/************************************************************************** * * Copyright 2017 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "util/u_threaded_context.h" #include "util/u_cpu_detect.h" #include "util/format/u_format.h" #include "util/u_inlines.h" #include "util/u_memory.h" #include "util/u_upload_mgr.h" #include "util/log.h" #include "compiler/shader_info.h" /* 0 = disabled, 1 = assertions, 2 = printfs */ #define TC_DEBUG 0 #if TC_DEBUG >= 1 #define tc_assert assert #else #define tc_assert(x) #endif #if TC_DEBUG >= 2 #define tc_printf mesa_logi #define tc_asprintf asprintf #define tc_strcmp strcmp #else #define tc_printf(...) #define tc_asprintf(...) 0 #define tc_strcmp(...) 0 #endif #define TC_SENTINEL 0x5ca1ab1e enum tc_call_id { #define CALL(name) TC_CALL_##name, #include "u_threaded_context_calls.h" #undef CALL TC_NUM_CALLS, }; /* This is actually variable-sized, because indirect isn't allocated if it's * not needed. */ struct tc_draw_single { struct pipe_draw_info info; }; typedef void (*tc_execute)(struct pipe_context *pipe, union tc_payload *payload); static const tc_execute execute_func[TC_NUM_CALLS]; static void tc_batch_check(UNUSED struct tc_batch *batch) { tc_assert(batch->sentinel == TC_SENTINEL); tc_assert(batch->num_total_call_slots <= TC_CALLS_PER_BATCH); } static void tc_debug_check(struct threaded_context *tc) { for (unsigned i = 0; i < TC_MAX_BATCHES; i++) { tc_batch_check(&tc->batch_slots[i]); tc_assert(tc->batch_slots[i].tc == tc); } } static void tc_set_driver_thread(struct threaded_context *tc) { #ifndef NDEBUG tc->driver_thread = util_get_thread_id(); #endif } static void tc_clear_driver_thread(struct threaded_context *tc) { #ifndef NDEBUG memset(&tc->driver_thread, 0, sizeof(tc->driver_thread)); #endif } /* We don't want to read or write min_index and max_index, because * it shouldn't be needed by drivers at this point. */ #define DRAW_INFO_SIZE_WITHOUT_MIN_MAX_INDEX \ offsetof(struct pipe_draw_info, min_index) static void simplify_draw_info(struct pipe_draw_info *info) { /* Clear these fields to facilitate draw merging. * Drivers shouldn't use them. */ info->has_user_indices = false; info->index_bounds_valid = false; info->take_index_buffer_ownership = false; info->_pad = 0; /* This shouldn't be set when merging single draws. */ info->increment_draw_id = false; if (info->mode != PIPE_PRIM_PATCHES) info->vertices_per_patch = 0; if (info->index_size) { if (!info->primitive_restart) info->restart_index = 0; } else { assert(!info->primitive_restart); info->index_bias = 0; info->primitive_restart = false; info->restart_index = 0; info->index.resource = NULL; } } static bool is_next_call_a_mergeable_draw(struct tc_draw_single *first_info, struct tc_call *next, struct tc_draw_single **next_info) { if (next->call_id != TC_CALL_draw_single) return false; *next_info = (struct tc_draw_single*)&next->payload; simplify_draw_info(&(*next_info)->info); STATIC_ASSERT(offsetof(struct pipe_draw_info, min_index) == sizeof(struct pipe_draw_info) - 8); STATIC_ASSERT(offsetof(struct pipe_draw_info, max_index) == sizeof(struct pipe_draw_info) - 4); /* All fields must be the same except start and count. */ /* u_threaded_context stores start/count in min/max_index for single draws. */ return memcmp((uint32_t*)&first_info->info, (uint32_t*)&(*next_info)->info, DRAW_INFO_SIZE_WITHOUT_MIN_MAX_INDEX) == 0; } static void tc_batch_execute(void *job, UNUSED int thread_index) { struct tc_batch *batch = job; struct pipe_context *pipe = batch->tc->pipe; struct tc_call *last = &batch->call[batch->num_total_call_slots]; tc_batch_check(batch); tc_set_driver_thread(batch->tc); assert(!batch->token); for (struct tc_call *iter = batch->call; iter != last;) { tc_assert(iter->sentinel == TC_SENTINEL); /* Draw call merging. */ if (iter->call_id == TC_CALL_draw_single) { struct tc_call *first = iter; struct tc_call *next = first + first->num_call_slots; struct tc_draw_single *first_info = (struct tc_draw_single*)&first->payload; struct tc_draw_single *next_info; simplify_draw_info(&first_info->info); /* If at least 2 consecutive draw calls can be merged... */ if (next != last && next->call_id == TC_CALL_draw_single && first_info->info.drawid == 0 && is_next_call_a_mergeable_draw(first_info, next, &next_info)) { /* Merge up to 256 draw calls. */ struct pipe_draw_start_count multi[256]; unsigned num_draws = 2; /* u_threaded_context stores start/count in min/max_index for single draws. */ multi[0].start = first_info->info.min_index; multi[0].count = first_info->info.max_index; multi[1].start = next_info->info.min_index; multi[1].count = next_info->info.max_index; if (next_info->info.index_size) pipe_resource_reference(&next_info->info.index.resource, NULL); /* Find how many other draws can be merged. */ next = next + next->num_call_slots; for (; next != last && num_draws < ARRAY_SIZE(multi) && is_next_call_a_mergeable_draw(first_info, next, &next_info); next += next->num_call_slots, num_draws++) { /* u_threaded_context stores start/count in min/max_index for single draws. */ multi[num_draws].start = next_info->info.min_index; multi[num_draws].count = next_info->info.max_index; if (next_info->info.index_size) pipe_resource_reference(&next_info->info.index.resource, NULL); } pipe->draw_vbo(pipe, &first_info->info, NULL, multi, num_draws); if (first_info->info.index_size) pipe_resource_reference(&first_info->info.index.resource, NULL); iter = next; continue; } } execute_func[iter->call_id](pipe, &iter->payload); iter += iter->num_call_slots; } tc_clear_driver_thread(batch->tc); tc_batch_check(batch); batch->num_total_call_slots = 0; } static void tc_batch_flush(struct threaded_context *tc) { struct tc_batch *next = &tc->batch_slots[tc->next]; tc_assert(next->num_total_call_slots != 0); tc_batch_check(next); tc_debug_check(tc); tc->bytes_mapped_estimate = 0; p_atomic_add(&tc->num_offloaded_slots, next->num_total_call_slots); if (next->token) { next->token->tc = NULL; tc_unflushed_batch_token_reference(&next->token, NULL); } util_queue_add_job(&tc->queue, next, &next->fence, tc_batch_execute, NULL, 0); tc->last = tc->next; tc->next = (tc->next + 1) % TC_MAX_BATCHES; } /* This is the function that adds variable-sized calls into the current * batch. It also flushes the batch if there is not enough space there. * All other higher-level "add" functions use it. */ static union tc_payload * tc_add_sized_call(struct threaded_context *tc, enum tc_call_id id, unsigned num_call_slots) { struct tc_batch *next = &tc->batch_slots[tc->next]; assert(num_call_slots <= TC_CALLS_PER_BATCH); tc_debug_check(tc); if (unlikely(next->num_total_call_slots + num_call_slots > TC_CALLS_PER_BATCH)) { tc_batch_flush(tc); next = &tc->batch_slots[tc->next]; tc_assert(next->num_total_call_slots == 0); } tc_assert(util_queue_fence_is_signalled(&next->fence)); struct tc_call *call = &next->call[next->num_total_call_slots]; next->num_total_call_slots += num_call_slots; call->sentinel = TC_SENTINEL; call->call_id = id; call->num_call_slots = num_call_slots; tc_debug_check(tc); return &call->payload; } #define tc_payload_size_to_call_slots(size) \ DIV_ROUND_UP(offsetof(struct tc_call, payload) + (size), sizeof(struct tc_call)) #define tc_add_struct_typed_call(tc, execute, type) \ ((struct type*)tc_add_sized_call(tc, execute, \ tc_payload_size_to_call_slots(sizeof(struct type)))) #define tc_add_slot_based_call(tc, execute, type, num_slots) \ ((struct type*)tc_add_sized_call(tc, execute, tc_payload_size_to_call_slots( \ sizeof(struct type) + \ sizeof(((struct type*)NULL)->slot[0]) * \ (num_slots)))) static union tc_payload * tc_add_small_call(struct threaded_context *tc, enum tc_call_id id) { return tc_add_sized_call(tc, id, tc_payload_size_to_call_slots(0)); } static bool tc_is_sync(struct threaded_context *tc) { struct tc_batch *last = &tc->batch_slots[tc->last]; struct tc_batch *next = &tc->batch_slots[tc->next]; return util_queue_fence_is_signalled(&last->fence) && !next->num_total_call_slots; } static void _tc_sync(struct threaded_context *tc, UNUSED const char *info, UNUSED const char *func) { struct tc_batch *last = &tc->batch_slots[tc->last]; struct tc_batch *next = &tc->batch_slots[tc->next]; bool synced = false; tc_debug_check(tc); /* Only wait for queued calls... */ if (!util_queue_fence_is_signalled(&last->fence)) { util_queue_fence_wait(&last->fence); synced = true; } tc_debug_check(tc); if (next->token) { next->token->tc = NULL; tc_unflushed_batch_token_reference(&next->token, NULL); } /* .. and execute unflushed calls directly. */ if (next->num_total_call_slots) { p_atomic_add(&tc->num_direct_slots, next->num_total_call_slots); tc->bytes_mapped_estimate = 0; tc_batch_execute(next, 