/************************************************************************** * * Copyright 2008-2021 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * SSE intrinsics portability header. * * Although the SSE intrinsics are support by all modern x86 and x86-64 * compilers, there are some intrisincs missing in some implementations * (especially older MSVC versions). This header abstracts that away. */ #ifndef U_SSE_H_ #define U_SSE_H_ #include "pipe/p_config.h" #include "pipe/p_compiler.h" #include "util/u_debug.h" #if defined(PIPE_ARCH_SSE) #include union m128i { __m128i m; ubyte ub[16]; ushort us[8]; uint ui[4]; }; static inline void u_print_epi8(const char *name, __m128i r) { union { __m128i m; ubyte ub[16]; } u; u.m = r; debug_printf("%s: " "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x/" "%02x\n", name, u.ub[0], u.ub[1], u.ub[2], u.ub[3], u.ub[4], u.ub[5], u.ub[6], u.ub[7], u.ub[8], u.ub[9], u.ub[10], u.ub[11], u.ub[12], u.ub[13], u.ub[14], u.ub[15]); } static inline void u_print_epi16(const char *name, __m128i r) { union { __m128i m; ushort us[8]; } u; u.m = r; debug_printf("%s: " "%04x/" "%04x/" "%04x/" "%04x/" "%04x/" "%04x/" "%04x/" "%04x\n", name, u.us[0], u.us[1], u.us[2], u.us[3], u.us[4], u.us[5], u.us[6], u.us[7]); } static inline void u_print_epi32(const char *name, __m128i r) { union { __m128i m; uint ui[4]; } u; u.m = r; debug_printf("%s: " "%08x/" "%08x/" "%08x/" "%08x\n", name, u.ui[0], u.ui[1], u.ui[2], u.ui[3]); } static inline void u_print_ps(const char *name, __m128 r) { union { __m128 m; float f[4]; } u; u.m = r; debug_printf("%s: " "%f/" "%f/" "%f/" "%f\n", name, u.f[0], u.f[1], u.f[2], u.f[3]); } #define U_DUMP_EPI32(a) u_print_epi32(#a, a) #define U_DUMP_EPI16(a) u_print_epi16(#a, a) #define U_DUMP_EPI8(a) u_print_epi8(#a, a) #define U_DUMP_PS(a) u_print_ps(#a, a) /* * Provide an SSE implementation of _mm_mul_epi32() in terms of * _mm_mul_epu32(). * * Basically, albeit surprising at first (and second, and third...) look * if a * b is done signed instead of unsigned, can just * subtract b from the high bits of the result if a is negative * (and the same for a if b is negative). Modular arithmetic at its best! * * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul) * fixupb = (signmask(b) & a) << 32ULL * fixupa = (signmask(a) & b) << 32ULL * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa * = (unsigned)a * (unsigned)b -(fixupb + fixupa) * * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due * to some optimization potential. */ static inline __m128i mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13) { __m128i a13, b13, mul02, mul13; __m128i anegmask, bnegmask, fixup, fixup02, fixup13; a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1)); b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1)); anegmask = _mm_srai_epi32(a, 31); bnegmask = _mm_srai_epi32(b, 31); fixup = _mm_add_epi32(_mm_and_si128(anegmask, b), _mm_and_si128(bnegmask, a)); mul02 = _mm_mul_epu32(a, b); mul13 = _mm_mul_epu32(a13, b13); fixup02 = _mm_slli_epi64(fixup, 32); fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0)); *res13 = _mm_sub_epi64(mul13, fixup13); return _mm_sub_epi64(mul02, fixup02); } /* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of * _mm_mul_epu32(). * * This always works regardless the signs of the operands, since * the high bits (which would be different) aren't used. * * This seems close enough to the speed of SSE4 and the real * _mm_mullo_epi32() intrinsic as to not justify adding an sse4 * dependency at this point. */ static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b) { __m128i a4 = _mm_srli_epi64(a, 32); /* shift by one dword */ __m128i b4 = _mm_srli_epi64(b, 32); /* shift by one dword */ __m128i ba = _mm_mul_epu32(b, a); /* multply dwords 0, 2 */ __m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */ /* Interleave the results, either with shuffles or (slightly * faster) direct bit operations: * XXX: might be only true for some cpus (in particular 65nm * Core 2). On most cpus (including that Core 2, but not Nehalem...) * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster * than using the 3 instructions below. But logic should be fine * as well, we can't have optimal solution for all cpus (if anything, * should just use _mm_mullo_epi32() if sse41 is available...). */ #if 0 __m128i ba8 = _mm_shuffle_epi32(ba, 8); __m128i b4a48 = _mm_shuffle_epi32(b4a4, 8); __m128i result = _mm_unpacklo_epi32(ba8, b4a48); #else __m128i mask = _mm_setr_epi32(~0,0,~0,0); __m128i ba_mask = _mm_and_si128(ba, mask); __m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32); __m128i result = _mm_or_si128(ba_mask, b4a4_mask_shift); #endif return result; } static inline void transpose4_epi32(const __m128i * restrict a, const __m128i * restrict b, const __m128i * restrict c, const __m128i * restrict d, __m128i * restrict o, __m128i * restrict p, __m128i * restrict q, __m128i * restrict r) { __m128i t0 = _mm_unpacklo_epi32(*a, *b); __m128i t1 = _mm_unpacklo_epi32(*c, *d); __m128i t2 = _mm_unpackhi_epi32(*a, *b); __m128i t3 = _mm_unpackhi_epi32(*c, *d); *o = _mm_unpacklo_epi64(t0, t1); *p = _mm_unpackhi_epi64(t0, t1); *q = _mm_unpacklo_epi64(t2, t3); *r = _mm_unpackhi_epi64(t2, t3); } /* * Same as above, except the first two values are already interleaved * (i.e. contain 64bit values). */ static inline void transpose2_64_2_32(const __m128i * restrict a01, const __m128i * restrict a23, const __m128i * restrict c, const __m128i * restrict d, __m128i * restrict o, __m128i * restrict p, __m128i * restrict q, __m128i * restrict r) { __m128i t0 = *a01; __m128i t1 = _mm_unpacklo_epi32(*c, *d); __m128i t2 = *a23; __m128i t3 = _mm_unpackhi_epi32(*c, *d); *o = _mm_unpacklo_epi64(t0, t1); *p = _mm_unpackhi_epi64(t0, t1); *q = _mm_unpacklo_epi64(t2, t3); *r = _mm_unpackhi_epi64(t2, t3); } #define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i)) /* * Implements (1-w)*a + w*b = a - wa + wb = w(b-a) + a * ((b-a)*w >> 8) + a * The math behind negative sub results (logic shift/mask) is tricky. * * w -- weight values * a -- src0 values * b -- src1 values */ static ALWAYS_INLINE __m128i util_sse2_lerp_epi16(__m128i w, __m128i a, __m128i b) { __m128i res; res = _mm_sub_epi16(b, a); res = _mm_mullo_epi16(res, w); res = _mm_srli_epi16(res, 8); /* use add_epi8 instead of add_epi16 so no need to mask off upper bits */ res = _mm_add_epi8(res, a); return res; } /* Apply premultiplied-alpha blending on two pixels simultaneously. * All