (int i = 0; i < count; i++) { bo_del(bos[i]); } } /** * Special interface for fd_bo_cache to batch delete a list of handles. * Similar to fd_bo_del_array() but bypasses the BO cache (since it is * called from the BO cache to expire a list of BOs). */ void fd_bo_del_list_nocache(struct list_head *list) { if (list_is_empty(list)) return; struct fd_device *dev = first_bo(list)->dev; foreach_bo (bo, list) { bo_finalize(bo); } dev_flush(dev); foreach_bo_safe (bo, list) { assert(bo->refcnt == 0); bo_del(bo); } } void fd_bo_fini_fences(struct fd_bo *bo) { for (int i = 0; i < bo->nr_fences; i++) fd_fence_del(bo->fences[i]); if (bo->fences != &bo->_inline_fence) free(bo->fences); } /** * Helper called by backends bo->funcs->destroy() * * Called under table_lock, bo_del_flush() *must* be called before * table_lock is released (but bo->funcs->destroy() can be called * multiple times before bo_del_flush(), as long as table_lock is * held the entire time) */ void fd_bo_fini_common(struct fd_bo *bo) { struct fd_device *dev = bo->dev; uint32_t handle = bo->handle; VG_BO_FREE(bo); fd_bo_fini_fences(bo); if (bo->map) os_munmap(bo->map, bo->size); if (handle) { simple_mtx_lock(&table_lock); struct drm_gem_close req = { .handle = handle, }; drmIoctl(dev->fd, DRM_IOCTL_GEM_CLOSE, &req); _mesa_hash_table_remove_key(dev->handle_table, &handle); if (bo->name) _mesa_hash_table_remove_key(dev->name_table, &bo->name); simple_mtx_unlock(&table_lock); } free(bo); } static void bo_flush(struct fd_bo *bo) { MESA_TRACE_FUNC(); simple_mtx_lock(&fence_lock); unsigned nr = bo->nr_fences; struct fd_fence *fences[nr]; for (unsigned i = 0; i < nr; i++) fences[i] = fd_fence_ref_locked(bo->fences[i]); simple_mtx_unlock(&fence_lock); for (unsigned i = 0; i < nr; i++) { fd_fence_flush(bo->fences[i]); fd_fence_del(fences[i]); } } int fd_bo_get_name(struct fd_bo *bo, uint32_t *name) { if (suballoc_bo(bo)) return -1; if (!bo->name) { struct drm_gem_flink req = { .handle = bo->handle, }; int ret; ret = drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_FLINK, &req); if (ret) { return ret; } simple_mtx_lock(&table_lock); set_name(bo, req.name); simple_mtx_unlock(&table_lock); bo->bo_reuse = NO_CACHE; bo->alloc_flags |= FD_BO_SHARED; bo_flush(bo); } *name = bo->name; return 0; } uint32_t fd_bo_handle(struct fd_bo *bo) { if (suballoc_bo(bo)) return 0; bo->bo_reuse = NO_CACHE; bo->alloc_flags |= FD_BO_SHARED; bo_flush(bo); return bo->handle; } int fd_bo_dmabuf(struct fd_bo *bo) { int ret, prime_fd; if (suballoc_bo(bo)) return -1; ret = drmPrimeHandleToFD(bo->dev->fd, bo->handle, DRM_CLOEXEC | DRM_RDWR, &prime_fd); if (ret) { ERROR_MSG("failed to get dmabuf fd: %d", ret); return ret; } bo->bo_reuse = NO_CACHE; bo->alloc_flags |= FD_BO_SHARED; bo_flush(bo); return prime_fd; } uint32_t fd_bo_size(struct fd_bo *bo) { return bo->size; } bool fd_bo_is_cached(struct fd_bo *bo) { return !!(bo->alloc_flags & FD_BO_CACHED_COHERENT); } static void * bo_map(struct fd_bo *bo) { if (!bo->map) { uint64_t offset; int ret; ret = bo->funcs->offset(bo, &offset); if (ret) { return NULL; } bo->map = os_mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bo->dev->fd, offset); if (bo->map == MAP_FAILED) { ERROR_MSG("mmap failed: %s", strerror(errno)); bo->map = NULL; } } return bo->map; } void * fd_bo_map(struct fd_bo *bo) { /* don't allow mmap'ing something allocated with FD_BO_NOMAP * for sanity */ if (bo->alloc_flags & FD_BO_NOMAP) return NULL; return bo_map(bo); } void fd_bo_upload(struct fd_bo *bo, void *src, unsigned off, unsigned len) { if (bo->funcs->upload) { bo->funcs->upload(bo, src, off, len); return; } memcpy((uint8_t *)bo_map(bo) + off, src, len); } bool fd_bo_prefer_upload(struct fd_bo *bo, unsigned len) { if (bo->funcs->prefer_upload) return bo->funcs->prefer_upload(bo, len); return false; } /* a bit odd to take the