/************************************************************************** * * Copyright 2007 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * * Wrap the cso cache & hash mechanisms in a simplified * pipe-driver-specific interface. * * @author Zack Rusin * @author Keith Whitwell */ #include "pipe/p_state.h" #include "util/u_draw.h" #include "util/u_framebuffer.h" #include "util/u_helpers.h" #include "util/u_inlines.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_vbuf.h" #include "tgsi/tgsi_parse.h" #include "cso_cache/cso_context.h" #include "cso_cache/cso_cache.h" #include "cso_cache/cso_hash.h" #include "cso_context.h" #include "driver_trace/tr_dump.h" /** * Per-shader sampler information. */ struct sampler_info { struct cso_sampler *cso_samplers[PIPE_MAX_SAMPLERS]; void *samplers[PIPE_MAX_SAMPLERS]; }; struct cso_context { struct pipe_context *pipe; struct u_vbuf *vbuf; struct u_vbuf *vbuf_current; bool always_use_vbuf; boolean has_geometry_shader; boolean has_tessellation; boolean has_compute_shader; boolean has_streamout; uint32_t max_fs_samplerviews : 16; unsigned saved_state; /**< bitmask of CSO_BIT_x flags */ unsigned saved_compute_state; /**< bitmask of CSO_BIT_COMPUTE_x flags */ struct sampler_info fragment_samplers_saved; struct sampler_info compute_samplers_saved; struct sampler_info samplers[PIPE_SHADER_TYPES]; /* Temporary number until cso_single_sampler_done is called. * It tracks the highest sampler seen in cso_single_sampler. */ int max_sampler_seen; unsigned nr_so_targets; struct pipe_stream_output_target *so_targets[PIPE_MAX_SO_BUFFERS]; unsigned nr_so_targets_saved; struct pipe_stream_output_target *so_targets_saved[PIPE_MAX_SO_BUFFERS]; /** Current and saved state. * The saved state is used as a 1-deep stack. */ void *blend, *blend_saved; void *depth_stencil, *depth_stencil_saved; void *rasterizer, *rasterizer_saved; void *fragment_shader, *fragment_shader_saved; void *vertex_shader, *vertex_shader_saved; void *geometry_shader, *geometry_shader_saved; void *tessctrl_shader, *tessctrl_shader_saved; void *tesseval_shader, *tesseval_shader_saved; void *compute_shader, *compute_shader_saved; void *velements, *velements_saved; struct pipe_query *render_condition, *render_condition_saved; uint render_condition_mode, render_condition_mode_saved; boolean render_condition_cond, render_condition_cond_saved; bool flatshade_first, flatshade_first_saved; struct pipe_framebuffer_state fb, fb_saved; struct pipe_viewport_state vp, vp_saved; unsigned sample_mask, sample_mask_saved; unsigned min_samples, min_samples_saved; struct pipe_stencil_ref stencil_ref, stencil_ref_saved; /* This should be last to keep all of the above together in memory. */ struct cso_cache cache; }; struct pipe_context *cso_get_pipe_context(struct cso_context *cso) { return cso->pipe; } static inline boolean delete_cso(struct cso_context *ctx, void *state, enum cso_cache_type type) { switch (type) { case CSO_BLEND: if (ctx->blend == ((struct cso_blend*)state)->data) return false; break; case CSO_DEPTH_STENCIL_ALPHA: if (ctx->depth_stencil == ((struct cso_depth_stencil_alpha*)state)->data) return false; break; case CSO_RASTERIZER: if (ctx->rasterizer == ((struct cso_rasterizer*)state)->data) return false; break; case CSO_VELEMENTS: if (ctx->velements == ((struct cso_velements*)state)->data) return false; break; case CSO_SAMPLER: /* nothing to do for samplers */ break; default: assert(0); } cso_delete_state(ctx->pipe, state, type); return true; } static inline void sanitize_hash(struct cso_hash *hash, enum cso_cache_type type, int max_size, void *user_data) { struct cso_context *ctx = (struct cso_context *)user_data; /* if we're approach the maximum size, remove fourth of the entries * otherwise every subsequent call will go through the same */ int hash_size = cso_hash_size(hash); int max_entries = (max_size > hash_size) ? max_size : hash_size; int to_remove = (max_size < max_entries) * max_entries/4; struct cso_hash_iter iter; struct cso_sampler **samplers_to_restore = NULL; unsigned to_restore = 0; if (hash_size > max_size) to_remove += hash_size - max_size; if (to_remove == 0) return; if (type == CSO_SAMPLER) { int i, j; samplers_to_restore = MALLOC(PIPE_SHADER_TYPES * PIPE_MAX_SAMPLERS * sizeof(*samplers_to_restore)); /* Temporarily remove currently bound sampler states from the hash * table, to prevent them from being deleted */ for (i = 0; i < PIPE_SHADER_TYPES; i++) { for (j = 0; j < PIPE_MAX_SAMPLERS; j++) { struct cso_sampler *sampler = ctx->samplers[i].cso_samplers[j]; if (sampler && cso_hash_take(hash, sampler->hash_key)) samplers_to_restore[to_restore++] = sampler; } } } iter = cso_hash_first_node(hash); while (to_remove) { /*remove elements until we're good */ /*fixme: currently we pick the nodes to remove at random*/ void *cso = cso_hash_iter_data(iter); if (!cso) break; if (delete_cso(ctx, cso, type)) { iter = cso_hash_erase(hash, iter); --to_remove; } else iter = cso_hash_iter_next(iter); } if (type == CSO_SAMPLER) { /* Put currently bound sampler states back into the hash table */ while (to_restore--) { struct cso_sampler *sampler = samplers_to_restore[to_restore]; cso_hash_insert(hash, sampler->hash_key, sampler); } FREE(samplers_to_restore); } } static void cso_init_vbuf(struct cso_context *cso, unsigned flags) { struct u_vbuf_caps caps; bool uses_user_vertex_buffers = !