0); synced = true; } if (synced) { p_atomic_inc(&tc->num_syncs); if (tc_strcmp(func, "tc_destroy") != 0) { tc_printf("sync %s %s", func, info); } } tc_debug_check(tc); } #define tc_sync(tc) _tc_sync(tc, "", __func__) #define tc_sync_msg(tc, info) _tc_sync(tc, info, __func__) /** * Call this from fence_finish for same-context fence waits of deferred fences * that haven't been flushed yet. * * The passed pipe_context must be the one passed to pipe_screen::fence_finish, * i.e., the wrapped one. */ void threaded_context_flush(struct pipe_context *_pipe, struct tc_unflushed_batch_token *token, bool prefer_async) { struct threaded_context *tc = threaded_context(_pipe); /* This is called from the gallium frontend / application thread. */ if (token->tc && token->tc == tc) { struct tc_batch *last = &tc->batch_slots[tc->last]; /* Prefer to do the flush in the driver thread if it is already * running. That should be better for cache locality. */ if (prefer_async || !util_queue_fence_is_signalled(&last->fence)) tc_batch_flush(tc); else tc_sync(token->tc); } } static void tc_set_resource_reference(struct pipe_resource **dst, struct pipe_resource *src) { *dst = NULL; pipe_resource_reference(dst, src); } void threaded_resource_init(struct pipe_resource *res) { struct threaded_resource *tres = threaded_resource(res); tres->latest = &tres->b; util_range_init(&tres->valid_buffer_range); tres->base_valid_buffer_range = &tres->valid_buffer_range; tres->is_shared = false; tres->is_user_ptr = false; tres->pending_staging_uploads = 0; util_range_init(&tres->pending_staging_uploads_range); } void threaded_resource_deinit(struct pipe_resource *res) { struct threaded_resource *tres = threaded_resource(res); if (tres->latest != &tres->b) pipe_resource_reference(&tres->latest, NULL); util_range_destroy(&tres->valid_buffer_range); util_range_destroy(&tres->pending_staging_uploads_range); } struct pipe_context * threaded_context_unwrap_sync(struct pipe_context *pipe) { if (!pipe || !pipe->priv) return pipe; tc_sync(threaded_context(pipe)); return (struct pipe_context*)pipe->priv; } /******************************************************************** * simple functions */ #define TC_FUNC1(func, m_payload, qualifier, type, deref, deref2) \ static void \ tc_call_##func(struct pipe_context *pipe, union tc_payload *payload) \ { \ pipe->func(pipe, deref2((type*)payload)); \ } \ \ static void \ tc_##func(struct pipe_context *_pipe, qualifier type deref param) \ { \ struct threaded_context *tc = threaded_context(_pipe); \ type *p = (type*)tc_add_sized_call(tc, TC_CALL_##func, \ tc_payload_size_to_call_slots(sizeof(type))); \ *p = deref(param); \ } TC_FUNC1(set_active_query_state, flags, , bool, , *) TC_FUNC1(set_blend_color, blend_color, const, struct pipe_blend_color, *, ) TC_FUNC1(set_stencil_ref, stencil_ref, const, struct pipe_stencil_ref, , *) TC_FUNC1(set_clip_state, clip_state, const, struct pipe_clip_state, *, ) TC_FUNC1(set_sample_mask, sample_mask, , unsigned, , *) TC_FUNC1(set_min_samples, min_samples, , unsigned, , *) TC_FUNC1(set_polygon_stipple, polygon_stipple, const, struct pipe_poly_stipple, *, ) TC_FUNC1(texture_barrier, flags, , unsigned, , *) TC_FUNC1(memory_barrier, flags, , unsigned, , *) /******************************************************************** * queries */ static struct pipe_query * tc_create_query(struct pipe_context *_pipe, unsigned query_type, unsigned index) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; return pipe->create_query(pipe, query_type, index); } static struct pipe_query * tc_create_batch_query(struct pipe_context *_pipe, unsigned num_queries, unsigned *query_types) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; return pipe->create_batch_query(pipe, num_queries, query_types); } static void tc_call_destroy_query(struct pipe_context *pipe, union tc_payload *payload) { struct threaded_query *tq = threaded_query(payload->query); if (list_is_linked(&tq->head_unflushed)) list_del(&tq->head_unflushed); pipe->destroy_query(pipe, payload->query); } static void tc_destroy_query(struct pipe_context *_pipe, struct pipe_query *query) { struct threaded_context *tc = threaded_context(_pipe); tc_add_small_call(tc, TC_CALL_destroy_query)->query = query; } static void tc_call_begin_query(struct pipe_context *pipe, union tc_payload *payload) { pipe->begin_query(pipe, payload->query); } static bool tc_begin_query(struct pipe_context *_pipe, struct pipe_query *query) { struct threaded_context *tc = threaded_context(_pipe); union tc_payload *payload = tc_add_small_call(tc, TC_CALL_begin_query); payload->query = query; return true; /* we don't care about the return value for this call */ } struct tc_end_query_payload { struct threaded_context *tc; struct pipe_query *query; }; static void tc_call_end_query(struct pipe_context *pipe, union tc_payload *payload) { struct tc_end_query_payload *p = (struct tc_end_query_payload *)payload; struct threaded_query *tq = threaded_query(p->query); if (!list_is_linked(&tq->head_unflushed)) list_add(&tq->head_unflushed, &p->tc->unflushed_queries); pipe->end_query(pipe, p->query); } static bool tc_end_query(struct pipe_context *_pipe, struct pipe_query *query) { struct threaded_context *tc = threaded_context(_pipe); struct threaded_query *tq = threaded_query(query); struct tc_end_query_payload *payload = tc_add_struct_typed_call(tc, TC_CALL_end_query, tc_end_query_payload); payload->tc = tc; payload->query = query; tq->flushed = false; return true; /* we don't care about the return value for this call */ } static bool tc_get_query_result(struct pipe_context *_pipe, struct pipe_query *query, bool wait, union pipe_query_result *result) { struct threaded_context *tc = threaded_context(_pipe); struct threaded_query *tq = threaded_query(query); struct pipe_context *pipe = tc->pipe; bool flushed = tq->flushed; if (!flushed) { tc_sync_msg(tc, wait ? "wait" : "nowait"); tc_set_driver_thread(tc); } bool success = pipe->get_query_result(pipe, query, wait, result); if (!flushed) tc_clear_driver_thread(tc); if (success) { tq->flushed = true; if (list_is_linked(&tq->head_unflushed)) { /* This is safe because it can only happen after we sync'd. */ list_del(&tq->head_unflushed); } } return success; } struct tc_query_result_resource { struct pipe_query *query; bool wait; enum pipe_query_value_type result_type; int index; struct pipe_resource *resource; unsigned offset; }; static void tc_call_get_query_result_resource(struct pipe_context *pipe, union tc_payload *payload) { struct tc_query_result_resource *p = (struct tc_query_result_resource *)payload; pipe->get_query_result_resource(pipe, p->query, p->wait, p->result_type, p->index, p->resource, p->offset); pipe_resource_reference(&p->resource, NULL); } static void tc_get_query_result_resource(struct pipe_context *_pipe, struct pipe_query *query, bool wait, enum pipe_query_value_type result_type, int index, struct pipe_resource *resource, unsigned offset) { struct threaded_context *tc = threaded_context(_pipe); struct tc_query_result_resource *p = tc_add_struct_typed_call(tc, TC_CALL_get_query_result_resource, tc_query_result_resource); p->query = query; p->wait = wait; p->result_type = result_type; p->index = index; tc_set_resource_reference(&p->resource, resource); p->offset = offset; } struct tc_render_condition { struct pipe_query *query; bool condition; unsigned mode; }; static void tc_call_render_condition(struct pipe_context *pipe, union tc_payload *payload) { struct tc_render_condition *p = (struct tc_render_condition *)payload; pipe->render_condition(pipe, p->query, p->condition, p->mode); } static void tc_render_condition(struct pipe_context *_pipe, struct pipe_query *query, bool condition, enum pipe_render_cond_flag mode) { struct threaded_context *tc = threaded_context(_pipe); struct tc_render_condition *p = tc_add_struct_typed_call(tc, TC_CALL_render_condition, tc_render_condition); p->query = query; p->condition = condition; p->mode = mode; } /******************************************************************** * constant (immutable) states */ #define TC_CSO_CREATE(name, sname) \ static void * \ tc_create_##name##_state(struct pipe_context *_pipe, \ const struct pipe_##sname##_state *state) \ { \ struct pipe_context *pipe = threaded_context(_pipe)->pipe; \ return pipe->create_##name##_state(pipe, state); \ } #define TC_CSO_BIND(name) TC_FUNC1(bind_##name##_state, cso, , void *, , *) #define TC_CSO_DELETE(name) TC_FUNC1(delete_##name##_state, cso, , void *, , *) #define TC_CSO_WHOLE2(name, sname) \ TC_CSO_CREATE(name, sname) \ TC_CSO_BIND(name) \ TC_CSO_DELETE(name) #define