/************************************************************************** * * Copyright 2008 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * AA point stage: AA points are converted to quads and rendered with a * special fragment shader. Another approach would be to use a texture * map image of a point, but experiments indicate the quality isn't nearly * as good as this approach. * * Note: this looks a lot like draw_aaline.c but there's actually little * if any code that can be shared. * * Authors: Brian Paul */ #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_transform.h" #include "tgsi/tgsi_dump.h" #include "util/u_math.h" #include "util/u_memory.h" #include "draw_context.h" #include "draw_vs.h" #include "draw_pipe.h" #include "nir.h" #include "nir/nir_draw_helpers.h" /** Approx number of new tokens for instructions in aa_transform_inst() */ #define NUM_NEW_TOKENS 200 /* * Enabling NORMALIZE might give _slightly_ better results. * Basically, it controls whether we compute distance as d=sqrt(x*x+y*y) or * d=x*x+y*y. Since we're working with a unit circle, the later seems * close enough and saves some costly instructions. */ #define NORMALIZE 0 /** * Subclass of pipe_shader_state to carry extra fragment shader info. */ struct aapoint_fragment_shader { struct pipe_shader_state state; void *driver_fs; /**< the regular shader */ void *aapoint_fs; /**< the aa point-augmented shader */ int generic_attrib; /**< The generic input attrib/texcoord we'll use */ }; /** * Subclass of draw_stage */ struct aapoint_stage { struct draw_stage stage; /** half of pipe_rasterizer_state::point_size */ float radius; /** vertex attrib slot containing point size */ int psize_slot; /** this is the vertex attrib slot for the new texcoords */ uint tex_slot; /** vertex attrib slot containing position */ uint pos_slot; /** Currently bound fragment shader */ struct aapoint_fragment_shader *fs; /* * Driver interface/override functions */ void * (*driver_create_fs_state)(struct pipe_context *, const struct pipe_shader_state *); void (*driver_bind_fs_state)(struct pipe_context *, void *); void (*driver_delete_fs_state)(struct pipe_context *, void *); }; /** * Subclass of tgsi_transform_context, used for transforming the * user's fragment shader to add the special AA instructions. */ struct aa_transform_context { struct tgsi_transform_context base; uint tempsUsed; /**< bitmask */ int colorOutput; /**< which output is the primary color */ int maxInput, maxGeneric; /**< max input index found */ int tmp0, colorTemp; /**< temp registers */ }; /** * TGSI declaration transform callback. * Look for two free temp regs and available input reg for new texcoords. */ static void aa_transform_decl(struct tgsi_transform_context *ctx, struct tgsi_full_declaration *decl) { struct aa_transform_context *aactx = (struct aa_transform_context *) ctx; if (decl->Declaration.File == TGSI_FILE_OUTPUT && decl->Semantic.Name == TGSI_SEMANTIC_COLOR && decl->Semantic.Index == 0) { aactx->colorOutput = decl->Range.First; } else if (decl->Declaration.File == TGSI_FILE_INPUT) { if ((int) decl->Range.Last > aactx->maxInput) aactx->maxInput = decl->Range.Last; if (decl->Semantic.Name == TGSI_SEMANTIC_GENERIC && (int) decl->Semantic.Index > aactx->maxGeneric) { aactx->maxGeneric = decl->Semantic.Index; } } else if (decl->Declaration.File == TGSI_FILE_TEMPORARY) { uint i; for (i = decl->Range.First; i <= decl->Range.Last; i++) { aactx->tempsUsed |= (1 << i); } } ctx->emit_declaration(ctx, decl); } /** * TGSI