(flags & CSO_NO_USER_VERTEX_BUFFERS); bool needs64b = !(flags & CSO_NO_64B_VERTEX_BUFFERS); u_vbuf_get_caps(cso->pipe->screen, &caps, needs64b); /* Enable u_vbuf if needed. */ if (caps.fallback_always || (uses_user_vertex_buffers && caps.fallback_only_for_user_vbuffers)) { cso->vbuf = u_vbuf_create(cso->pipe, &caps); cso->vbuf_current = cso->vbuf; cso->always_use_vbuf = caps.fallback_always; } } struct cso_context * cso_create_context(struct pipe_context *pipe, unsigned flags) { struct cso_context *ctx = CALLOC_STRUCT(cso_context); if (!ctx) return NULL; cso_cache_init(&ctx->cache, pipe); cso_cache_set_sanitize_callback(&ctx->cache, sanitize_hash, ctx); ctx->pipe = pipe; ctx->sample_mask = ~0; if (!(flags & CSO_NO_VBUF)) cso_init_vbuf(ctx, flags); /* Enable for testing: */ if (0) cso_set_maximum_cache_size(&ctx->cache, 4); if (pipe->screen->get_shader_param(pipe->screen, PIPE_SHADER_GEOMETRY, PIPE_SHADER_CAP_MAX_INSTRUCTIONS) > 0) { ctx->has_geometry_shader = TRUE; } if (pipe->screen->get_shader_param(pipe->screen, PIPE_SHADER_TESS_CTRL, PIPE_SHADER_CAP_MAX_INSTRUCTIONS) > 0) { ctx->has_tessellation = TRUE; } if (pipe->screen->get_shader_param(pipe->screen, PIPE_SHADER_COMPUTE, PIPE_SHADER_CAP_MAX_INSTRUCTIONS) > 0) { int supported_irs = pipe->screen->get_shader_param(pipe->screen, PIPE_SHADER_COMPUTE, PIPE_SHADER_CAP_SUPPORTED_IRS); if (supported_irs & ((1 << PIPE_SHADER_IR_TGSI) | (1 << PIPE_SHADER_IR_NIR))) { ctx->has_compute_shader = TRUE; } } if (pipe->screen->get_param(pipe->screen, PIPE_CAP_MAX_STREAM_OUTPUT_BUFFERS) != 0) { ctx->has_streamout = TRUE; } ctx->max_fs_samplerviews = pipe->screen->get_shader_param(pipe->screen, PIPE_SHADER_FRAGMENT, PIPE_SHADER_CAP_MAX_TEXTURE_SAMPLERS); ctx->max_sampler_seen = -1; return ctx; } void cso_unbind_context(struct cso_context *ctx) { unsigned i; bool dumping = trace_dumping_enabled_locked(); if (dumping) trace_dumping_stop_locked(); if (ctx->pipe) { ctx->pipe->bind_blend_state( ctx->pipe, NULL ); ctx->pipe->bind_rasterizer_state( ctx->pipe, NULL ); { static struct pipe_sampler_view *views[PIPE_MAX_SHADER_SAMPLER_VIEWS] = { NULL }; static struct pipe_shader_buffer ssbos[PIPE_MAX_SHADER_BUFFERS] = { 0 }; static void *zeros[PIPE_MAX_SAMPLERS] = { NULL }; struct pipe_screen *scr = ctx->pipe->screen; enum pipe_shader_type sh; for (sh = 0; sh < PIPE_SHADER_TYPES; sh++) { switch (sh) { case PIPE_SHADER_GEOMETRY: if (!ctx->has_geometry_shader) continue; break; case PIPE_SHADER_TESS_CTRL: case PIPE_SHADER_TESS_EVAL: if (!ctx->has_tessellation) continue; break; case PIPE_SHADER_COMPUTE: if (!ctx->has_compute_shader) continue; break; default: break; } int maxsam = scr->get_shader_param(scr, sh, PIPE_SHADER_CAP_MAX_TEXTURE_SAMPLERS); int maxview = scr->get_shader_param(scr, sh, PIPE_SHADER_CAP_MAX_SAMPLER_VIEWS); int maxssbo = scr->get_shader_param(scr, sh, PIPE_SHADER_CAP_MAX_SHADER_BUFFERS); int maxcb = scr->get_shader_param(scr, sh, PIPE_SHADER_CAP_MAX_CONST_BUFFERS); int maximg = scr->get_shader_param(scr, sh, PIPE_SHADER_CAP_MAX_SHADER_IMAGES); assert(maxsam <= PIPE_MAX_SAMPLERS); assert(maxview <= PIPE_MAX_SHADER_SAMPLER_VIEWS); assert(maxssbo <= PIPE_MAX_SHADER_BUFFERS); assert(maxcb <= PIPE_MAX_CONSTANT_BUFFERS); assert(maximg <= PIPE_MAX_SHADER_IMAGES); if (maxsam > 0) { ctx->pipe->bind_sampler_states(ctx->pipe, sh, 0, maxsam, zeros); } if (maxview > 0) { ctx->pipe->set_sampler_views(ctx->pipe, sh, 0, maxview, 0, false, views); } if (maxssbo > 0) { ctx->pipe->set_shader_buffers(ctx->pipe, sh, 0, maxssbo, ssbos, 0); } if (maximg > 0) { ctx->pipe->set_shader_images(ctx->pipe, sh, 0, 0, maximg, NULL); } for (int i = 0; i < maxcb; i++) { ctx->pipe->set_constant_buffer(ctx->pipe, sh, i, false, NULL); } } } ctx->pipe->bind_depth_stencil_alpha_state( ctx->pipe, NULL ); struct pipe_stencil_ref sr = {0}; ctx->pipe->set_stencil_ref(ctx->pipe, sr); ctx->pipe->bind_fs_state( ctx->pipe, NULL ); ctx->pipe->set_constant_buffer(ctx->pipe, PIPE_SHADER_FRAGMENT, 0, false, NULL); ctx->pipe->bind_vs_state( ctx->pipe, NULL ); ctx->pipe->set_constant_buffer(ctx->pipe, PIPE_SHADER_VERTEX, 0, false, NULL); if (ctx->has_geometry_shader) { ctx->pipe->bind_gs_state(ctx->pipe, NULL); } if (ctx->has_tessellation) { ctx->pipe->bind_tcs_state(ctx->pipe, NULL); ctx->pipe->bind_tes_state(ctx->pipe, NULL); } if (ctx->has_compute_shader) { ctx->pipe->bind_compute_state(ctx->pipe, NULL); } ctx->pipe->bind_vertex_elements_state( ctx->pipe, NULL ); if (ctx->has_streamout) ctx->pipe->set_stream_output_targets(ctx->pipe, 0, NULL, NULL); } util_unreference_framebuffer_state(&ctx->fb); util_unreference_framebuffer_state(&ctx->fb_saved); for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) { pipe_so_target_reference(&ctx->so_targets[i], NULL); pipe_so_target_reference(&ctx->so_targets_saved[i], NULL); } memset(&ctx->samplers, 0, sizeof(ctx->samplers)); memset(&ctx->nr_so_targets, 0, offsetof(struct cso_context, cache) - offsetof(struct cso_context, nr_so_targets)); ctx->sample_mask = ~0; /* * If the cso context is reused (with the same pipe context), * need to really make sure the context state doesn't get out of sync. */ ctx->pipe->set_sample_mask(ctx->pipe, ctx->sample_mask); if (ctx->pipe->set_min_samples) ctx->pipe->set_min_samples(ctx->pipe, ctx->min_samples); if (dumping) trace_dumping_start_locked(); } /** * Free the CSO context. */ void cso_destroy_context( struct cso_context *ctx ) { cso_unbind_context(ctx); cso_cache_delete(&ctx->cache); if (ctx->vbuf) u_vbuf_destroy(ctx->vbuf); FREE( ctx ); } /* Those function will either find the state of the given template * in the cache or they will create a new state from the given * template, insert it in the cache and return it. */ /* * If the driver returns 0 from the create method then they will assign * the data member of the cso to be the template itself. */ enum pipe_error cso_set_blend(struct cso_context *ctx, const struct pipe_blend_state *templ) { unsigned key_size, hash_key; struct cso_hash_iter iter; void *handle; key_size = templ->independent_blend_enable ? sizeof(struct pipe_blend_state) : (char *)&(templ->rt[1]) - (char *)templ; hash_key = cso_construct_key((void*)templ, key_size); iter = cso_find_state_template(&ctx->cache, hash_key, CSO_BLEND, (void*)templ, key_size); if (cso_hash_iter_is_null(iter)) { struct cso_blend *cso = MALLOC(sizeof(struct cso_blend)); if (!cso) return PIPE_ERROR_OUT_OF_MEMORY; memset(&cso->state, 0, sizeof cso->state); memcpy(&cso->state, templ, key_size); cso->data = ctx->pipe->create_blend_state(ctx->pipe, &cso->state); iter = cso_insert_state(&ctx->cache, hash_key, CSO_BLEND, cso); if (cso_hash_iter_is_null(iter)) { FREE(cso); return PIPE_ERROR_OUT_OF_MEMORY; } handle = cso->data; } else { handle = ((struct cso_blend *)cso_hash_iter_data(iter))->data; } if (ctx->blend != handle) { ctx->blend = handle; ctx->pipe->bind_blend_state(ctx->pipe, handle); } return PIPE_OK; } static void cso_save_blend(struct cso_context *ctx) { assert(!ctx->blend_saved); ctx->blend_saved = ctx->blend; } static void cso_restore_blend(struct cso_context *ctx) { if (ctx->blend != ctx->blend_saved) { ctx->blend = ctx->blend_saved; ctx->pipe->bind_blend_state(ctx->pipe, ctx->blend_saved); } ctx->blend_saved = NULL; } enum pipe_error cso_set_depth_stencil_alpha(struct cso_context *ctx, const struct pipe_depth_stencil_alpha_state *templ) { unsigned key_size = sizeof(struct pipe_depth_stencil_alpha_state); unsigned hash_key = cso_construct_key((void*)templ, key_size); struct cso_hash_iter iter = cso_find_state_template(&ctx->cache, hash_key, CSO_DEPTH_STENCIL_ALPHA, (void*)templ, key_size); void *handle; if (cso_hash_iter_is_null(iter)) { struct cso_depth_stencil_alpha *cso = MALLOC(sizeof(struct cso_depth_stencil_alpha)); if (!cso) return PIPE_ERROR_OUT_OF_MEMORY; memcpy(&cso->state, templ, sizeof(*templ)); cso->data = ctx->pipe->create_depth_stencil_alpha_state(ctx->pipe, &cso->state); iter = cso_insert_state(&ctx->cache, hash_key, CSO_DEPTH_STENCIL_ALPHA, cso); if (cso_hash_iter_is_null(iter)) { FREE(cso); return PIPE_ERROR_OUT_OF_MEMORY; } handle = cso->data; } else { handle = ((struct cso_depth_stencil_alpha *) cso_hash_iter_data(iter))->data; } if (ctx->depth_stencil != handle) { ctx->depth_stencil = handle; ctx->pipe->bind_depth_stencil_alpha_state(ctx->pipe, handle); } return PIPE_OK; } static void cso_save_depth_stencil_alpha(struct cso_context *ctx) { assert(!ctx->depth_stencil_saved); ctx->depth_stencil_saved = ctx->depth_stencil; } static void cso_restore_depth_stencil_alpha(struct cso_context *ctx) { if (ctx->depth_stencil != ctx->depth_stencil_saved) { ctx->depth_stencil = ctx->depth_stencil_saved; ctx->pipe->bind_depth_stencil_alpha_state(ctx->pipe, ctx->depth_stencil_saved); } ctx->depth_stencil_saved = NULL; } enum pipe_error cso_set_rasterizer(struct cso_context *ctx, const struct pipe_rasterizer_state *templ) { unsigned key_size = sizeof(struct pipe_rasterizer_state); unsigned hash_key = cso_construct_key((void*)templ, key_size); struct cso_hash_iter iter = cso_find_state_template(&ctx->cache, hash_key, CSO_RASTERIZER, (void*)templ, key_size); void *handle = NULL; /* We can't have both point_quad_rasterization (sprites) and point_smooth * (round AA points) enabled at the same time. */ assert(!(templ->point_quad_rasterization && templ->point_smooth)); if (cso_hash_iter_is_null(iter)) { struct cso_rasterizer *cso = MALLOC(sizeof(struct cso_rasterizer)); if (!cso) return PIPE_ERROR_OUT_OF_MEMORY; memcpy(&cso->state, templ, sizeof(*templ)); cso->data = ctx->pipe->create_rasterizer_state(ctx->pipe, &cso->state); iter = cso_insert_state(&ctx->cache, hash_key, CSO_RASTERIZER, cso); if (cso_hash_iter_is_null(iter)) { FREE(cso); return PIPE_ERROR_OUT_OF_MEMORY; } handle = cso->data; } else { handle = ((struct cso_rasterizer *)cso_hash_iter_data(iter))->data; } if (ctx->rasterizer != handle) { ctx->rasterizer = handle; ctx->flatshade_first = templ->flatshade_first; if (ctx->vbuf) u_vbuf_set_flatshade_first(ctx->vbuf, ctx->flatshade_first); ctx->pipe->bind_rasterizer_state(ctx->pipe, handle); } return PIPE_OK; } static void cso_save_rasterizer(struct cso_context *ctx) { assert(!ctx->rasterizer_saved); ctx->rasterizer_saved = ctx->rasterizer; ctx->flatshade_first_saved = ctx->flatshade_first; } static void cso_restore_rasterizer(struct cso_context *ctx) { if (ctx->rasterizer != ctx->rasterizer_saved) { ctx->rasterizer = ctx->rasterizer_saved; ctx->flatshade_first = ctx->flatshade_first_saved; if (ctx->vbuf) u_vbuf_set_flatshade_first(ctx->vbuf, ctx->flatshade_first); ctx->pipe->bind_rasterizer_state(ctx->pipe, ctx->rasterizer_saved); } ctx->rasterizer_saved = NULL; } void cso_set_fragment_shader_handle(struct cso_context *ctx, void *handle ) { if (ctx->fragment_shader != handle) { ctx->fragment_shader = handle; ctx->pipe->bind_fs_state(ctx->pipe, handle); } } static void cso_save_fragment_shader(struct cso_context *ctx) { assert(!ctx->fragment_shader_saved); ctx->fragment_shader_saved = ctx->fragment_shader; } static void cso_restore_fragment_shader(struct cso_context *ctx) { if (ctx->fragment_shader_saved != ctx->fragment_shader) { ctx->pipe->bind_fs_state(ctx->pipe, ctx->fragment_shader_saved); ctx->fragment_shader = ctx->fragment_shader_saved; } ctx->fragment_shader_saved = NULL; } void cso_set_vertex_shader_handle(struct cso_context *ctx, void *handle) { if (ctx->vertex_shader != handle) { ctx->vertex_shader = handle; ctx->pipe->bind_vs_state(ctx->pipe, handle); } } static void cso_save_vertex_shader(struct cso_context *ctx) { assert(!ctx->vertex_shader_saved); ctx->vertex_shader_saved = ctx->vertex_shader; } static void cso_restore_vertex_shader(struct cso_context *ctx) { if (ctx->vertex_shader_saved != ctx->vertex_shader) { ctx->pipe->bind_vs_state(ctx->pipe, ctx->vertex_shader_saved); ctx->vertex_shader = ctx->vertex_shader_saved; } ctx->vertex_shader_saved = NULL; } void cso_set_framebuffer(struct cso_context *ctx, const struct pipe_framebuffer_state *fb) { if (memcmp(&ctx->fb, fb, sizeof(*fb)) != 0) { util_copy_framebuffer_state(&ctx->fb, fb); ctx->pipe->set_framebuffer_state(ctx->pipe, fb); } } static void cso_save_framebuffer(struct cso_context *ctx) { util_copy_framebuffer_state(&ctx->fb_saved, &ctx->fb); } static void cso_restore_framebuffer(struct cso_context *ctx) { if (memcmp(&ctx->fb, &ctx->fb_saved, sizeof(ctx->fb))) { util_copy_framebuffer_state(&ctx->fb, &ctx->fb_saved); ctx->pipe->set_framebuffer_state(ctx->pipe, &ctx->fb); util_unreference_framebuffer_state(&ctx->fb_saved); } } void cso_set_viewport(struct cso_context *ctx, const struct pipe_viewport_state *vp) { if (memcmp(&ctx->vp, vp, sizeof(*vp))) { ctx->vp = *vp; ctx->pipe->set_viewport_states(ctx->pipe, 0, 1, vp); } } /** * Setup viewport state for given width and height (position is always (0,0)). * Invert the Y axis if 'invert' is true. */ void cso_set_viewport_dims(struct cso_context *ctx, float width, float height, boolean invert) { struct pipe_viewport_state vp; vp.scale[0] = width * 0.5f; vp.scale[1] = height * (invert ? -0.5f : 0.5f); vp.scale[2] = 0.5f; vp.translate[0] = 0.5f * width; vp.translate[1] = 0.5f * height; vp.translate[2] = 0.5f; vp.swizzle_x = PIPE_VIEWPORT_SWIZZLE_POSITIVE_X; vp.swizzle_y = PIPE_VIEWPORT_SWIZZLE_POSITIVE_Y; vp.swizzle_z = PIPE_VIEWPORT_SWIZZLE_POSITIVE_Z; vp.swizzle_w = PIPE_VIEWPORT_SWIZZLE_POSITIVE_W; cso_set_viewport(ctx, &vp); } static void cso_save_viewport(struct cso_context *ctx) { ctx->vp_saved = ctx->vp; } static void cso_restore_viewport(struct cso_context *ctx) { if (memcmp(&ctx->vp, &ctx->vp_saved, sizeof(ctx->vp))) { ctx->vp = ctx->vp_saved; ctx->pipe->set_viewport_states(ctx->pipe, 0, 1, &ctx->vp); } } void cso_set_sample_mask(struct cso_context *ctx, unsigned sample_mask) { if (ctx->sample_mask != sample_mask) { ctx->sample_mask = sample_mask; ctx->pipe->set_sample_mask(ctx->pipe, sample_mask); } } static void cso_save_sample_mask(struct cso_context *ctx) { ctx->sample_mask_saved = ctx->sample_mask; } static void cso_restore_sample_mask(struct cso_context *ctx) { cso_set_sample_mask(ctx, ctx->sample_mask_saved); } void cso_set_min_samples(struct cso_context *ctx, unsigned min_samples) { if (ctx->min_samples != min_samples && ctx->pipe->set_min_samples) { ctx->min_samples = min_samples; ctx->pipe->set_min_samples(ctx->pipe, min_samples); } } static void cso_save_min_samples(struct cso_context *ctx) { ctx->min_samples_saved = ctx->min_samples; } static void cso_restore_min_samples(struct cso_context *ctx) { cso_set_min_samples(ctx, ctx->min_samples_saved); } void cso_set_stencil_ref(struct cso_context *ctx, const struct pipe_stencil_ref sr) { if (memcmp(&ctx->stencil_ref, &sr, sizeof(ctx->stencil_ref))) { ctx->stencil_ref = sr; ctx->pipe->set_stencil_ref(ctx->pipe, sr); } } static void cso_save_stencil_ref(struct cso_context *ctx) { ctx->stencil_ref_saved = ctx->stencil_ref; } static void cso_restore_stencil_ref(struct cso_context *ctx) { if (memcmp(&ctx->stencil_ref, &ctx->stencil_ref_saved, sizeof(ctx->stencil_ref))) { ctx->stencil_ref = ctx->stencil_ref_saved; ctx->pipe->set_stencil_ref(ctx->pipe, ctx->stencil_ref); } } void cso_set_render_condition(struct cso_context *ctx, struct pipe_query *query, boolean condition, enum pipe_render_cond_flag mode) { struct pipe_context *pipe = ctx->pipe; if (ctx->render_condition != query || ctx->render_condition_mode != mode || ctx->render_condition_cond != condition) { pipe->render_condition(pipe, query, condition, mode); ctx->render_condition = query; ctx->render_condition_cond = condition; ctx->render_condition_mode = mode; } } static void cso_save_render_condition(struct cso_context *ctx) { ctx->render_condition_saved = ctx->render_condition; ctx->render_condition_cond_saved = ctx->render_condition_cond; ctx->render_condition_mode_saved = ctx->render_condition_mode; } static void cso_restore_render_condition(struct cso_context *ctx) { cso_set_render_condition(ctx, ctx->render_condition_saved, ctx->render_condition_cond_saved, ctx->render_condition_mode_saved); } void