TC_CSO_WHOLE(name) TC_CSO_WHOLE2(name, name) TC_CSO_WHOLE(blend) TC_CSO_WHOLE(rasterizer) TC_CSO_WHOLE(depth_stencil_alpha) TC_CSO_WHOLE(compute) TC_CSO_WHOLE2(fs, shader) TC_CSO_WHOLE2(vs, shader) TC_CSO_WHOLE2(gs, shader) TC_CSO_WHOLE2(tcs, shader) TC_CSO_WHOLE2(tes, shader) TC_CSO_CREATE(sampler, sampler) TC_CSO_DELETE(sampler) TC_CSO_BIND(vertex_elements) TC_CSO_DELETE(vertex_elements) static void * tc_create_vertex_elements_state(struct pipe_context *_pipe, unsigned count, const struct pipe_vertex_element *elems) { struct pipe_context *pipe = threaded_context(_pipe)->pipe; return pipe->create_vertex_elements_state(pipe, count, elems); } struct tc_sampler_states { ubyte shader, start, count; void *slot[0]; /* more will be allocated if needed */ }; static void tc_call_bind_sampler_states(struct pipe_context *pipe, union tc_payload *payload) { struct tc_sampler_states *p = (struct tc_sampler_states *)payload; pipe->bind_sampler_states(pipe, p->shader, p->start, p->count, p->slot); } static void tc_bind_sampler_states(struct pipe_context *_pipe, enum pipe_shader_type shader, unsigned start, unsigned count, void **states) { if (!count) return; struct threaded_context *tc = threaded_context(_pipe); struct tc_sampler_states *p = tc_add_slot_based_call(tc, TC_CALL_bind_sampler_states, tc_sampler_states, count); p->shader = shader; p->start = start; p->count = count; memcpy(p->slot, states, count * sizeof(states[0])); } /******************************************************************** * immediate states */ static void tc_call_set_framebuffer_state(struct pipe_context *pipe, union tc_payload *payload) { struct pipe_framebuffer_state *p = (struct pipe_framebuffer_state *)payload; pipe->set_framebuffer_state(pipe, p); unsigned nr_cbufs = p->nr_cbufs; for (unsigned i = 0; i < nr_cbufs; i++) pipe_surface_reference(&p->cbufs[i], NULL); pipe_surface_reference(&p->zsbuf, NULL); } static void tc_set_framebuffer_state(struct pipe_context *_pipe, const struct pipe_framebuffer_state *fb) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_framebuffer_state *p = tc_add_struct_typed_call(tc, TC_CALL_set_framebuffer_state, pipe_framebuffer_state); unsigned nr_cbufs = fb->nr_cbufs; p->width = fb->width; p->height = fb->height; p->samples = fb->samples; p->layers = fb->layers; p->nr_cbufs = nr_cbufs; for (unsigned i = 0; i < nr_cbufs; i++) { p->cbufs[i] = NULL; pipe_surface_reference(&p->cbufs[i], fb->cbufs[i]); } p->zsbuf = NULL; pipe_surface_reference(&p->zsbuf, fb->zsbuf); } static void tc_call_set_tess_state(struct pipe_context *pipe, union tc_payload *payload) { float *p = (float*)payload; pipe->set_tess_state(pipe, p, p + 4); } static void tc_set_tess_state(struct pipe_context *_pipe, const float default_outer_level[4], const float default_inner_level[2]) { struct threaded_context *tc = threaded_context(_pipe); float *p = (float*)tc_add_sized_call(tc, TC_CALL_set_tess_state, tc_payload_size_to_call_slots(sizeof(float) * 6)); memcpy(p, default_outer_level, 4 * sizeof(float)); memcpy(p + 4, default_inner_level, 2 * sizeof(float)); } struct tc_constant_buffer_info { ubyte shader, index; bool is_null; }; struct tc_constant_buffer { struct tc_constant_buffer_info info; struct pipe_constant_buffer cb; }; static void tc_call_set_constant_buffer(struct pipe_context *pipe, union tc_payload *payload) { struct tc_constant_buffer *p = (struct tc_constant_buffer *)payload; if (unlikely(p->info.is_null)) { pipe->set_constant_buffer(pipe, p->info.shader, p->info.index, false, NULL); return; } pipe->set_constant_buffer(pipe, p->info.shader, p->info.index, true, &p->cb); } static void tc_set_constant_buffer(struct pipe_context *_pipe, enum pipe_shader_type shader, uint index, bool take_ownership, const struct pipe_constant_buffer *cb) { struct threaded_context *tc = threaded_context(_pipe); if (unlikely(!cb || (!cb->buffer && !cb->user_buffer))) { struct tc_constant_buffer_info *p = tc_add_struct_typed_call(tc, TC_CALL_set_constant_buffer, tc_constant_buffer_info); p->shader = shader; p->index = index; p->is_null = true; return; } struct pipe_resource *buffer; unsigned offset; if (cb->user_buffer) { /* This must be done before adding set_constant_buffer, because it could * generate e.g. transfer_unmap and flush partially-uninitialized * set_constant_buffer to the driver if it was done afterwards. */ buffer = NULL; u_upload_data(tc->base.const_uploader, 0, cb->buffer_size, tc->ubo_alignment, cb->user_buffer, &offset, &buffer); u_upload_unmap(tc->base.const_uploader); take_ownership = true; } else { buffer = cb->buffer; offset = cb->buffer_offset; } struct tc_constant_buffer *p = tc_add_struct_typed_call(tc, TC_CALL_set_constant_buffer, tc_constant_buffer); p->info.shader = shader; p->info.index = index; p->info.is_null = false; p->cb.user_buffer = NULL; p->cb.buffer_offset = offset; p->cb.buffer_size = cb->buffer_size; if (take_ownership) p->cb.buffer = buffer; else tc_set_resource_reference(&p->cb.buffer, buffer); } struct tc_inlinable_constants { ubyte shader; ubyte num_values; uint32_t values[MAX_INLINABLE_UNIFORMS]; }; static void tc_call_set_inlinable_constants(struct pipe_context *pipe, union tc_payload *payload) { struct tc_inlinable_constants *p = (struct tc_inlinable_constants *)payload; pipe->set_inlinable_constants(pipe, p->shader, p->num_values, p->values); } static void tc_set_inlinable_constants(struct pipe_context *_pipe, enum pipe_shader_type shader, uint num_values, uint32_t *values) { struct threaded_context *tc = threaded_context(_pipe); struct tc_inlinable_constants *p = tc_add_struct_typed_call(tc, TC_CALL_set_inlinable_constants, tc_inlinable_constants); p->shader = shader; p->num_values = num_values; memcpy(p->values, values, num_values * 4); } struct tc_sample_locations { uint16_t size; uint8_t locations[0]; }; static void tc_call_set_sample_locations(struct pipe_context *pipe, union tc_payload *payload) { struct tc_sample_locations *p = (struct tc_sample_locations *)payload; pipe->set_sample_locations(pipe, p->size, &p->locations[0]); } static void tc_set_sample_locations(struct pipe_context *_pipe, size_t size, const uint8_t *locations) { struct threaded_context *tc = threaded_context(_pipe); struct tc_sample_locations *p = (struct tc_sample_locations *)tc_add_sized_call(tc, TC_CALL_set_sample_locations, tc_payload_size_to_call_slots(sizeof(struct tc_sample_locations) + size)); p->size = size; memcpy(&p->locations, locations, size); } struct tc_scissors { ubyte start, count; struct pipe_scissor_state slot[0]; /* more will be allocated if needed */ }; static void tc_call_set_scissor_states(struct pipe_context *pipe, union tc_payload *payload) { struct tc_scissors *p = (struct tc_scissors *)payload; pipe->set_scissor_states(pipe, p->start, p->count, p->slot); } static void tc_set_scissor_states(struct pipe_context *_pipe, unsigned start, unsigned count, const struct pipe_scissor_state *states) { struct threaded_context *tc = threaded_context(_pipe); struct tc_scissors *p = tc_add_slot_based_call(tc, TC_CALL_set_scissor_states, tc_scissors, count); p->start = start; p->count = count; memcpy(&p->slot, states, count * sizeof(states[0])); } struct tc_viewports { ubyte start, count; struct pipe_viewport_state slot[0]; /* more will be allocated if needed */ }; static void tc_call_set_viewport_states(struct pipe_context *pipe, union tc_payload *payload) { struct tc_viewports *p = (struct tc_viewports *)payload; pipe->set_viewport_states(pipe, p->start, p->count, p->slot); } static void tc_set_viewport_states(struct pipe_context *_pipe, unsigned start, unsigned count, const struct pipe_viewport_state *states) { if (!count) return; struct threaded_context *tc = threaded_context(_pipe); struct tc_viewports *p = tc_add_slot_based_call(tc, TC_CALL_set_viewport_states, tc_viewports, count); p->start = start; p->count = count; memcpy(&p->slot, states, count * sizeof(states[0])); } struct tc_window_rects { bool include; ubyte count; struct pipe_scissor_state slot[0]; /* more will be allocated if needed */ }; static void tc_call_set_window_rectangles(struct pipe_context *pipe, union tc_payload *payload) { struct tc_window_rects *p = (struct tc_window_rects *)payload; pipe->set_window_rectangles(pipe, p->include, p->count, p->slot); } static void tc_set_window_rectangles(struct pipe_context *_pipe, bool include, unsigned count, const struct pipe_scissor_state *rects) { struct threaded_context *tc = threaded_context(_pipe); struct tc_window_rects *p = tc_add_slot_based_call(tc, TC_CALL_set_window_rectangles, tc_window_rects, count); p->include = include; p->count = count; memcpy(p->slot, rects, count * sizeof(rects[0])); } struct tc_sampler_views { ubyte shader, start, count, unbind_num_trailing_slots; struct pipe_sampler_view *slot[0]; /* more will be allocated if needed */ }; static void tc_call_set_sampler_views(struct pipe_context *pipe, union tc_payload *payload) { struct tc_sampler_views *p = (struct tc_sampler_views *)payload; unsigned count = p->count; pipe->set_sampler_views(pipe, p->shader, p->start, p->count, p->unbind_num_trailing_slots, p->slot); for (unsigned i = 0; i < count; i++) pipe_sampler_view_reference(&p->slot[i], NULL); } static void tc_set_sampler_views(struct pipe_context *_pipe, enum pipe_shader_type shader, unsigned start, unsigned count, unsigned unbind_num_trailing_slots, struct pipe_sampler_view **views) { if (!count && !unbind_num_trailing_slots) return; struct threaded_context *tc = threaded_context(_pipe); struct tc_sampler_views *p = tc_add_slot_based_call(tc, TC_CALL_set_sampler_views, tc_sampler_views, count); p->shader = shader; p->start = start; p->count = count; p->unbind_num_trailing_slots = unbind_num_trailing_slots; if (views) { for (unsigned i = 0; i < count; i++) { p->slot[i] = NULL; pipe_sampler_view_reference(&p->slot[i], views[i]); } } else { memset(p->slot, 0, count * sizeof(views[0])); } } struct tc_shader_images { ubyte shader, start, count; ubyte unbind_num_trailing_slots; struct pipe_image_view slot[0]; /* more will be allocated if needed */ }; static void tc_call_set_shader_images(struct pipe_context *pipe, union tc_payload *payload) { struct tc_shader_images *p = (struct tc_shader_images *)payload; unsigned count = p->count; if (!p->count) { pipe->set_shader_images(pipe, p->shader, p->start, 0, p->unbind_num_trailing_slots, NULL); return; } pipe->set_shader_images(pipe, p->shader, p->start, p->count, p->unbind_num_trailing_slots, p->slot); for (unsigned i = 0; i < count; i++) pipe_resource_reference(&p->slot[i].resource, NULL); } static void tc_set_shader_images(struct pipe_context *_pipe, enum pipe_shader_type shader, unsigned start, unsigned count, unsigned unbind_num_trailing_slots, const struct pipe_image_view *images) { if (!count && !unbind_num_trailing_slots) return; struct threaded_context *tc = threaded_context(_pipe); struct tc_shader_images *p = tc_add_slot_based_call(tc, TC_CALL_set_shader_images, tc_shader_images, images ? count : 0); p->shader = shader; p->start = start; if (images) { p->count = count; p->unbind_num_trailing_slots = unbind_num_trailing_slots; for (unsigned i = 0; i < count; i++) { tc_set_resource_reference(&p->slot[i].resource, images[i].resource); if (images[i].access & PIPE_IMAGE_ACCESS_WRITE && images[i].resource && images[i].resource->target == PIPE_BUFFER) { struct threaded_resource *tres = threaded_resource(images[i].resource); util_range_add(&tres->b, &tres->valid_buffer_range, images[i].u.buf.offset, images[i].u.buf.offset + images[i].u.buf.size); } } memcpy(p->slot, images, count * sizeof(images[0])); } else { p->count = 0; p->unbind_num_trailing_slots = count + unbind_num_trailing_slots; } } struct tc_shader_buffers { ubyte shader, start, count; bool unbind; unsigned writable_bitmask; struct pipe_shader_buffer slot[0]; /* more will be allocated if needed */ }; static void tc_call_set_shader_buffers(struct pipe_context *pipe, union tc_payload *payload) { struct tc_shader_buffers *p = (struct tc_shader_buffers *)payload; unsigned count = p->count; if (p->unbind) { pipe->set_shader_buffers(pipe, p->shader, p->start, p->count, NULL, 0); return; } pipe->set_shader_buffers(pipe, p->shader, p->start, p->count, p->slot, p->writable_bitmask); for (unsigned i = 0; i < count; i++) pipe_resource_reference(&p->slot[i].buffer, NULL); } static void tc_set_shader_buffers(struct pipe_context *_pipe, enum pipe_shader_type shader, unsigned start, unsigned count, const struct pipe_shader_buffer *buffers, unsigned writable_bitmask) { if (!count) return; struct threaded_context *tc = threaded_context(_pipe); struct tc_shader_buffers *p = tc_add_slot_based_call(tc, TC_CALL_set_shader_buffers, tc_shader_buffers, buffers ? count : 0); p->shader = shader; p->start = start; p->count = count; p->unbind = buffers == NULL; p->writable_bitmask = writable_bitmask; if (buffers) { for (unsigned i = 0; i < count; i++) { struct pipe_shader_buffer *dst = &p->slot[i]; const struct pipe_shader_buffer *src = buffers + i; tc_set_resource_reference(&dst->buffer, src->buffer); dst->buffer_offset = src->buffer_offset; dst->buffer_size = src->buffer_size; if (src->buffer) { struct threaded_resource *tres = threaded_resource(src->buffer); util_range_add(&tres->b, &tres->valid_buffer_range, src->buffer_offset, src->buffer_offset + src->buffer_size); } } } } struct tc_vertex_buffers { ubyte start, count; ubyte unbind_num_trailing_slots; struct pipe_vertex_buffer slot[0]; /* more will be allocated if needed */ }; static void tc_call_set_vertex_buffers(struct pipe_context *pipe, union tc_payload *payload) { struct tc_vertex_buffers *p = (struct tc_vertex_buffers *)payload; unsigned count = p->count; if (!count) { pipe->set_vertex_buffers(pipe, p->start, 0, p->unbind_num_trailing_slots, false, NULL); return; } for (unsigned i = 0; i < count; i++) tc_assert(!p->slot[i].is_user_buffer); pipe->set_vertex_buffers(pipe, p->start, count, p->unbind_num_trailing_slots, true, p->slot); } static void tc_set_vertex_buffers(struct pipe_context *_pipe, unsigned start, unsigned count, unsigned unbind_num_trailing_slots, bool take_ownership, const struct pipe_vertex_buffer *buffers) { struct threaded_context *tc = threaded_context(_pipe); if (!count && !unbind_num_trailing_slots) return; if (count && buffers) { struct tc_vertex_buffers *p = tc_add_slot_based_call(tc, TC_CALL_set_vertex_buffers, tc_vertex_buffers, count); p->start = start; p->count = count; p->unbind_num_trailing_slots = unbind_num_trailing_slots; if (take_ownership) { memcpy(p->slot, buffers, count * sizeof(struct pipe_vertex_buffer)); } else { for (unsigned i = 0; i < count; i++) { struct pipe_vertex_buffer *dst = &p->slot[i]; const struct pipe_vertex_buffer *src = buffers + i; tc_assert(!src->is_user_buffer); dst->stride = src->stride; dst->is_user_buffer = false; tc_set_resource_reference(&dst->buffer.resource, src->buffer.resource); dst->buffer_offset = src->buffer_offset; } } } else { struct tc_vertex_buffers *p = tc_add_slot_based_call(tc, TC_CALL_set_vertex_buffers, tc_vertex_buffers, 0); p->start = start; p->count = 0; p->unbind_num_trailing_slots = count + unbind_num_trailing_slots; } } struct tc_stream_outputs { unsigned count; struct pipe_stream_output_target *targets[PIPE_MAX_SO_BUFFERS]; unsigned offsets[PIPE_MAX_SO_BUFFERS]; }; static void tc_call_set_stream_output_targets(struct pipe_context *pipe, union tc_payload *payload) { struct tc_stream_outputs *p = (struct tc_stream_outputs *)payload; unsigned count = p->count; pipe->set_stream_output_targets(pipe, count, p->targets, p->offsets); for (unsigned i = 0; i < count; i++) pipe_so_target_reference(&p->targets[i], NULL); } static void tc_set_stream_output_targets(struct pipe_context *_pipe, unsigned count, struct pipe_stream_output_target **tgs, const unsigned *offsets) { struct threaded_context *tc = threaded_context(_pipe); struct tc_stream_outputs *p = tc_add_struct_typed_call(tc, TC_CALL_set_stream_output_targets, tc_stream_outputs); for (unsigned i = 0; i < count; i++) { p->targets[i] = NULL; pipe_so_target_reference(&p->targets[i], tgs[i]); } p->count = count; memcpy(p->offsets, offsets, count * sizeof(unsigned)); } static void tc_set_compute_resources(struct pipe_context *_pipe, unsigned start, unsigned count, struct pipe_surface **resources) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->set_compute_resources(pipe, start, count, resources); } static void tc_set_global_binding(struct pipe_context *_pipe, unsigned first, unsigned count, struct pipe_resource **resources, uint32_t **handles) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->set_global_binding(pipe, first, count, resources, handles); } /******************************************************************** * views */ static struct pipe_surface * tc_create_surface(struct pipe_context *_pipe, struct pipe_resource *resource, const struct pipe_surface *surf_tmpl) { struct pipe_context *pipe = threaded_context(_pipe)->pipe; struct pipe_surface *view = pipe->create_surface(pipe, resource, surf_tmpl); if (view) view->context = _pipe; return view; } static void tc_surface_destroy(struct pipe_context *_pipe, struct pipe_surface *surf) { struct pipe_context *pipe = threaded_context(_pipe)->pipe; pipe->surface_destroy(pipe, surf); } static struct pipe_sampler_view * tc_create_sampler_view(struct pipe_context *_pipe, struct pipe_resource *resource, const struct pipe_sampler_view *templ) { struct pipe_context *pipe = threaded_context(_pipe)->pipe; struct