transform callback. * Insert new declarations and instructions before first instruction. */ static void aa_transform_prolog(struct tgsi_transform_context *ctx) { /* emit our new declarations before the first instruction */ struct aa_transform_context *aactx = (struct aa_transform_context *) ctx; struct tgsi_full_instruction newInst; const int texInput = aactx->maxInput + 1; int tmp0; uint i; /* find two free temp regs */ for (i = 0; i < 32; i++) { if ((aactx->tempsUsed & (1u << i)) == 0) { /* found a free temp */ if (aactx->tmp0 < 0) aactx->tmp0 = i; else if (aactx->colorTemp < 0) aactx->colorTemp = i; else break; } } assert(aactx->colorTemp != aactx->tmp0); tmp0 = aactx->tmp0; /* declare new generic input/texcoord */ tgsi_transform_input_decl(ctx, texInput, TGSI_SEMANTIC_GENERIC, aactx->maxGeneric + 1, TGSI_INTERPOLATE_LINEAR); /* declare new temp regs */ tgsi_transform_temp_decl(ctx, tmp0); tgsi_transform_temp_decl(ctx, aactx->colorTemp); /* * Emit code to compute fragment coverage, kill if outside point radius * * Temp reg0 usage: * t0.x = distance of fragment from center point * t0.y = boolean, is t0.x > 1.0, also misc temp usage * t0.z = temporary for computing 1/(1-k) value * t0.w = final coverage value */ /* MUL t0.xy, tex, tex; # compute x^2, y^2 */ tgsi_transform_op2_inst(ctx, TGSI_OPCODE_MUL, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_XY, TGSI_FILE_INPUT, texInput, TGSI_FILE_INPUT, texInput, false); /* ADD t0.x, t0.x, t0.y; # x^2 + y^2 */ tgsi_transform_op2_swz_inst(ctx, TGSI_OPCODE_ADD, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_X, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_X, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_Y, false); #if NORMALIZE /* OPTIONAL normalization of length */ /* RSQ t0.x, t0.x; */ tgsi_transform_op1_inst(ctx, TGSI_OPCODE_RSQ, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_X, TGSI_FILE_TEMPORARY, tmp0); /* RCP t0.x, t0.x; */ tgsi_transform_op1_inst(ctx, TGSI_OPCODE_RCP, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_X, TGSI_FILE_TEMPORARY, tmp0); #endif /* SGT t0.y, t0.xxxx, tex.wwww; # bool b = d > 1 (NOTE tex.w == 1) */ tgsi_transform_op2_swz_inst(ctx, TGSI_OPCODE_SGT, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_Y, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_X, TGSI_FILE_INPUT, texInput, TGSI_SWIZZLE_W, false); /* KILL_IF -tmp0.yyyy; # if -tmp0.y < 0, KILL */ tgsi_transform_kill_inst(ctx, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_Y, TRUE); /* compute coverage factor = (1-d)/(1-k) */ /* SUB t0.z, tex.w, tex.z; # m = 1 - k */ tgsi_transform_op2_swz_inst(ctx, TGSI_OPCODE_ADD, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_Z, TGSI_FILE_INPUT, texInput, TGSI_SWIZZLE_W, TGSI_FILE_INPUT, texInput, TGSI_SWIZZLE_Z, true); /* RCP t0.z, t0.z; # t0.z = 1 / m */ newInst = tgsi_default_full_instruction(); newInst.Instruction.Opcode = TGSI_OPCODE_RCP; newInst.Instruction.NumDstRegs = 1; newInst.Dst[0].Register.File = TGSI_FILE_TEMPORARY; newInst.Dst[0].Register.Index = tmp0; newInst.Dst[0].Register.WriteMask = TGSI_WRITEMASK_Z; newInst.Instruction.NumSrcRegs = 1; newInst.Src[0].Register.File = TGSI_FILE_TEMPORARY; newInst.Src[0].Register.Index = tmp0; newInst.Src[0].Register.SwizzleX = TGSI_SWIZZLE_Z; ctx->emit_instruction(ctx, &newInst); /* SUB t0.y, 1, t0.x; # d = 1 - d */ tgsi_transform_op2_swz_inst(ctx, TGSI_OPCODE_ADD, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_Y, TGSI_FILE_INPUT, texInput, TGSI_SWIZZLE_W, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_X, true); /* MUL