pipe as an arg, but it's a, umm, quirk of kgsl.. */ int fd_bo_cpu_prep(struct fd_bo *bo, struct fd_pipe *pipe, uint32_t op) { enum fd_bo_state state = fd_bo_state(bo); if (state == FD_BO_STATE_IDLE) return 0; MESA_TRACE_FUNC(); if (op & (FD_BO_PREP_NOSYNC | FD_BO_PREP_FLUSH)) { if (op & FD_BO_PREP_FLUSH) bo_flush(bo); /* If we have *only* been asked to flush, then we aren't really * interested about whether shared buffers are busy, so avoid * the kernel ioctl. */ if ((state == FD_BO_STATE_BUSY) || (op == FD_BO_PREP_FLUSH)) return -EBUSY; } /* In case the bo is referenced by a deferred submit, flush up to the * required fence now: */ bo_flush(bo); /* FD_BO_PREP_FLUSH is purely a frontend flag, and is not seen/handled * by backend or kernel: */ op &= ~FD_BO_PREP_FLUSH; if (!op) return 0; /* Wait on fences.. first grab a reference under the fence lock, and then * wait and drop ref. */ simple_mtx_lock(&fence_lock); unsigned nr = bo->nr_fences; struct fd_fence *fences[nr]; for (unsigned i = 0; i < nr; i++) fences[i] = fd_fence_ref_locked(bo->fences[i]); simple_mtx_unlock(&fence_lock); for (unsigned i = 0; i < nr; i++) { fd_fence_wait(fences[i]); fd_fence_del(fences[i]); } /* expire completed fences */ fd_bo_state(bo); /* None shared buffers will not have any external usage (ie. fences * that we are not aware of) so nothing more to do. */ if (!(bo->alloc_flags & FD_BO_SHARED)) return 0; /* If buffer is shared, but we are using explicit sync, no need to * fallback to implicit sync: */ if (pipe && pipe->no_implicit_sync) return 0; return bo->funcs->cpu_prep(bo, pipe, op); } /** * Cleanup fences, dropping pipe references. If 'expired' is true, only * cleanup expired fences. * * Normally we expect at most a single fence, the exception being bo's * shared between contexts */ static void cleanup_fences(struct fd_bo *bo) { simple_mtx_assert_locked(&fence_lock); for (int i = 0; i < bo->nr_fences; i++) { struct fd_fence *f = bo->fences[i]; if (fd_fence_before(f->pipe->control->fence, f->ufence)) continue; bo->nr_fences--; if (bo->nr_fences > 0) { /* Shuffle up the last entry to replace the current slot: */ bo->fences[i] = bo->fences[bo->nr_fences]; i--; } fd_fence_del_locked(f); } } void fd_bo_add_fence(struct fd_bo *bo, struct fd_fence *fence) { simple_mtx_assert_locked(&fence_lock); if (bo->alloc_flags & _FD_BO_NOSYNC) return; /* The common case is bo re-used on the same pipe it had previously * been used on, so just replace the previous fence. */ for (int i = 0; i < bo->nr_fences; i++) { struct fd_fence *f = bo->fences[i]; if (f == fence) return; if (f->pipe == fence->pipe) { assert(fd_fence_before(f->ufence, fence->ufence)); fd_fence_del_locked(f); bo->fences[i] = fd_fence_ref_locked(fence); return; } } cleanup_fences(bo); /* The first time we grow past a single fence, we need some special * handling, as we've been using the embedded _inline_fence to avoid * a separate allocation: */ if (unlikely((bo->nr_fences == 1) && (bo->fences == &bo->_inline_fence))) { bo->nr_fences = bo->max_fences = 0; bo->fences = NULL; APPEND(bo, fences, bo->_inline_fence); } APPEND(bo, fences, fd_fence_ref_locked(fence)); } enum fd_bo_state fd_bo_state(struct fd_bo *bo) { /* NOTE: check the nosync case before touching fence_lock in case we end * up here recursively from dropping pipe reference in cleanup_fences(). * The pipe's control buffer is specifically nosync to avoid recursive * lock problems here. */ if (bo->alloc_flags & (FD_BO_SHARED | _FD_BO_NOSYNC)) return FD_BO_STATE_UNKNOWN; /* Speculatively check, if we already know we're idle, no need to acquire * lock and do the cleanup_fences() dance: */ if (!bo->nr_fences) return FD_BO_STATE_IDLE; simple_mtx_lock(&fence_lock); cleanup_fences(bo); simple_mtx_unlock(&fence_lock); if (!bo->nr_fences) return FD_BO_STATE_IDLE; return FD_BO_STATE_BUSY; }