pipe_sampler_view *view = pipe->create_sampler_view(pipe, resource, templ); if (view) view->context = _pipe; return view; } static void tc_sampler_view_destroy(struct pipe_context *_pipe, struct pipe_sampler_view *view) { struct pipe_context *pipe = threaded_context(_pipe)->pipe; pipe->sampler_view_destroy(pipe, view); } static struct pipe_stream_output_target * tc_create_stream_output_target(struct pipe_context *_pipe, struct pipe_resource *res, unsigned buffer_offset, unsigned buffer_size) { struct pipe_context *pipe = threaded_context(_pipe)->pipe; struct threaded_resource *tres = threaded_resource(res); struct pipe_stream_output_target *view; util_range_add(&tres->b, &tres->valid_buffer_range, buffer_offset, buffer_offset + buffer_size); view = pipe->create_stream_output_target(pipe, res, buffer_offset, buffer_size); if (view) view->context = _pipe; return view; } static void tc_stream_output_target_destroy(struct pipe_context *_pipe, struct pipe_stream_output_target *target) { struct pipe_context *pipe = threaded_context(_pipe)->pipe; pipe->stream_output_target_destroy(pipe, target); } /******************************************************************** * bindless */ static uint64_t tc_create_texture_handle(struct pipe_context *_pipe, struct pipe_sampler_view *view, const struct pipe_sampler_state *state) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); return pipe->create_texture_handle(pipe, view, state); } static void tc_call_delete_texture_handle(struct pipe_context *pipe, union tc_payload *payload) { pipe->delete_texture_handle(pipe, payload->handle); } static void tc_delete_texture_handle(struct pipe_context *_pipe, uint64_t handle) { struct threaded_context *tc = threaded_context(_pipe); union tc_payload *payload = tc_add_small_call(tc, TC_CALL_delete_texture_handle); payload->handle = handle; } struct tc_make_texture_handle_resident { uint64_t handle; bool resident; }; static void tc_call_make_texture_handle_resident(struct pipe_context *pipe, union tc_payload *payload) { struct tc_make_texture_handle_resident *p = (struct tc_make_texture_handle_resident *)payload; pipe->make_texture_handle_resident(pipe, p->handle, p->resident); } static void tc_make_texture_handle_resident(struct pipe_context *_pipe, uint64_t handle, bool resident) { struct threaded_context *tc = threaded_context(_pipe); struct tc_make_texture_handle_resident *p = tc_add_struct_typed_call(tc, TC_CALL_make_texture_handle_resident, tc_make_texture_handle_resident); p->handle = handle; p->resident = resident; } static uint64_t tc_create_image_handle(struct pipe_context *_pipe, const struct pipe_image_view *image) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); return pipe->create_image_handle(pipe, image); } static void tc_call_delete_image_handle(struct pipe_context *pipe, union tc_payload *payload) { pipe->delete_image_handle(pipe, payload->handle); } static void tc_delete_image_handle(struct pipe_context *_pipe, uint64_t handle) { struct threaded_context *tc = threaded_context(_pipe); union tc_payload *payload = tc_add_small_call(tc, TC_CALL_delete_image_handle); payload->handle = handle; } struct tc_make_image_handle_resident { uint64_t handle; unsigned access; bool resident; }; static void tc_call_make_image_handle_resident(struct pipe_context *pipe, union tc_payload *payload) { struct tc_make_image_handle_resident *p = (struct tc_make_image_handle_resident *)payload; pipe->make_image_handle_resident(pipe, p->handle, p->access, p->resident); } static void tc_make_image_handle_resident(struct pipe_context *_pipe, uint64_t handle, unsigned access, bool resident) { struct threaded_context *tc = threaded_context(_pipe); struct tc_make_image_handle_resident *p = tc_add_struct_typed_call(tc, TC_CALL_make_image_handle_resident, tc_make_image_handle_resident); p->handle = handle; p->access = access; p->resident = resident; } /******************************************************************** * transfer */ struct tc_replace_buffer_storage { struct pipe_resource *dst; struct pipe_resource *src; tc_replace_buffer_storage_func func; }; static void tc_call_replace_buffer_storage(struct pipe_context *pipe, union tc_payload *payload) { struct tc_replace_buffer_storage *p = (struct tc_replace_buffer_storage *)payload; p->func(pipe, p->dst, p->src); pipe_resource_reference(&p->dst, NULL); pipe_resource_reference(&p->src, NULL); } static bool tc_invalidate_buffer(struct threaded_context *tc, struct threaded_resource *tbuf) { /* We can't check if the buffer is idle, so we invalidate it * unconditionally. */ struct pipe_screen *screen = tc->base.screen; struct pipe_resource *new_buf; /* Shared, pinned, and sparse buffers can't be reallocated. */ if (tbuf->is_shared || tbuf->is_user_ptr || tbuf->b.flags & PIPE_RESOURCE_FLAG_SPARSE) return false; /* Allocate a new one. */ new_buf = screen->resource_create(screen, &tbuf->b); if (!new_buf) return false; /* Replace the "latest" pointer. */ if (tbuf->latest != &tbuf->b) pipe_resource_reference(&tbuf->latest, NULL); tbuf->latest = new_buf; util_range_set_empty(&tbuf->valid_buffer_range); /* The valid range should point to the original buffer. */ threaded_resource(new_buf)->base_valid_buffer_range = &tbuf->valid_buffer_range; /* Enqueue storage replacement of the original buffer. */ struct tc_replace_buffer_storage *p = tc_add_struct_typed_call(tc, TC_CALL_replace_buffer_storage, tc_replace_buffer_storage); p->func = tc->replace_buffer_storage; tc_set_resource_reference(&p->dst, &tbuf->b); tc_set_resource_reference(&p->src, new_buf); return true; } static unsigned tc_improve_map_buffer_flags(struct threaded_context *tc, struct threaded_resource *tres, unsigned usage, unsigned offset, unsigned size) { /* Never invalidate inside the driver and never infer "unsynchronized". */ unsigned tc_flags = TC_TRANSFER_MAP_NO_INVALIDATE | TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED; /* Prevent a reentry. */ if (usage & tc_flags) return usage; /* Use the staging upload if it's preferred. */ if (usage & (PIPE_MAP_DISCARD_RANGE | PIPE_MAP_DISCARD_WHOLE_RESOURCE) && !(usage & PIPE_MAP_PERSISTENT) && /* Try not to decrement the counter if it's not positive. Still racy, * but it makes it harder to wrap the counter from INT_MIN to INT_MAX. */ tres->max_forced_staging_uploads > 0 && tc->use_forced_staging_uploads && p_atomic_dec_return(&tres->max_forced_staging_uploads) >= 0) { usage &= ~(PIPE_MAP_DISCARD_WHOLE_RESOURCE | PIPE_MAP_UNSYNCHRONIZED); return usage | tc_flags | PIPE_MAP_DISCARD_RANGE; } /* Sparse buffers can't be mapped directly and can't be reallocated * (fully invalidated). That may just be a radeonsi limitation, but * the threaded context must obey it with radeonsi. */ if (tres->b.flags & PIPE_RESOURCE_FLAG_SPARSE) { /* We can use DISCARD_RANGE instead of full discard. This is the only * fast path for sparse buffers that doesn't need thread synchronization. */ if (usage & PIPE_MAP_DISCARD_WHOLE_RESOURCE) usage |= PIPE_MAP_DISCARD_RANGE; /* Allow DISCARD_WHOLE_RESOURCE and infering UNSYNCHRONIZED in drivers. * The threaded context doesn't do unsychronized mappings and invalida- * tions of sparse buffers, therefore a correct driver behavior won't * result in an incorrect behavior with the threaded context. */ return usage; } usage |= tc_flags; /* Handle CPU reads trivially. */ if (usage & PIPE_MAP_READ) { if (usage & PIPE_MAP_UNSYNCHRONIZED) usage |= TC_TRANSFER_MAP_THREADED_UNSYNC; /* don't sync */ /* Drivers aren't allowed to do buffer invalidations. */ return usage & ~PIPE_MAP_DISCARD_WHOLE_RESOURCE; } /* See if the buffer range being mapped has never been initialized, * in which case it can be mapped unsynchronized. */ if (!(usage & PIPE_MAP_UNSYNCHRONIZED) && !tres->is_shared && !util_ranges_intersect(&tres->valid_buffer_range, offset, offset + size)) usage |= PIPE_MAP_UNSYNCHRONIZED; if (!