t0.w, t0.y, t0.z; # coverage = d * m */ tgsi_transform_op2_swz_inst(ctx, TGSI_OPCODE_MUL, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_W, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_Y, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_Z, false); /* SLE t0.y, t0.x, tex.z; # bool b = distance <= k */ tgsi_transform_op2_swz_inst(ctx, TGSI_OPCODE_SLE, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_Y, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_X, TGSI_FILE_INPUT, texInput, TGSI_SWIZZLE_Z, false); /* CMP t0.w, -t0.y, tex.w, t0.w; * # if -t0.y < 0 then * t0.w = 1 * else * t0.w = t0.w */ tgsi_transform_op3_swz_inst(ctx, TGSI_OPCODE_CMP, TGSI_FILE_TEMPORARY, tmp0, TGSI_WRITEMASK_W, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_Y, 1, TGSI_FILE_INPUT, texInput, TGSI_SWIZZLE_W, TGSI_FILE_TEMPORARY, tmp0, TGSI_SWIZZLE_W); } /** * TGSI transform callback. * Insert new instructions before the END instruction. */ static void aa_transform_epilog(struct tgsi_transform_context *ctx) { struct aa_transform_context *aactx = (struct aa_transform_context *) ctx; /* add alpha modulation code at tail of program */ /* MOV result.color.xyz, colorTemp; */ tgsi_transform_op1_inst(ctx, TGSI_OPCODE_MOV, TGSI_FILE_OUTPUT, aactx->colorOutput, TGSI_WRITEMASK_XYZ, TGSI_FILE_TEMPORARY, aactx->colorTemp); /* MUL result.color.w, colorTemp, tmp0.w; */ tgsi_transform_op2_inst(ctx, TGSI_OPCODE_MUL, TGSI_FILE_OUTPUT, aactx->colorOutput, TGSI_WRITEMASK_W, TGSI_FILE_TEMPORARY, aactx->colorTemp, TGSI_FILE_TEMPORARY, aactx->tmp0, false); } /** * TGSI transform callback. * Called per instruction. * Replace writes to result.color w/ a temp reg. */ static void aa_transform_inst(struct tgsi_transform_context *ctx, struct tgsi_full_instruction *inst) { struct aa_transform_context *aactx = (struct aa_transform_context *) ctx; unsigned i; /* Not an END instruction. * Look for writes to result.color and replace with colorTemp reg. */ for (i = 0; i < inst->Instruction.NumDstRegs; i++) { struct tgsi_full_dst_register *dst = &inst->Dst[i]; if (dst->Register.File == TGSI_FILE_OUTPUT && dst->Register.Index == aactx->colorOutput) { dst->Register.File = TGSI_FILE_TEMPORARY; dst->Register.Index = aactx->colorTemp; } } ctx->emit_instruction(ctx, inst); } /** * Generate the frag shader we'll use for drawing AA points. * This will be the user's shader plus some texture/modulate instructions. */ static boolean generate_aapoint_fs(struct aapoint_stage *aapoint) { const struct pipe_shader_state *orig_fs = &aapoint->fs->state; struct pipe_shader_state aapoint_fs; struct aa_transform_context transform; const uint newLen = tgsi_num_tokens(orig_fs->tokens) + NUM_NEW_TOKENS; struct pipe_context *pipe = aapoint->stage.draw->pipe; aapoint_fs = *orig_fs; /* copy to init */ assert(aapoint_fs.type == PIPE_SHADER_IR_TGSI); aapoint_fs.tokens = tgsi_alloc_tokens(newLen); if (aapoint_fs.tokens == NULL) return FALSE; memset(&transform, 0, sizeof(transform)); transform.colorOutput = -1; transform.maxInput = -1; transform.maxGeneric = -1; transform.colorTemp = -1; transform.tmp0 = -1; transform.base.prolog = aa_transform_prolog; transform.base.epilog = aa_transform_epilog; transform.base.transform_instruction = aa_transform_inst; transform.base.transform_declaration = aa_transform_decl; tgsi_transform_shader(orig_fs->tokens, (struct tgsi_token *) aapoint_fs.tokens, newLen, &transform.base); #if 