cso_set_geometry_shader_handle(struct cso_context *ctx, void *handle) { assert(ctx->has_geometry_shader || !handle); if (ctx->has_geometry_shader && ctx->geometry_shader != handle) { ctx->geometry_shader = handle; ctx->pipe->bind_gs_state(ctx->pipe, handle); } } static void cso_save_geometry_shader(struct cso_context *ctx) { if (!ctx->has_geometry_shader) { return; } assert(!ctx->geometry_shader_saved); ctx->geometry_shader_saved = ctx->geometry_shader; } static void cso_restore_geometry_shader(struct cso_context *ctx) { if (!ctx->has_geometry_shader) { return; } if (ctx->geometry_shader_saved != ctx->geometry_shader) { ctx->pipe->bind_gs_state(ctx->pipe, ctx->geometry_shader_saved); ctx->geometry_shader = ctx->geometry_shader_saved; } ctx->geometry_shader_saved = NULL; } void cso_set_tessctrl_shader_handle(struct cso_context *ctx, void *handle) { assert(ctx->has_tessellation || !handle); if (ctx->has_tessellation && ctx->tessctrl_shader != handle) { ctx->tessctrl_shader = handle; ctx->pipe->bind_tcs_state(ctx->pipe, handle); } } static void cso_save_tessctrl_shader(struct cso_context *ctx) { if (!ctx->has_tessellation) { return; } assert(!ctx->tessctrl_shader_saved); ctx->tessctrl_shader_saved = ctx->tessctrl_shader; } static void cso_restore_tessctrl_shader(struct cso_context *ctx) { if (!ctx->has_tessellation) { return; } if (ctx->tessctrl_shader_saved != ctx->tessctrl_shader) { ctx->pipe->bind_tcs_state(ctx->pipe, ctx->tessctrl_shader_saved); ctx->tessctrl_shader = ctx->tessctrl_shader_saved; } ctx->tessctrl_shader_saved = NULL; } void cso_set_tesseval_shader_handle(struct cso_context *ctx, void *handle) { assert(ctx->has_tessellation || !handle); if (ctx->has_tessellation && ctx->tesseval_shader != handle) { ctx->tesseval_shader = handle; ctx->pipe->bind_tes_state(ctx->pipe, handle); } } static void cso_save_tesseval_shader(struct cso_context *ctx) { if (!ctx->has_tessellation) { return; } assert(!ctx->tesseval_shader_saved); ctx->tesseval_shader_saved = ctx->tesseval_shader; } static void cso_restore_tesseval_shader(struct cso_context *ctx) { if (!ctx->has_tessellation) { return; } if (ctx->tesseval_shader_saved != ctx->tesseval_shader) { ctx->pipe->bind_tes_state(ctx->pipe, ctx->tesseval_shader_saved); ctx->tesseval_shader = ctx->tesseval_shader_saved; } ctx->tesseval_shader_saved = NULL; } void cso_set_compute_shader_handle(struct cso_context *ctx, void *handle) { assert(ctx->has_compute_shader || !handle); if (ctx->has_compute_shader && ctx->compute_shader != handle) { ctx->compute_shader = handle; ctx->pipe->bind_compute_state(ctx->pipe, handle); } } static void cso_save_compute_shader(struct cso_context *ctx) { if (!ctx->has_compute_shader) { return; } assert(!ctx->compute_shader_saved); ctx->compute_shader_saved = ctx->compute_shader; } static void cso_restore_compute_shader(struct cso_context *ctx) { if (!ctx->has_compute_shader) { return; } if (ctx->compute_shader_saved != ctx->compute_shader) { ctx->pipe->bind_compute_state(ctx->pipe, ctx->compute_shader_saved); ctx->compute_shader = ctx->compute_shader_saved; } ctx->compute_shader_saved = NULL; } static void cso_save_compute_samplers(struct cso_context *ctx) { struct sampler_info *info = &ctx->samplers[PIPE_SHADER_COMPUTE]; struct sampler_info *saved = &ctx->compute_samplers_saved; memcpy(saved->cso_samplers, info->cso_samplers, sizeof(info->cso_samplers)); memcpy(saved->samplers, info->samplers, sizeof(info->samplers)); } static void cso_restore_compute_samplers(struct cso_context *ctx) { struct sampler_info *info = &ctx->samplers[PIPE_SHADER_COMPUTE]; struct sampler_info *saved = &ctx->compute_samplers_saved; memcpy(info->cso_samplers, saved->cso_samplers, sizeof(info->cso_samplers)); memcpy(info->samplers, saved->samplers, sizeof(info->samplers)); for (int i = PIPE_MAX_SAMPLERS - 1; i >= 0; i--) { if (info->samplers[i]) { ctx->max_sampler_seen = i; break; } } cso_single_sampler_done(ctx, PIPE_SHADER_COMPUTE); } static void cso_set_vertex_elements_direct(struct cso_context *ctx, const struct cso_velems_state *velems) { unsigned key_size, hash_key; struct cso_hash_iter iter; void *handle; /* Need to include the count into the stored state data too. * Otherwise first few count pipe_vertex_elements could be identical * even if count is different, and there's no guarantee the hash would * be different in that case neither. */ key_size = sizeof(struct pipe_vertex_element) * velems->count + sizeof(unsigned); hash_key = cso_construct_key((void*)velems, key_size); iter = cso_find_state_template(&ctx->cache, hash_key, CSO_VELEMENTS, (void*)velems, key_size); if (cso_hash_iter_is_null(iter)) { struct cso_velements *cso = MALLOC(sizeof(struct cso_velements)); if (!cso) return; memcpy(&cso->state, velems, key_size); /* Lower 64-bit vertex attributes. */ unsigned new_count = velems->count; const struct pipe_vertex_element *new_elems = velems->velems; struct pipe_vertex_element tmp[PIPE_MAX_ATTRIBS]; util_lower_uint64_vertex_elements(&new_elems, &new_count, tmp); cso->data = ctx->pipe->create_vertex_elements_state(ctx->pipe, new_count, new_elems); iter = cso_insert_state(&ctx->cache, hash_key, CSO_VELEMENTS, cso); if (cso_hash_iter_is_null(iter)) { FREE(cso); return; } handle = cso->data; } else { handle = ((struct cso_velements *)cso_hash_iter_data(iter))->data; } if (ctx->velements != handle) { ctx->velements = handle; ctx->pipe->bind_vertex_elements_state(ctx->pipe, handle); } } enum pipe_error cso_set_vertex_elements(struct cso_context *ctx, const struct cso_velems_state *velems) { struct u_vbuf *vbuf = ctx->vbuf_current; if (vbuf) { u_vbuf_set_vertex_elements(vbuf, velems); return PIPE_OK; } cso_set_vertex_elements_direct(ctx, velems); return PIPE_OK; } static void cso_save_vertex_elements(struct cso_context *ctx) { struct u_vbuf *vbuf = ctx->vbuf_current; if (vbuf) { u_vbuf_save_vertex_elements(vbuf); return; } assert(!ctx->velements_saved); ctx->velements_saved = ctx->velements; } static void cso_restore_vertex_elements(struct cso_context *ctx) { struct u_vbuf *vbuf = ctx->vbuf_current; if (vbuf) { u_vbuf_restore_vertex_elements(vbuf); return; } if (ctx->velements != ctx->velements_saved) { ctx->velements = ctx->velements_saved; ctx->pipe->bind_vertex_elements_state(ctx->pipe, ctx->velements_saved); } ctx->velements_saved = NULL; } /* vertex buffers */ void cso_set_vertex_buffers(struct cso_context *ctx, unsigned start_slot, unsigned count, unsigned unbind_trailing_count, bool take_ownership, const struct pipe_vertex_buffer *buffers) { struct u_vbuf *vbuf = ctx->vbuf_current; if (!count && !unbind_trailing_count) return; if (vbuf) { u_vbuf_set_vertex_buffers(vbuf, start_slot, count, unbind_trailing_count, take_ownership, buffers); return; } struct pipe_context *pipe = ctx->pipe; pipe->set_vertex_buffers(pipe, start_slot, count, unbind_trailing_count, take_ownership, buffers); } /** * Set vertex buffers and vertex elements. Skip u_vbuf if it's only needed * for user vertex buffers and user vertex buffers are not set by this call. * u_vbuf will be disabled. To re-enable u_vbuf, call this function again. * * Skipping u_vbuf decreases CPU overhead for draw calls that don't need it, * such as VBOs, glBegin/End, and display lists. * * Internal operations that do "save states, draw, restore states" shouldn't * use this, because the states are only saved in either cso_context or * u_vbuf, not both. */ void cso_set_vertex_buffers_and_elements(struct cso_context *ctx, const struct cso_velems_state *velems, unsigned vb_count, unsigned unbind_trailing_vb_count, bool take_ownership, bool uses_user_vertex_buffers, const struct pipe_vertex_buffer *vbuffers) { struct u_vbuf *vbuf = ctx->vbuf; struct pipe_context *pipe = ctx->pipe; if (vbuf && (ctx->always_use_vbuf || uses_user_vertex_buffers)) { if (!ctx->vbuf_current) { /* Unbind all buffers in cso_context, because we'll use u_vbuf. */ unsigned unbind_vb_count = vb_count + unbind_trailing_vb_count; if (unbind_vb_count) pipe->set_vertex_buffers(pipe, 0, 0, unbind_vb_count, false, NULL); /* Unset this to make sure the CSO is re-bound on the next use. */ ctx->velements = NULL; ctx->vbuf_current = vbuf; unbind_trailing_vb_count = 0; } if (vb_count || unbind_trailing_vb_count) { u_vbuf_set_vertex_buffers(vbuf, 0, vb_count, unbind_trailing_vb_count, take_ownership, vbuffers); } u_vbuf_set_vertex_elements(vbuf, velems); return; } if (ctx->vbuf_current) { /* Unbind all buffers in u_vbuf, because we'll use cso_context. */ unsigned unbind_vb_count = vb_count + unbind_trailing_vb_count; if (unbind_vb_count) u_vbuf_set_vertex_buffers(vbuf, 0, 0, unbind_vb_count, false, NULL); /* Unset this to make sure the CSO is re-bound on the next use. */ u_vbuf_unset_vertex_elements(vbuf); ctx->vbuf_current = NULL; unbind_trailing_vb_count = 0; } if (vb_count || unbind_trailing_vb_count) { pipe->set_vertex_buffers(pipe, 0, vb_count, unbind_trailing_vb_count, take_ownership, vbuffers); } cso_set_vertex_elements_direct(ctx, velems); } static bool cso_set_sampler(struct cso_context *ctx, enum pipe_shader_type shader_stage, unsigned idx, const struct pipe_sampler_state *templ) { unsigned key_size = sizeof(struct pipe_sampler_state); unsigned hash_key = cso_construct_key((void*)templ, key_size); struct cso_sampler *cso; struct cso_hash_iter iter = cso_find_state_template(&ctx->cache, hash_key, CSO_SAMPLER, (void *) templ, key_size); if (cso_hash_iter_is_null(iter)) { cso = MALLOC(sizeof(struct cso_sampler)); if (!cso) return false; memcpy(&cso->state, templ, sizeof(*templ)); cso->data = ctx->pipe->create_sampler_state(ctx->pipe, &cso->state); cso->hash_key = hash_key; iter = cso_insert_state(&ctx->cache, hash_key, CSO_SAMPLER, cso); if (cso_hash_iter_is_null(iter)) { FREE(cso); return false; } } else { cso = cso_hash_iter_data(iter); } ctx->samplers[shader_stage].cso_samplers[idx] = cso; ctx->samplers[shader_stage].samplers[idx] = cso->data; return true; } void cso_single_sampler(struct cso_context *ctx, enum pipe_shader_type shader_stage, unsigned idx, const struct pipe_sampler_state *templ) { if (cso_set_sampler(ctx, shader_stage, idx, templ)) ctx->max_sampler_seen = MAX2(ctx->max_sampler_seen, (int)idx); } /** * Send staged sampler state to the driver. */ void cso_single_sampler_done(struct cso_context *ctx, enum pipe_shader_type shader_stage) { struct sampler_info *info = &ctx->samplers[shader_stage]; if (ctx->max_sampler_seen == -1) return; ctx->pipe->bind_sampler_states(ctx->pipe, shader_stage, 0, ctx->max_sampler_seen + 1, info->samplers); ctx->max_sampler_seen = -1; } /* * If the function encouters any errors it will return the * last