(usage & PIPE_MAP_UNSYNCHRONIZED)) { /* If discarding the entire range, discard the whole resource instead. */ if (usage & PIPE_MAP_DISCARD_RANGE && offset == 0 && size == tres->b.width0) usage |= PIPE_MAP_DISCARD_WHOLE_RESOURCE; /* Discard the whole resource if needed. */ if (usage & PIPE_MAP_DISCARD_WHOLE_RESOURCE) { if (tc_invalidate_buffer(tc, tres)) usage |= PIPE_MAP_UNSYNCHRONIZED; else usage |= PIPE_MAP_DISCARD_RANGE; /* fallback */ } } /* We won't need this flag anymore. */ /* TODO: We might not need TC_TRANSFER_MAP_NO_INVALIDATE with this. */ usage &= ~PIPE_MAP_DISCARD_WHOLE_RESOURCE; /* GL_AMD_pinned_memory and persistent mappings can't use staging * buffers. */ if (usage & (PIPE_MAP_UNSYNCHRONIZED | PIPE_MAP_PERSISTENT) || tres->is_user_ptr) usage &= ~PIPE_MAP_DISCARD_RANGE; /* Unsychronized buffer mappings don't have to synchronize the thread. */ if (usage & PIPE_MAP_UNSYNCHRONIZED) { usage &= ~PIPE_MAP_DISCARD_RANGE; usage |= TC_TRANSFER_MAP_THREADED_UNSYNC; /* notify the driver */ } return usage; } static void * tc_transfer_map(struct pipe_context *_pipe, struct pipe_resource *resource, unsigned level, unsigned usage, const struct pipe_box *box, struct pipe_transfer **transfer) { struct threaded_context *tc = threaded_context(_pipe); struct threaded_resource *tres = threaded_resource(resource); struct pipe_context *pipe = tc->pipe; if (resource->target == PIPE_BUFFER) { usage = tc_improve_map_buffer_flags(tc, tres, usage, box->x, box->width); /* Do a staging transfer within the threaded context. The driver should * only get resource_copy_region. */ if (usage & PIPE_MAP_DISCARD_RANGE) { struct threaded_transfer *ttrans = slab_alloc(&tc->pool_transfers); uint8_t *map; ttrans->staging = NULL; u_upload_alloc(tc->base.stream_uploader, 0, box->width + (box->x % tc->map_buffer_alignment), tc->map_buffer_alignment, &ttrans->offset, &ttrans->staging, (void**)&map); if (!map) { slab_free(&tc->pool_transfers, ttrans); return NULL; } tc_set_resource_reference(&ttrans->b.resource, resource); ttrans->b.level = 0; ttrans->b.usage = usage; ttrans->b.box = *box; ttrans->b.stride = 0; ttrans->b.layer_stride = 0; *transfer = &ttrans->b; p_atomic_inc(&tres->pending_staging_uploads); util_range_add(resource, &tres->pending_staging_uploads_range, box->x, box->x + box->width); return map + (box->x % tc->map_buffer_alignment); } if (usage & PIPE_MAP_UNSYNCHRONIZED && p_atomic_read(&tres->pending_staging_uploads) && util_ranges_intersect(&tres->pending_staging_uploads_range, box->x, box->x + box->width)) { /* Write conflict detected between a staging transfer and the direct mapping we're * going to do. Resolve the conflict by ignoring UNSYNCHRONIZED so the direct mapping * will have to wait for the staging transfer completion. * Note: The conflict detection is only based on the mapped range, not on the actual * written range(s). */ usage &= ~PIPE_MAP_UNSYNCHRONIZED & ~TC_TRANSFER_MAP_THREADED_UNSYNC; tc->use_forced_staging_uploads = false; } } /* Unsychronized buffer mappings don't have to synchronize the thread. */ if (!(usage & TC_TRANSFER_MAP_THREADED_UNSYNC)) { tc_sync_msg(tc, resource->target != PIPE_BUFFER ? " texture" : usage & PIPE_MAP_DISCARD_RANGE ? " discard_range" : usage & PIPE_MAP_READ ? " read" : " staging conflict"); tc_set_driver_thread(tc); } tc->bytes_mapped_estimate += box->width; void *ret = pipe->transfer_map(pipe, tres->latest ? tres->latest : resource, level, usage, box, transfer); if (!(usage & TC_TRANSFER_MAP_THREADED_UNSYNC)) tc_clear_driver_thread(tc); return ret; } struct tc_transfer_flush_region { struct pipe_transfer *transfer; struct pipe_box box; }; static void tc_call_transfer_flush_region(struct pipe_context *pipe, union tc_payload *payload) { struct tc_transfer_flush_region *p = (struct tc_transfer_flush_region *)payload; pipe->transfer_flush_region(pipe, p->transfer, &p->box); } struct tc_resource_copy_region { struct pipe_resource *dst; unsigned dst_level; unsigned dstx, dsty, dstz; struct pipe_resource *src; unsigned src_level; struct pipe_box src_box; }; static void tc_resource_copy_region(struct pipe_context *_pipe, struct pipe_resource *dst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct pipe_resource *src, unsigned src_level, const struct pipe_box *src_box); static void tc_buffer_do_flush_region(struct threaded_context *tc, struct threaded_transfer *ttrans, const struct pipe_box *box) { struct threaded_resource *tres = threaded_resource(ttrans->b.resource); if (ttrans->staging) { struct pipe_box src_box; u_box_1d(ttrans->offset + ttrans->b.box.x % tc->map_buffer_alignment + (box->x - ttrans->b.box.x), box->width, &src_box); /* Copy the staging buffer into the original one. */ tc_resource_copy_region(&tc->base, ttrans->b.resource, 0, box->x, 0, 0, ttrans->staging, 0, &src_box); } util_range_add(&tres->b, tres->base_valid_buffer_range, box->x, box->x + box->width); } static void tc_transfer_flush_region(struct pipe_context *_pipe, struct pipe_transfer *transfer, const struct pipe_box *rel_box) { struct threaded_context *tc = threaded_context(_pipe); struct threaded_transfer *ttrans = threaded_transfer(transfer); struct threaded_resource *tres = threaded_resource(transfer->resource); unsigned required_usage = PIPE_MAP_WRITE | PIPE_MAP_FLUSH_EXPLICIT; if (tres->b.target == PIPE_BUFFER) { if ((transfer->usage & required_usage) == required_usage) { struct pipe_box box; u_box_1d(transfer->box.x + rel_box->x, rel_box->width, &box); tc_buffer_do_flush_region(tc, ttrans, &box); } /* Staging transfers don't send the call to the driver. */ if (ttrans->staging) return; } struct tc_transfer_flush_region *p = tc_add_struct_typed_call(tc, TC_CALL_transfer_flush_region, tc_transfer_flush_region); p->transfer = transfer; p->box = *rel_box; } struct tc_transfer_unmap { union { struct pipe_transfer *transfer; struct pipe_resource *resource; }; bool was_staging_transfer; }; static void tc_call_transfer_unmap(struct pipe_context *pipe, union tc_payload *payload) { struct tc_transfer_unmap *p = (struct tc_transfer_unmap *) payload; if (p->was_staging_transfer) { struct threaded_resource *tres = threaded_resource(payload->resource); /* Nothing to do except keeping track of staging uploads */ assert(tres->pending_staging_uploads > 0); p_atomic_dec(&tres->pending_staging_uploads); pipe_resource_reference(&p->resource, NULL); return; } pipe->transfer_unmap(pipe, p->transfer); } static void tc_flush(struct pipe_context *_pipe, struct pipe_fence_handle **fence, unsigned flags); static void tc_transfer_unmap(struct pipe_context *_pipe, struct pipe_transfer *transfer) { struct threaded_context *tc = threaded_context(_pipe); struct threaded_transfer *ttrans = threaded_transfer(transfer); struct threaded_resource *tres = threaded_resource(transfer->resource); /* PIPE_MAP_THREAD_SAFE is only valid with UNSYNCHRONIZED. It can be * called from any thread and bypasses all multithreaded queues. */ if (transfer->usage & PIPE_MAP_THREAD_SAFE) { assert(transfer->usage & PIPE_MAP_UNSYNCHRONIZED); assert(!(transfer->usage & (PIPE_MAP_FLUSH_EXPLICIT | PIPE_MAP_DISCARD_RANGE))); struct pipe_context *pipe = tc->pipe; util_range_add(&tres->b, tres->base_valid_buffer_range, transfer->box.x, transfer->box.x + transfer->box.width); pipe->transfer_unmap(pipe, transfer); return; } bool was_staging_transfer = false; if (tres->b.target == PIPE_BUFFER) { if (transfer->usage & PIPE_MAP_WRITE && !(transfer->usage & PIPE_MAP_FLUSH_EXPLICIT)) tc_buffer_do_flush_region(tc, ttrans, &transfer->box); if (ttrans->staging) { was_staging_transfer = true; pipe_resource_reference(&ttrans->staging, NULL); pipe_resource_reference(&ttrans->b.resource, NULL); slab_free(&tc->pool_transfers, ttrans); } } struct tc_transfer_unmap *p = tc_add_struct_typed_call(tc, TC_CALL_transfer_unmap, tc_transfer_unmap); if (was_staging_transfer) { tc_set_resource_reference(&p->resource, &tres->b); p->was_staging_transfer = true; } else { p->transfer = transfer; p->was_staging_transfer = false; } /* tc_transfer_map directly maps the buffers, but tc_transfer_unmap * defers the unmap operation to the batch execution. * bytes_mapped_estimate is an estimation of the map/unmap bytes delta * and if it goes over an optional limit the current batch is flushed, * to reclaim some RAM. */ if (!ttrans->staging && tc->bytes_mapped_limit && tc->bytes_mapped_estimate > tc->bytes_mapped_limit) { tc_flush(_pipe, NULL, PIPE_FLUSH_ASYNC); } } struct tc_buffer_subdata { struct pipe_resource *resource; unsigned usage, offset, size; char slot[0]; /* more will be allocated if needed */ }; static void tc_call_buffer_subdata(struct pipe_context *pipe, union tc_payload *payload) { struct tc_buffer_subdata *p = (struct tc_buffer_subdata *)payload; pipe->buffer_subdata(pipe, p->resource, p->usage, p->offset, p->size, p->slot); pipe_resource_reference(&p->resource, NULL); } static void tc_buffer_subdata(struct pipe_context *_pipe, struct pipe_resource *resource, unsigned usage, unsigned offset, unsigned size, const void *data) { struct threaded_context *tc = threaded_context(_pipe); struct threaded_resource *tres = threaded_resource(resource); if (!size) return; usage |= PIPE_MAP_WRITE; /* PIPE_MAP_DIRECTLY supresses implicit DISCARD_RANGE. */ if (!