0 /* DEBUG */ debug_printf("draw_aapoint, orig shader:\n"); tgsi_dump(orig_fs->tokens, 0); debug_printf("draw_aapoint, new shader:\n"); tgsi_dump(aapoint_fs.tokens, 0); #endif aapoint->fs->aapoint_fs = aapoint->driver_create_fs_state(pipe, &aapoint_fs); if (aapoint->fs->aapoint_fs == NULL) goto fail; aapoint->fs->generic_attrib = transform.maxGeneric + 1; FREE((void *)aapoint_fs.tokens); return TRUE; fail: FREE((void *)aapoint_fs.tokens); return FALSE; } static boolean generate_aapoint_fs_nir(struct aapoint_stage *aapoint) { #ifdef LLVM_AVAILABLE struct pipe_context *pipe = aapoint->stage.draw->pipe; const struct pipe_shader_state *orig_fs = &aapoint->fs->state; struct pipe_shader_state aapoint_fs; aapoint_fs = *orig_fs; /* copy to init */ aapoint_fs.ir.nir = nir_shader_clone(NULL, orig_fs->ir.nir); if (!aapoint_fs.ir.nir) return FALSE; nir_lower_aapoint_fs(aapoint_fs.ir.nir, &aapoint->fs->generic_attrib); aapoint->fs->aapoint_fs = aapoint->driver_create_fs_state(pipe, &aapoint_fs); if (aapoint->fs->aapoint_fs == NULL) goto fail; return TRUE; fail: #endif return FALSE; } /** * When we're about to draw our first AA point in a batch, this function is * called to tell the driver to bind our modified fragment shader. */ static boolean bind_aapoint_fragment_shader(struct aapoint_stage *aapoint) { struct draw_context *draw = aapoint->stage.draw; struct pipe_context *pipe = draw->pipe; if (!aapoint->fs->aapoint_fs) { if (aapoint->fs->state.type == PIPE_SHADER_IR_NIR) { if (!generate_aapoint_fs_nir(aapoint)) return FALSE; } else if (!generate_aapoint_fs(aapoint)) return FALSE; } draw->suspend_flushing = TRUE; aapoint->driver_bind_fs_state(pipe, aapoint->fs->aapoint_fs); draw->suspend_flushing = FALSE; return TRUE; } static inline struct aapoint_stage * aapoint_stage( struct draw_stage *stage ) { return (struct aapoint_stage *) stage; } /** * Draw an AA point by drawing a quad. */ static void aapoint_point(struct draw_stage *stage, struct prim_header *header) { const struct aapoint_stage *aapoint = aapoint_stage(stage); struct prim_header tri; struct vertex_header *v[4]; const uint tex_slot = aapoint->tex_slot; const uint pos_slot = aapoint->pos_slot; float radius, *pos, *tex; uint i; float k; if (aapoint->psize_slot >= 0) { radius = 0.5f * header->v[0]->data[aapoint->psize_slot][0]; } else { radius = aapoint->radius; } /* * Note: the texcoords (generic attrib, really) we use are special: * The S and T components simply vary from -1 to +1. * The R component is k, below. * The Q component is 1.0 and will used as a handy constant in the * fragment shader. */ /* * k is the threshold distance from the point's center at which * we begin alpha attenuation (the coverage value). * Operating within a unit circle, we'll compute the fragment's * distance 'd' from the center point using the texcoords. * IF d > 1.0 THEN * KILL fragment * ELSE IF d > k THEN * compute coverage in [0,1] proportional to d in [k, 1]. * ELSE * coverage = 1.0; // full coverage * ENDIF * * Note: the ELSEIF and ELSE clauses are actually implemented with CMP to * avoid using IF/ELSE/ENDIF TGSI opcodes. */ #if !NORMALIZE k = 1.0f / radius; k = 1.0f - 2.0f * k + k * k; #else k = 1.0f - 1.0f / radius; #endif /* allocate/dup new verts */ for (i = 0; i < 4; i++) { v[i] = dup_vert(stage, header->v[0], i); } /* new verts */ pos = v[0]->data[pos_slot]; pos[0] -= radius; pos[1] -= radius; pos = v[1]->data[pos_slot]; pos[0] += radius; pos[1] -= radius; pos = v[2]->data[pos_slot]; pos[0] += radius; pos[1] += radius; pos = v[3]->data[pos_slot]; pos[0] -= radius; pos[1] += radius; /* new texcoords */ tex = v[0]->data[tex_slot]; ASSIGN_4V(tex, -1, -1, k, 1); tex = v[1]->data[tex_slot]; ASSIGN_4V(tex, 1, -1, k, 1); tex = v[2]->data[tex_slot]; ASSIGN_4V(tex, 1, 1, k, 1); tex = v[3]->data[tex_slot]; ASSIGN_4V(tex, -1, 1, k, 1); /* emit 2 tris for the quad strip */ tri.v[0] = v[0]; tri.v[1] = v[1]; tri.v[2] = v[2]; stage->next->tri( stage->next, &tri ); tri.v[0] = v[0]; tri.v[1] = v[2]; tri.v[2] = v[3]; stage->next->tri( stage->next, &tri ); } static void aapoint_first_point(struct draw_stage *stage, struct prim_header *header) { auto struct aapoint_stage *aapoint = aapoint_stage(stage); struct draw_context *draw = stage->draw; struct pipe_context *pipe = draw->pipe; const struct pipe_rasterizer_state *rast = draw->rasterizer; void *r; assert(draw->rasterizer->point_smooth); if (draw->rasterizer->point_size <= 2.0) aapoint->radius = 1.0; else aapoint->radius = 0.5f * draw->rasterizer->point_size; /* * Bind (generate) our fragprog. */ bind_aapoint_fragment_shader(aapoint); draw_aapoint_prepare_outputs(draw, draw->pipeline.aapoint); draw->suspend_flushing = TRUE; /* Disable triangle culling, stippling, unfilled mode etc. */ r = draw_get_rasterizer_no_cull(draw, rast->scissor, rast->flatshade); pipe->bind_rasterizer_state(pipe, r); draw->suspend_flushing = FALSE; /* now really draw first point */ stage->point = aapoint_point; stage->point(stage, header); } static void aapoint_flush(struct draw_stage *stage, unsigned flags) { struct draw_context *draw = stage->draw; struct aapoint_stage *aapoint = aapoint_stage(stage); struct pipe_context *pipe = draw->pipe; stage->point = aapoint_first_point; stage->next->flush( stage->next, flags ); /* restore original frag shader */ draw->suspend_flushing = TRUE; aapoint->driver_bind_fs_state(pipe, aapoint->fs ? aapoint->fs->driver_fs : NULL); /* restore original rasterizer state */ if (draw->rast_handle) { pipe->bind_rasterizer_state(pipe, draw->rast_handle); } draw->suspend_flushing = FALSE; draw_remove_extra_vertex_attribs(draw); } static void aapoint_reset_stipple_counter(struct draw_stage *stage) { stage->next->reset_stipple_counter( stage->next ); } static void aapoint_destroy(struct draw_stage *stage) { struct aapoint_stage* aapoint = aapoint_stage(stage); struct pipe_context *pipe = stage->draw->pipe; draw_free_temp_verts( stage ); /* restore the old entry points */ pipe->create_fs_state = aapoint->driver_create_fs_state; pipe->bind_fs_state = aapoint->driver_bind_fs_state; pipe->delete_fs_state = aapoint->driver_delete_fs_state; FREE( stage ); } void draw_aapoint_prepare_outputs(struct draw_context *draw, struct draw_stage *stage) { struct aapoint_stage *aapoint = aapoint_stage(stage); const struct pipe_rasterizer_state *rast = draw->rasterizer; /* update vertex attrib info */ aapoint->pos_slot = draw_current_shader_position_output(draw); if (!rast->point_smooth) return; if (aapoint->fs->aapoint_fs) { /* allocate the extra post-transformed vertex attribute */ aapoint->tex_slot = draw_alloc_extra_vertex_attrib(draw, TGSI_SEMANTIC_GENERIC, aapoint->fs->generic_attrib); assert(aapoint->tex_slot > 0); /* output[0] is vertex pos */ } else aapoint->tex_slot = -1; /* find psize slot in post-transform vertex */ aapoint->psize_slot = -1; if (draw->rasterizer->point_size_per_vertex) { const struct tgsi_shader_info *info = draw_get_shader_info(draw); uint i; /* find