one. Done to always try to set as many samplers * as possible. */ void cso_set_samplers(struct cso_context *ctx, enum pipe_shader_type shader_stage, unsigned nr, const struct pipe_sampler_state **templates) { int last = -1; for (unsigned i = 0; i < nr; i++) { if (!templates[i]) continue; /* Reuse the same sampler state CSO if 2 consecutive sampler states * are identical. * * The trivial case where both pointers are equal doesn't occur in * frequented codepaths. * * Reuse rate: * - Borderlands 2: 55% * - Hitman: 65% * - Rocket League: 75% * - Tomb Raider: 50-65% * - XCOM 2: 55% */ if (last >= 0 && !memcmp(templates[i], templates[last], sizeof(struct pipe_sampler_state))) { ctx->samplers[shader_stage].cso_samplers[i] = ctx->samplers[shader_stage].cso_samplers[last]; ctx->samplers[shader_stage].samplers[i] = ctx->samplers[shader_stage].samplers[last]; } else { /* Look up the sampler state CSO. */ cso_set_sampler(ctx, shader_stage, i, templates[i]); } last = i; } ctx->max_sampler_seen = MAX2(ctx->max_sampler_seen, last); cso_single_sampler_done(ctx, shader_stage); } static void cso_save_fragment_samplers(struct cso_context *ctx) { struct sampler_info *info = &ctx->samplers[PIPE_SHADER_FRAGMENT]; struct sampler_info *saved = &ctx->fragment_samplers_saved; memcpy(saved->cso_samplers, info->cso_samplers, sizeof(info->cso_samplers)); memcpy(saved->samplers, info->samplers, sizeof(info->samplers)); } static void cso_restore_fragment_samplers(struct cso_context *ctx) { struct sampler_info *info = &ctx->samplers[PIPE_SHADER_FRAGMENT]; struct sampler_info *saved = &ctx->fragment_samplers_saved; memcpy(info->cso_samplers, saved->cso_samplers, sizeof(info->cso_samplers)); memcpy(info->samplers, saved->samplers, sizeof(info->samplers)); for (int i = PIPE_MAX_SAMPLERS - 1; i >= 0; i--) { if (info->samplers[i]) { ctx->max_sampler_seen = i; break; } } cso_single_sampler_done(ctx, PIPE_SHADER_FRAGMENT); } void cso_set_stream_outputs(struct cso_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { struct pipe_context *pipe = ctx->pipe; uint i; if (!ctx->has_streamout) { assert(num_targets == 0); return; } if (ctx->nr_so_targets == 0 && num_targets == 0) { /* Nothing to do. */ return; } /* reference new targets */ for (i = 0; i < num_targets; i++) { pipe_so_target_reference(&ctx->so_targets[i], targets[i]); } /* unref extra old targets, if any */ for (; i < ctx->nr_so_targets; i++) { pipe_so_target_reference(&ctx->so_targets[i], NULL); } pipe->set_stream_output_targets(pipe, num_targets, targets, offsets); ctx->nr_so_targets = num_targets; } static void cso_save_stream_outputs(struct cso_context *ctx) { uint i; if (!ctx->has_streamout) { return; } ctx->nr_so_targets_saved = ctx->nr_so_targets; for (i = 0; i < ctx->nr_so_targets; i++) { assert(!ctx->so_targets_saved[i]); pipe_so_target_reference(&ctx->so_targets_saved[i], ctx->so_targets[i]); } } static void cso_restore_stream_outputs(struct cso_context *ctx) { struct pipe_context *pipe = ctx->pipe; uint i; unsigned offset[PIPE_MAX_SO_BUFFERS]; if (!ctx->has_streamout) { return; } if (ctx->nr_so_targets == 0 && ctx->nr_so_targets_saved == 0) { /* Nothing to do. */ return; } assert(ctx->nr_so_targets_saved <= PIPE_MAX_SO_BUFFERS); for (i = 0; i < ctx->nr_so_targets_saved; i++) { pipe_so_target_reference(&ctx->so_targets[i], NULL); /* move the reference from one pointer to another */ ctx->so_targets[i] = ctx->so_targets_saved[i]; ctx->so_targets_saved[i] = NULL; /* -1 means append */ offset[i] = (unsigned)-1; } for (; i < ctx->nr_so_targets; i++) { pipe_so_target_reference(&ctx->so_targets[i], NULL); } pipe->set_stream_output_targets(pipe, ctx->nr_so_targets_saved, ctx->so_targets, offset); ctx->nr_so_targets = ctx->nr_so_targets_saved; ctx->nr_so_targets_saved = 0; } /** * Save all the CSO state items specified by the state_mask bitmask * of CSO_BIT_x flags. */ void cso_save_state(struct cso_context *cso, unsigned state_mask) { assert(cso->saved_state == 0); cso->saved_state = state_mask; if (state_mask & CSO_BIT_BLEND) cso_save_blend(cso); if (state_mask & CSO_BIT_DEPTH_STENCIL_ALPHA) cso_save_depth_stencil_alpha(cso); if (state_mask & CSO_BIT_FRAGMENT_SAMPLERS) cso_save_fragment_samplers(cso); if (state_mask & CSO_BIT_FRAGMENT_SHADER) cso_save_fragment_shader(cso); if (state_mask & CSO_BIT_FRAMEBUFFER) cso_save_framebuffer(cso); if (state_mask & CSO_BIT_GEOMETRY_SHADER) cso_save_geometry_shader(cso); if (state_mask & CSO_BIT_MIN_SAMPLES) cso_save_min_samples(cso); if (state_mask & CSO_BIT_RASTERIZER) cso_save_rasterizer(cso); if (state_mask & CSO_BIT_RENDER_CONDITION) cso_save_render_condition(cso); if (state_mask & CSO_BIT_SAMPLE_MASK) cso_save_sample_mask(cso); if (state_mask & CSO_BIT_STENCIL_REF) cso_save_stencil_ref(cso); if (state_mask & CSO_BIT_STREAM_OUTPUTS) cso_save_stream_outputs(cso); if (state_mask & CSO_BIT_TESSCTRL_SHADER) cso_save_tessctrl_shader(cso); if (state_mask & CSO_BIT_TESSEVAL_SHADER) cso_save_tesseval_shader(cso); if (state_mask & CSO_BIT_VERTEX_ELEMENTS) cso_save_vertex_elements(cso); if (state_mask & CSO_BIT_VERTEX_SHADER) cso_save_vertex_shader(cso); if (state_mask & CSO_BIT_VIEWPORT) cso_save_viewport(cso); if (state_mask & CSO_BIT_PAUSE_QUERIES) cso->pipe->set_active_query_state(cso->pipe, false); } /** * Restore the state which was saved by cso_save_state(). */ void