(usage & PIPE_MAP_DIRECTLY)) usage |= PIPE_MAP_DISCARD_RANGE; usage = tc_improve_map_buffer_flags(tc, tres, usage, offset, size); /* Unsychronized and big transfers should use transfer_map. Also handle * full invalidations, because drivers aren't allowed to do them. */ if (usage & (PIPE_MAP_UNSYNCHRONIZED | PIPE_MAP_DISCARD_WHOLE_RESOURCE) || size > TC_MAX_SUBDATA_BYTES) { struct pipe_transfer *transfer; struct pipe_box box; uint8_t *map = NULL; u_box_1d(offset, size, &box); map = tc_transfer_map(_pipe, resource, 0, usage, &box, &transfer); if (map) { memcpy(map, data, size); tc_transfer_unmap(_pipe, transfer); } return; } util_range_add(&tres->b, &tres->valid_buffer_range, offset, offset + size); /* The upload is small. Enqueue it. */ struct tc_buffer_subdata *p = tc_add_slot_based_call(tc, TC_CALL_buffer_subdata, tc_buffer_subdata, size); tc_set_resource_reference(&p->resource, resource); p->usage = usage; p->offset = offset; p->size = size; memcpy(p->slot, data, size); } struct tc_texture_subdata { struct pipe_resource *resource; unsigned level, usage, stride, layer_stride; struct pipe_box box; char slot[0]; /* more will be allocated if needed */ }; static void tc_call_texture_subdata(struct pipe_context *pipe, union tc_payload *payload) { struct tc_texture_subdata *p = (struct tc_texture_subdata *)payload; pipe->texture_subdata(pipe, p->resource, p->level, p->usage, &p->box, p->slot, p->stride, p->layer_stride); pipe_resource_reference(&p->resource, NULL); } static void tc_texture_subdata(struct pipe_context *_pipe, struct pipe_resource *resource, unsigned level, unsigned usage, const struct pipe_box *box, const void *data, unsigned stride, unsigned layer_stride) { struct threaded_context *tc = threaded_context(_pipe); unsigned size; assert(box->height >= 1); assert(box->depth >= 1); size = (box->depth - 1) * layer_stride + (box->height - 1) * stride + box->width * util_format_get_blocksize(resource->format); if (!size) return; /* Small uploads can be enqueued, big uploads must sync. */ if (size <= TC_MAX_SUBDATA_BYTES) { struct tc_texture_subdata *p = tc_add_slot_based_call(tc, TC_CALL_texture_subdata, tc_texture_subdata, size); tc_set_resource_reference(&p->resource, resource); p->level = level; p->usage = usage; p->box = *box; p->stride = stride; p->layer_stride = layer_stride; memcpy(p->slot, data, size); } else { struct pipe_context *pipe = tc->pipe; tc_sync(tc); tc_set_driver_thread(tc); pipe->texture_subdata(pipe, resource, level, usage, box, data, stride, layer_stride); tc_clear_driver_thread(tc); } } /******************************************************************** * miscellaneous */ #define TC_FUNC_SYNC_RET0(ret_type, func) \ static ret_type \ tc_##func(struct pipe_context *_pipe) \ { \ struct threaded_context *tc = threaded_context(_pipe); \ struct pipe_context *pipe = tc->pipe; \ tc_sync(tc); \ return pipe->func(pipe); \ } TC_FUNC_SYNC_RET0(enum pipe_reset_status, get_device_reset_status) TC_FUNC_SYNC_RET0(uint64_t, get_timestamp) static void tc_get_sample_position(struct pipe_context *_pipe, unsigned sample_count, unsigned sample_index, float *out_value) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->get_sample_position(pipe, sample_count, sample_index, out_value); } static void tc_set_device_reset_callback(struct pipe_context *_pipe, const struct pipe_device_reset_callback *cb) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->set_device_reset_callback(pipe, cb); } struct tc_string_marker { int len; char slot[0]; /* more will be allocated if needed */ }; static void tc_call_emit_string_marker(struct pipe_context *pipe, union tc_payload *payload) { struct tc_string_marker *p = (struct tc_string_marker *)payload; pipe->emit_string_marker(pipe, p->slot, p->len); } static void tc_emit_string_marker(struct pipe_context *_pipe, const char *string, int len) { struct threaded_context *tc = threaded_context(_pipe); if (len <= TC_MAX_STRING_MARKER_BYTES) { struct tc_string_marker *p = tc_add_slot_based_call(tc, TC_CALL_emit_string_marker, tc_string_marker, len); memcpy(p->slot, string, len); p->len = len; } else { struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->emit_string_marker(pipe, string, len); } } static void tc_dump_debug_state(struct pipe_context *_pipe, FILE *stream, unsigned flags) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->dump_debug_state(pipe, stream, flags); } static void tc_set_debug_callback(struct pipe_context *_pipe, const struct pipe_debug_callback *cb) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; /* Drop all synchronous debug callbacks. Drivers are expected to be OK * with this. shader-db will use an environment variable to disable * the threaded context. */ if (cb && cb->debug_message && !cb->async) return; tc_sync(tc); pipe->set_debug_callback(pipe, cb); } static void tc_set_log_context(struct pipe_context *_pipe, struct u_log_context *log) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->set_log_context(pipe, log); } static void tc_create_fence_fd(struct pipe_context *_pipe, struct pipe_fence_handle **fence, int fd, enum pipe_fd_type type) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->create_fence_fd(pipe, fence, fd, type); } static void tc_call_fence_server_sync(struct pipe_context *pipe, union tc_payload *payload) { pipe->fence_server_sync(pipe, payload->fence); pipe->screen->fence_reference(pipe->screen, &payload->fence, NULL); } static void tc_fence_server_sync(struct pipe_context *_pipe, struct pipe_fence_handle *fence) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_screen *screen = tc->pipe->screen; union tc_payload *payload = tc_add_small_call(tc, TC_CALL_fence_server_sync); payload->fence = NULL; screen->fence_reference(screen, &payload->fence, fence); } static void tc_call_fence_server_signal(struct pipe_context *pipe, union tc_payload *payload) { pipe->fence_server_signal(pipe, payload->fence); pipe->screen->fence_reference(pipe->screen, &payload->fence, NULL); } static void tc_fence_server_signal(struct pipe_context *_pipe, struct pipe_fence_handle *fence) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_screen *screen = tc->pipe->screen; union tc_payload *payload = tc_add_small_call(tc, TC_CALL_fence_server_signal); payload->fence = NULL; screen->fence_reference(screen, &payload->fence, fence); } static struct pipe_video_codec * tc_create_video_codec(UNUSED struct pipe_context *_pipe, UNUSED const struct pipe_video_codec *templ) { unreachable("Threaded context should not be enabled for video APIs"); return NULL; } static struct pipe_video_buffer * tc_create_video_buffer(UNUSED struct pipe_context *_pipe, UNUSED const struct pipe_video_buffer *templ) { unreachable("Threaded context should not be enabled for video APIs"); return NULL; } struct tc_context_param { enum pipe_context_param param; unsigned value; }; static void tc_call_set_context_param(struct pipe_context *pipe, union tc_payload *payload) { struct tc_context_param *p = (struct tc_context_param*)payload; if (pipe->set_context_param) pipe->set_context_param(pipe, p->param, p->value); } static void tc_set_context_param(struct pipe_context *_pipe, enum pipe_context_param param, unsigned value) { struct threaded_context *tc = threaded_context(_pipe); if (param == PIPE_CONTEXT_PARAM_PIN_THREADS_TO_L3_CACHE) { /* Pin the gallium thread as requested. */ util_set_thread_affinity(tc->queue.threads[0], util_get_cpu_caps()->L3_affinity_mask[value], NULL, util_get_cpu_caps()->num_cpu_mask_bits); /* Execute this immediately (without enqueuing). * It's required to be thread-safe. */ struct pipe_context *pipe = tc->pipe; if (pipe->set_context_param) pipe->set_context_param(pipe, param, value); return; } if (tc->pipe->set_context_param) { struct tc_context_param *payload = tc_add_struct_typed_call(tc, TC_CALL_set_context_param, tc_context_param); payload->param = param; payload->value = value; } } static void tc_call_set_frontend_noop(struct pipe_context *pipe, union tc_payload *payload) { pipe->set_frontend_noop(pipe, payload->boolean); } static void tc_set_frontend_noop(struct pipe_context *_pipe, bool enable) { struct threaded_context *tc = threaded_context(_pipe); tc_add_small_call(tc, TC_CALL_set_frontend_noop)->boolean = enable; } /******************************************************************** * draw, launch, clear, blit, copy, flush */ struct tc_flush_payload { struct threaded_context *tc; struct pipe_fence_handle *fence; unsigned flags; }; static void tc_flush_queries(struct threaded_context *tc) { struct threaded_query *tq, *tmp; LIST_FOR_EACH_ENTRY_SAFE(tq, tmp, &tc->unflushed_queries, head_unflushed) { list_del(&tq->head_unflushed); /* Memory release semantics: due to a possible race with * tc_get_query_result, we must ensure that the linked list changes * are visible before setting tq->flushed. */ p_atomic_set(&tq->flushed, true); } } static void tc_call_flush(struct pipe_context *pipe, union tc_payload *payload) { struct tc_flush_payload *p = (struct tc_flush_payload *)payload; struct pipe_screen *screen = pipe->screen; pipe->flush(pipe, p->fence ? &p->fence : NULL, p->flags); screen->fence_reference(screen, &p->fence, NULL); if (!