PSIZ vertex output */ for (i = 0; i < info->num_outputs; i++) { if (info->output_semantic_name[i] == TGSI_SEMANTIC_PSIZE) { aapoint->psize_slot = i; break; } } } } static struct aapoint_stage * draw_aapoint_stage(struct draw_context *draw) { struct aapoint_stage *aapoint = CALLOC_STRUCT(aapoint_stage); if (!aapoint) goto fail; aapoint->stage.draw = draw; aapoint->stage.name = "aapoint"; aapoint->stage.next = NULL; aapoint->stage.point = aapoint_first_point; aapoint->stage.line = draw_pipe_passthrough_line; aapoint->stage.tri = draw_pipe_passthrough_tri; aapoint->stage.flush = aapoint_flush; aapoint->stage.reset_stipple_counter = aapoint_reset_stipple_counter; aapoint->stage.destroy = aapoint_destroy; if (!draw_alloc_temp_verts( &aapoint->stage, 4 )) goto fail; return aapoint; fail: if (aapoint) aapoint->stage.destroy(&aapoint->stage); return NULL; } static struct aapoint_stage * aapoint_stage_from_pipe(struct pipe_context *pipe) { struct draw_context *draw = (struct draw_context *) pipe->draw; return aapoint_stage(draw->pipeline.aapoint); } /** * This function overrides the driver's create_fs_state() function and * will typically be called by the state tracker. */ static void * aapoint_create_fs_state(struct pipe_context *pipe, const struct pipe_shader_state *fs) { struct aapoint_stage *aapoint = aapoint_stage_from_pipe(pipe); struct aapoint_fragment_shader *aafs = CALLOC_STRUCT(aapoint_fragment_shader); if (!aafs) return NULL; aafs->state.type = fs->type; if (fs->type == PIPE_SHADER_IR_TGSI) aafs->state.tokens = tgsi_dup_tokens(fs->tokens); #ifdef LLVM_AVAILABLE else aafs->state.ir.nir = nir_shader_clone(NULL, fs->ir.nir); #endif /* pass-through */ aafs->driver_fs = aapoint->driver_create_fs_state(pipe, fs); return aafs; } static void aapoint_bind_fs_state(struct pipe_context *pipe, void *fs) { struct aapoint_stage *aapoint = aapoint_stage_from_pipe(pipe); struct aapoint_fragment_shader *aafs = (struct aapoint_fragment_shader *) fs; /* save current */ aapoint->fs = aafs; /* pass-through */ aapoint->driver_bind_fs_state(pipe, (aafs ? aafs->driver_fs : NULL)); } static void aapoint_delete_fs_state(struct pipe_context *pipe, void *fs) { struct aapoint_stage *aapoint = aapoint_stage_from_pipe(pipe); struct aapoint_fragment_shader *aafs = (struct aapoint_fragment_shader *) fs; /* pass-through */ aapoint->driver_delete_fs_state(pipe, aafs->driver_fs); if (aafs->aapoint_fs) aapoint->driver_delete_fs_state(pipe, aafs->aapoint_fs); if (aafs->state.type == PIPE_SHADER_IR_TGSI) FREE((void*)aafs->state.tokens); else ralloc_free(aafs->state.ir.nir); FREE(aafs); } /** * Called by drivers that want to install this AA point prim stage * into the draw module's pipeline. This will not be used if the * hardware has native support for AA points. */ boolean draw_install_aapoint_stage(struct draw_context *draw, struct pipe_context *pipe) { struct aapoint_stage *aapoint; pipe->draw = (void *) draw; /* * Create / install AA point drawing / prim stage */ aapoint = draw_aapoint_stage( draw ); if (!aapoint) return FALSE; /* save original driver functions */ aapoint->driver_create_fs_state = pipe->create_fs_state; aapoint->driver_bind_fs_state = pipe->bind_fs_state; aapoint->driver_delete_fs_state = pipe->delete_fs_state; /* override the driver's functions */ pipe->create_fs_state = aapoint_create_fs_state; pipe->bind_fs_state = aapoint_bind_fs_state; pipe->delete_fs_state = aapoint_delete_fs_state; draw->pipeline.aapoint = &aapoint->stage; return TRUE; }