cso_restore_state(struct cso_context *cso, unsigned unbind) { unsigned state_mask = cso->saved_state; assert(state_mask); if (state_mask & CSO_BIT_DEPTH_STENCIL_ALPHA) cso_restore_depth_stencil_alpha(cso); if (state_mask & CSO_BIT_STENCIL_REF) cso_restore_stencil_ref(cso); if (state_mask & CSO_BIT_FRAGMENT_SHADER) cso_restore_fragment_shader(cso); if (state_mask & CSO_BIT_GEOMETRY_SHADER) cso_restore_geometry_shader(cso); if (state_mask & CSO_BIT_TESSEVAL_SHADER) cso_restore_tesseval_shader(cso); if (state_mask & CSO_BIT_TESSCTRL_SHADER) cso_restore_tessctrl_shader(cso); if (state_mask & CSO_BIT_VERTEX_SHADER) cso_restore_vertex_shader(cso); if (unbind & CSO_UNBIND_FS_SAMPLERVIEWS) cso->pipe->set_sampler_views(cso->pipe, PIPE_SHADER_FRAGMENT, 0, 0, cso->max_fs_samplerviews, false, NULL); if (unbind & CSO_UNBIND_FS_SAMPLERVIEW0) cso->pipe->set_sampler_views(cso->pipe, PIPE_SHADER_FRAGMENT, 0, 0, 1, false, NULL); if (state_mask & CSO_BIT_FRAGMENT_SAMPLERS) cso_restore_fragment_samplers(cso); if (unbind & CSO_UNBIND_FS_IMAGE0) cso->pipe->set_shader_images(cso->pipe, PIPE_SHADER_FRAGMENT, 0, 0, 1, NULL); if (state_mask & CSO_BIT_FRAMEBUFFER) cso_restore_framebuffer(cso); if (state_mask & CSO_BIT_BLEND) cso_restore_blend(cso); if (state_mask & CSO_BIT_RASTERIZER) cso_restore_rasterizer(cso); if (state_mask & CSO_BIT_MIN_SAMPLES) cso_restore_min_samples(cso); if (state_mask & CSO_BIT_RENDER_CONDITION) cso_restore_render_condition(cso); if (state_mask & CSO_BIT_SAMPLE_MASK) cso_restore_sample_mask(cso); if (state_mask & CSO_BIT_VIEWPORT) cso_restore_viewport(cso); if (unbind & CSO_UNBIND_VS_CONSTANTS) cso->pipe->set_constant_buffer(cso->pipe, PIPE_SHADER_VERTEX, 0, false, NULL); if (unbind & CSO_UNBIND_FS_CONSTANTS) cso->pipe->set_constant_buffer(cso->pipe, PIPE_SHADER_FRAGMENT, 0, false, NULL); if (state_mask & CSO_BIT_VERTEX_ELEMENTS) cso_restore_vertex_elements(cso); if (unbind & CSO_UNBIND_VERTEX_BUFFER0) cso->pipe->set_vertex_buffers(cso->pipe, 0, 0, 1, false, NULL); if (state_mask & CSO_BIT_STREAM_OUTPUTS) cso_restore_stream_outputs(cso); if (state_mask & CSO_BIT_PAUSE_QUERIES) cso->pipe->set_active_query_state(cso->pipe, true); cso->saved_state = 0; } /** * Save all the CSO state items specified by the state_mask bitmask * of CSO_BIT_COMPUTE_x flags. */ void cso_save_compute_state(struct cso_context *cso, unsigned state_mask) { assert(cso->saved_compute_state == 0); cso->saved_compute_state = state_mask; if (state_mask & CSO_BIT_COMPUTE_SHADER) cso_save_compute_shader(cso); if (state_mask & CSO_BIT_COMPUTE_SAMPLERS) cso_save_compute_samplers(cso); } /** * Restore the state which was saved by cso_save_compute_state(). */ void cso_restore_compute_state(struct cso_context *cso) { unsigned state_mask = cso->saved_compute_state; assert(state_mask); if (state_mask & CSO_BIT_COMPUTE_SHADER) cso_restore_compute_shader(cso); if (state_mask & CSO_BIT_COMPUTE_SAMPLERS) cso_restore_compute_samplers(cso); cso->saved_compute_state = 0; } /* drawing */ void cso_draw_vbo(struct cso_context *cso, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count_bias draw) { struct u_vbuf *vbuf = cso->vbuf_current; /* We can't have both indirect drawing and SO-vertex-count drawing */ assert(!indirect || indirect->buffer == NULL || indirect->count_from_stream_output == NULL); /* We can't have SO-vertex-count drawing with an index buffer */ assert(info->index_size == 0 || !indirect || indirect->count_from_stream_output == NULL); if (vbuf) { u_vbuf_draw_vbo(vbuf, info, drawid_offset, indirect, draw); } else { struct pipe_context *pipe = cso->pipe; pipe->draw_vbo(pipe, info, drawid_offset, indirect, &draw, 1); } } /* info->draw_id can be changed by the callee if increment_draw_id is true. */ void cso_multi_draw(struct cso_context *cso, struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_start_count_bias *draws, unsigned num_draws) { struct u_vbuf *vbuf = cso->vbuf_current; if (vbuf) { /* Increase refcount to be able to use take_index_buffer_ownership with * all draws. */ if (num_draws > 1 && info->take_index_buffer_ownership) p_atomic_add(&info->index.resource->reference.count, num_draws - 1); unsigned drawid = drawid_offset; for (unsigned i = 0; i < num_draws; i++) { u_vbuf_draw_vbo(vbuf, info, drawid, NULL, draws[i]); if (info->increment_draw_id) drawid++; } } else { struct pipe_context *pipe = cso->pipe; pipe->draw_vbo(pipe, info, drawid_offset, NULL, draws, num_draws); } } void cso_draw_arrays(struct cso_context *cso, uint mode, uint start, uint count) { struct pipe_draw_info info; struct pipe_draw_start_count_bias draw; util_draw_init_info(&info); info.mode = mode; info.index_bounds_valid = true; info.min_index = start; info.max_index = start + count - 1; draw.start = start; draw.count = count; draw.index_bias = 0; cso_draw_vbo(cso, &info, 0, NULL, draw); } void cso_draw_arrays_instanced(struct cso_context *cso, uint mode, uint start, uint count, uint start_instance, uint instance_count) { struct pipe_draw_info info; struct pipe_draw_start_count_bias draw; util_draw_init_info(&info); info.mode = mode; info.index_bounds_valid = true; info.min_index = start; info.max_index = start + count - 1; info.start_instance = start_instance; info.instance_count = instance_count; draw.start = start; draw.count = count; draw.index_bias = 0; cso_draw_vbo(cso, &info, 0, NULL, draw); }