parameters are packed as 8.8 fixed point values in __m128i SSE * registers, with the upper 8 bits all zero. * * a -- src alpha values * d -- dst color values * s -- src color values */ static inline __m128i util_sse2_premul_blend_epi16( __m128i a, __m128i d, __m128i s) { __m128i da, d_sub_da, tmp; tmp = _mm_mullo_epi16(d, a); da = _mm_srli_epi16(tmp, 8); d_sub_da = _mm_sub_epi16(d, da); return _mm_add_epi16(s, d_sub_da); } /* Apply premultiplied-alpha blending on four pixels in packed BGRA * format (one/inv_src_alpha blend mode). * * src -- four pixels (bgra8 format) * dst -- four destination pixels (bgra8) * return -- blended pixels (bgra8) */ static ALWAYS_INLINE __m128i util_sse2_blend_premul_4(const __m128i src, const __m128i dst) { __m128i al, ah, dl, dh, sl, sh, rl, rh; __m128i zero = _mm_setzero_si128(); /* Blend first two pixels: */ sl = _mm_unpacklo_epi8(src, zero); dl = _mm_unpacklo_epi8(dst, zero); al = _mm_shufflehi_epi16(sl, 0xff); al = _mm_shufflelo_epi16(al, 0xff); rl = util_sse2_premul_blend_epi16(al, dl, sl); /* Blend second two pixels: */ sh = _mm_unpackhi_epi8(src, zero); dh = _mm_unpackhi_epi8(dst, zero); ah = _mm_shufflehi_epi16(sh, 0xff); ah = _mm_shufflelo_epi16(ah, 0xff); rh = util_sse2_premul_blend_epi16(ah, dh, sh); /* Pack the results down to four bgra8 pixels: */ return _mm_packus_epi16(rl, rh); } /* Apply src-alpha blending on four pixels in packed BGRA * format (srcalpha/inv_src_alpha blend mode). * * src -- four pixels (bgra8 format) * dst -- four destination pixels (bgra8) * return -- blended pixels (bgra8) */ static ALWAYS_INLINE __m128i util_sse2_blend_srcalpha_4(const __m128i src, const __m128i dst) { __m128i al, ah, dl, dh, sl, sh, rl, rh; __m128i zero = _mm_setzero_si128(); /* Blend first two pixels: */ sl = _mm_unpacklo_epi8(src, zero); dl = _mm_unpacklo_epi8(dst, zero); al = _mm_shufflehi_epi16(sl, 0xff); al = _mm_shufflelo_epi16(al, 0xff); rl = util_sse2_lerp_epi16(al, dl, sl); /* Blend second two pixels: */ sh = _mm_unpackhi_epi8(src, zero); dh = _mm_unpackhi_epi8(dst, zero); ah = _mm_shufflehi_epi16(sh, 0xff); ah = _mm_shufflelo_epi16(ah, 0xff); rh = util_sse2_lerp_epi16(ah, dh, sh); /* Pack the results down to four bgra8 pixels: */ return _mm_packus_epi16(rl, rh); } /** * premultiplies src with constant alpha then * does one/inv_src_alpha blend. * * src 16xi8 (normalized) * dst 16xi8 (normalized) * cst_alpha (constant alpha (u8 value)) */ static ALWAYS_INLINE __m128i util_sse2_blend_premul_src_4(const __m128i src, const __m128i dst, const unsigned cst_alpha) { __m128i srca, d, s, rl, rh; __m128i zero = _mm_setzero_si128(); __m128i cst_alpha_vec = _mm_set1_epi16(cst_alpha); /* Blend first two pixels: */ s = _mm_unpacklo_epi8(src, zero); s = _mm_mullo_epi16(s, cst_alpha_vec); /* the shift will cause some precision loss */ s = _mm_srli_epi16(s, 8); srca = _mm_shufflehi_epi16(s, 0xff); srca = _mm_shufflelo_epi16(srca, 0xff); d = _mm_unpacklo_epi8(dst, zero); rl = util_sse2_premul_blend_epi16(srca, d, s); /* Blend second two pixels: */ s = _mm_unpackhi_epi8(src, zero); s = _mm_mullo_epi16(s, cst_alpha_vec); /* the shift will cause some precision loss */ s = _mm_srli_epi16(s, 8); srca = _mm_shufflehi_epi16(s, 0xff); srca = _mm_shufflelo_epi16(srca, 0xff); d = _mm_unpackhi_epi8(dst, zero); rh = util_sse2_premul_blend_epi16(srca, d, s); /* Pack the results down to four bgra8 pixels: */ return _mm_packus_epi16(rl, rh); } /** * Linear interpolation with SSE2. * * dst, src0, src1 are 16 x i8 vectors, with [0..255] normalized values. * * weight_lo and weight_hi should be a 8 x i16 vectors, in 8.8 fixed point * format, for the low and high components. * We'd want to pass these as values but MSVC limitation forces us to pass these * as pointers since it will complain if more than 3 __m128 are passed by value. */ static ALWAYS_INLINE __m128i util_sse2_lerp_epi8_fixed88(__m128i src0, __m128i src1, const __m128i * restrict weight_lo, const __m128i * restrict weight_hi) { const __m128i zero = _mm_setzero_si128(); __m128i src0_lo = _mm_unpacklo_epi8(src0, zero); __m128i src0_hi = _mm_unpackhi_epi8(src0, zero); __m128i src1_lo = _mm_unpacklo_epi8(src1, zero); __m128i src1_hi = _mm_unpackhi_epi8(src1, zero); __m128i dst_lo; __m128i dst_hi; dst_lo = util_sse2_lerp_epi16(*weight_lo, src0_lo, src1_lo); dst_hi = util_sse2_lerp_epi16(*weight_hi, src0_hi, src1_hi); return _mm_packus_epi16(dst_lo, dst_hi); } /** * Linear interpolation with SSE2. * * dst, src0, src1 are 16 x i8 vectors, with [0..255] normalized values. * * weight should be a 16 x i8 vector, in 0.8 fixed point values. */ static ALWAYS_INLINE __m128i util_sse2_lerp_epi8_fixed08(__m128i src0, __m128i src1, __m128i weight) { const __m128i zero = _mm_setzero_si128(); __m128i weight_lo = _mm_unpacklo_epi8(weight, zero); __m128i weight_hi = _mm_unpackhi_epi8(weight, zero); return util_sse2_lerp_epi8_fixed88(src0, src1, &weight_lo, &weight_hi); } /** * Linear interpolation with SSE2. * * dst, src0, src1, and weight are 16 x i8 vectors, with [0..255] normalized * values. */ static ALWAYS_INLINE __m128i util_sse2_lerp_unorm8(__m128i src0, __m128i src1, __m128i weight) { const __m128i zero = _mm_setzero_si128(); __m128i weight_lo = _mm_unpacklo_epi8(weight, zero); __m128i weight_hi = _mm_unpackhi_epi8(weight, zero); #if 0 /* * Rescale from [0..255] to [0..256]. */ weight_lo = _mm_add_epi16(weight_lo, _mm_srli_epi16(weight_lo, 7)); weight_hi = _mm_add_epi16(weight_hi, _mm_srli_epi16(weight_hi, 7)); #endif return util_sse2_lerp_epi8_fixed88(src0, src1, &weight_lo, &weight_hi); } /** * Linear interpolation with SSE2. * * dst, src0, src1, src2, src3 are 16 x i8 vectors, with [0..255] normalized * values. * * ws_lo, ws_hi, wt_lo, wt_hi should be a 8 x i16 vectors, in 8.8 fixed point * format, for the low and high components. * We'd want to pass these as values but MSVC limitation forces us to pass these * as pointers since it will complain if more than 3 __m128 are passed by value. * * This uses ws_lo, ws_hi to interpolate between src0 and src1, as well as to * interpolate between src2 and src3, then uses wt_lo and wt_hi to interpolate * between the resulting vectors. */ static ALWAYS_INLINE __m128i util_sse2_lerp_2d_epi8_fixed88(__m128i src0, __m128i src1, const __m128i * restrict src2, const __m128i * restrict src3, const __m128i * restrict ws_lo, const __m128i * restrict ws_hi, const __m128i * restrict wt_lo, const __m128i * restrict wt_hi) { const __m128i zero = _mm_setzero_si128(); __m128i src0_lo = _mm_unpacklo_epi8(src0, zero); __m128i src0_hi = _mm_unpackhi_epi8(src0, zero); __m128i src1_lo = _mm_unpacklo_epi8(src1, zero); __m128i src1_hi = _mm_unpackhi_epi8(src1, zero); __m128i src2_lo = _mm_unpacklo_epi8(*src2, zero); __m128i src2_hi = _mm_unpackhi_epi8(*src2, zero); __m128i src3_lo = _mm_unpacklo_epi8(*src3, zero); __m128i src3_hi = _mm_unpackhi_epi8(*src3, zero); __m128i dst_lo, dst01_lo, dst23_lo; __m128i dst_hi, dst01_hi, dst23_hi; dst01_lo = util_sse2_lerp_epi16(*ws_lo, src0_lo, src1_lo); dst01_hi = util_sse2_lerp_epi16(*ws_hi, src0_hi, src1_hi); dst23_lo = util_sse2_lerp_epi16(*ws_lo, src2_lo, src3_lo); dst23_hi = util_sse2_lerp_epi16(*ws_hi, src2_hi, src3_hi); dst_lo = util_sse2_lerp_epi16(*wt_lo, dst01_lo, dst23_lo); dst_hi = util_sse2_lerp_epi16(*wt_hi, dst01_hi, dst23_hi); return _mm_packus_epi16(dst_lo, dst_hi); } /** * Stretch a row of pixels using linear filter. * * Uses Bresenham's line algorithm using 16.16 fixed point representation for * the error term. * * @param dst_width destination width in pixels * @param src_x start x0 in 16.16 fixed point format * @param src_xstep step in 16.16. fixed point format * * @return final src_x value (i.e., src_x + dst_width*src_xstep) */ static ALWAYS_INLINE int32_t util_sse2_stretch_row_8unorm(__m128i * restrict dst, int32_t dst_width, const uint32_t * restrict src, int32_t src_x, int32_t src_xstep) { int16_t error0, error1, error2, error3; __m128i error_lo, error_hi, error_step; assert(dst_width >= 0); assert(dst_width % 4 == 0); error0 = src_x; error1 = error0 + src_xstep; error2 = error1 + src_xstep; error3 = error2 + src_xstep; error_lo = _mm_setr_epi16(error0, error0, error0, error0, error1, error1, error1, error1); error_hi = _mm_setr_epi16(error2, error2, error2, error2, error3, error3, error3, error3); error_step = _mm_set1_epi16(src_xstep << 2); dst_width >>= 2; while (dst_width) { uint16_t src_x0; uint16_t src_x1; uint16_t src_x2; uint16_t src_x3; __m128i src0, src1; __m128i weight_lo, weight_hi; /* * It is faster to re-compute the coordinates in the scalar integer unit here, * than to fetch the values from the SIMD integer unit. */ src_x0 = src_x >> 16; src_x += src_xstep; src_x1 = src_x >> 16; src_x += src_xstep; src_x2 = src_x >> 16; src_x += src_xstep; src_x3 = src_x >> 16; src_x += src_xstep; /* * Fetch pairs of pixels 64bit at a time, and then swizzle them inplace. */ { __m128i src_00_10 = _mm_loadl_epi64((const __m128i *)&src[src_x0]); __m128i src_01_11 = _mm_loadl_epi64((const __m128i *)&src[src_x1]); __m128i src_02_12 = _mm_loadl_epi64((const __m128i *)&src[src_x2]); __m128i src_03_13 = _mm_loadl_epi64((const __m128i *)&src[src_x3]); __m128i src_00_01_10_11 = _mm_unpacklo_epi32(src_00_10, src_01_11); __m128i src_02_03_12_13 = _mm_unpacklo_epi32(src_02_12, src_03_13); src0 = _mm_unpacklo_epi64(src_00_01_10_11, src_02_03_12_13); src1 = _mm_unpackhi_epi64(src_00_01_10_11, src_02_03_12_13); } weight_lo = _mm_srli_epi16(error_lo, 8); weight_hi = _mm_srli_epi16(error_hi, 8); *dst = util_sse2_lerp_epi8_fixed88(src0, src1, &weight_lo, &weight_hi); error_lo = _mm_add_epi16(error_lo, error_step); error_hi = _mm_add_epi16(error_hi, error_step); ++dst; --dst_width; } return src_x; } #endif /* PIPE_ARCH_SSE */ #endif /* U_SSE_H_ */