(p->flags & PIPE_FLUSH_DEFERRED)) tc_flush_queries(p->tc); } static void tc_flush(struct pipe_context *_pipe, struct pipe_fence_handle **fence, unsigned flags) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; struct pipe_screen *screen = pipe->screen; bool async = flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC); if (async && tc->create_fence) { if (fence) { struct tc_batch *next = &tc->batch_slots[tc->next]; if (!next->token) { next->token = malloc(sizeof(*next->token)); if (!next->token) goto out_of_memory; pipe_reference_init(&next->token->ref, 1); next->token->tc = tc; } screen->fence_reference(screen, fence, tc->create_fence(pipe, next->token)); if (!*fence) goto out_of_memory; } struct tc_flush_payload *p = tc_add_struct_typed_call(tc, TC_CALL_flush, tc_flush_payload); p->tc = tc; p->fence = fence ? *fence : NULL; p->flags = flags | TC_FLUSH_ASYNC; if (!(flags & PIPE_FLUSH_DEFERRED)) tc_batch_flush(tc); return; } out_of_memory: tc_sync_msg(tc, flags & PIPE_FLUSH_END_OF_FRAME ? "end of frame" : flags & PIPE_FLUSH_DEFERRED ? "deferred fence" : "normal"); if (!(flags & PIPE_FLUSH_DEFERRED)) tc_flush_queries(tc); tc_set_driver_thread(tc); pipe->flush(pipe, fence, flags); tc_clear_driver_thread(tc); } static void tc_call_draw_single(struct pipe_context *pipe, union tc_payload *payload) { struct tc_draw_single *info = (struct tc_draw_single*)payload; /* u_threaded_context stores start/count in min/max_index for single draws. */ /* Drivers using u_threaded_context shouldn't use min/max_index. */ struct pipe_draw_start_count *draw = (struct pipe_draw_start_count *)&info->info.min_index; STATIC_ASSERT(offsetof(struct pipe_draw_start_count, start) == 0); STATIC_ASSERT(offsetof(struct pipe_draw_start_count, count) == 4); info->info.index_bounds_valid = false; info->info.has_user_indices = false; info->info.take_index_buffer_ownership = false; pipe->draw_vbo(pipe, &info->info, NULL, draw, 1); if (info->info.index_size) pipe_resource_reference(&info->info.index.resource, NULL); } struct tc_draw_indirect { struct pipe_draw_info info; struct pipe_draw_indirect_info indirect; struct pipe_draw_start_count draw; }; static void tc_call_draw_indirect(struct pipe_context *pipe, union tc_payload *payload) { struct tc_draw_indirect *info = (struct tc_draw_indirect*)payload; info->info.index_bounds_valid = false; info->info.take_index_buffer_ownership = false; pipe->draw_vbo(pipe, &info->info, &info->indirect, &info->draw, 1); if (info->info.index_size) pipe_resource_reference(&info->info.index.resource, NULL); pipe_resource_reference(&info->indirect.buffer, NULL); pipe_resource_reference(&info->indirect.indirect_draw_count, NULL); pipe_so_target_reference(&info->indirect.count_from_stream_output, NULL); } struct tc_draw_multi { struct pipe_draw_info info; unsigned num_draws; struct pipe_draw_start_count slot[]; /* variable-sized array */ }; static void tc_call_draw_multi(struct pipe_context *pipe, union tc_payload *payload) { struct tc_draw_multi *info = (struct tc_draw_multi*)payload; info->info.has_user_indices = false; info->info.index_bounds_valid = false; info->info.take_index_buffer_ownership = false; pipe->draw_vbo(pipe, &info->info, NULL, info->slot, info->num_draws); if (info->info.index_size) pipe_resource_reference(&info->info.index.resource, NULL); } #define DRAW_INFO_SIZE_WITHOUT_INDEXBUF_AND_MIN_MAX_INDEX \ offsetof(struct pipe_draw_info, index) void tc_draw_vbo(struct pipe_context *_pipe, const struct pipe_draw_info *info, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count *draws, unsigned num_draws) { STATIC_ASSERT(DRAW_INFO_SIZE_WITHOUT_INDEXBUF_AND_MIN_MAX_INDEX + sizeof(intptr_t) == offsetof(struct pipe_draw_info, min_index)); struct threaded_context *tc = threaded_context(_pipe); unsigned index_size = info->index_size; bool has_user_indices = info->has_user_indices; if (unlikely(indirect)) { assert(!has_user_indices); assert(num_draws == 1); struct tc_draw_indirect *p = tc_add_struct_typed_call(tc, TC_CALL_draw_indirect, tc_draw_indirect); if (index_size && !info->take_index_buffer_ownership) { tc_set_resource_reference(&p->info.index.resource, info->index.resource); } memcpy(&p->info, info, DRAW_INFO_SIZE_WITHOUT_MIN_MAX_INDEX); tc_set_resource_reference(&p->indirect.buffer, indirect->buffer); tc_set_resource_reference(&p->indirect.indirect_draw_count, indirect->indirect_draw_count); p->indirect.count_from_stream_output = NULL; pipe_so_target_reference(&p->indirect.count_from_stream_output, indirect->count_from_stream_output); memcpy(&p->indirect, indirect, sizeof(*indirect)); p->draw.start = draws[0].start; return; } if (num_draws == 1) { /* Single draw. */ if (index_size && has_user_indices) { unsigned size = draws[0].count * index_size; struct pipe_resource *buffer = NULL; unsigned offset; if (!size) return; /* This must be done before adding draw_vbo, because it could generate * e.g. transfer_unmap and flush partially-uninitialized draw_vbo * to the driver if it was done afterwards. */ u_upload_data(tc->base.stream_uploader, 0, size, 4, (uint8_t*)info->index.user + draws[0].start * index_size, &offset, &buffer); if (unlikely(!buffer)) return; struct tc_draw_single *p = tc_add_struct_typed_call(tc, TC_CALL_draw_single, tc_draw_single); memcpy(&p->info, info, DRAW_INFO_SIZE_WITHOUT_INDEXBUF_AND_MIN_MAX_INDEX); p->info.index.resource = buffer; /* u_threaded_context stores start/count in min/max_index for single draws. */ p->info.min_index = offset >> util_logbase2(index_size); p->info.max_index = draws[0].count; } else { /* Non-indexed call or indexed with a real index buffer. */ struct tc_draw_single *p = tc_add_struct_typed_call(tc, TC_CALL_draw_single, tc_draw_single); if (index_size && !info->take_index_buffer_ownership) { tc_set_resource_reference(&p->info.index.resource, info->index.resource); } memcpy(&p->info, info, DRAW_INFO_SIZE_WITHOUT_MIN_MAX_INDEX); /* u_threaded_context stores start/count in min/max_index for single draws. */ p->info.min_index = draws[0].start; p->info.max_index = draws[0].count; } return; } const int draw_overhead_bytes = offsetof(struct tc_call, payload) + sizeof(struct tc_draw_multi); const int one_draw_payload_bytes = sizeof(((struct tc_draw_multi*)NULL)->slot[0]); const int slots_for_one_draw = DIV_ROUND_UP(draw_overhead_bytes + one_draw_payload_bytes, sizeof(struct tc_call)); /* Multi draw. */ if (index_size && has_user_indices) { struct pipe_resource *buffer = NULL; unsigned buffer_offset, total_count = 0; unsigned index_size_shift = util_logbase2(index_size); uint8_t *ptr = NULL; /* Get the total count. */ for (unsigned i = 0; i < num_draws; i++) total_count += draws[i].count; if (!total_count) return; /* Allocate space for all index buffers. * * This must be done before adding draw_vbo, because it could generate * e.g. transfer_unmap and flush partially-uninitialized draw_vbo * to the driver if it was done afterwards. */ u_upload_alloc(tc->base.stream_uploader, 0, total_count << index_size_shift, 4, &buffer_offset, &buffer, (void**)&ptr); if (unlikely(!buffer)) return; int total_offset = 0; while (num_draws) { struct tc_batch *next = &tc->batch_slots[tc->next]; int nb_slots_left = TC_CALLS_PER_BATCH - next->num_total_call_slots; /* If there isn't enough place for one draw, try to fill the next one */ if (nb_slots_left < slots_for_one_draw) nb_slots_left = TC_CALLS_PER_BATCH; const int size_left_bytes = nb_slots_left * sizeof(struct tc_call); /* How many draws can we fit in the current batch */ const int dr = MIN2(num_draws, (size_left_bytes - draw_overhead_bytes) / one_draw_payload_bytes); struct tc_draw_multi *p = tc_add_slot_based_call(tc, TC_CALL_draw_multi, tc_draw_multi, dr); memcpy(&p->info, info, DRAW_INFO_SIZE_WITHOUT_INDEXBUF_AND_MIN_MAX_INDEX); p->info.index.resource = buffer; p->num_draws = dr; /* Upload index buffers. */ for (unsigned i = 0, offset = 0; i < dr; i++) { unsigned count = draws[i + total_offset].count; if (!count) { p->slot[i].start = 0; p->slot[i].count = 0; continue; } unsigned size = count << index_size_shift; memcpy(ptr + offset, (uint8_t*)info->index.user + (draws[i + total_offset].start << index_size_shift), size); p->slot[i].start = (buffer_offset + offset) >> index_size_shift; p->slot[i].count = count; offset += size; } total_offset += dr; num_draws -= dr; } } else { int total_offset = 0; bool take_index_buffer_ownership = info->take_index_buffer_ownership; while (num_draws) { struct tc_batch *next = &tc->batch_slots[tc->next]; int nb_slots_left = TC_CALLS_PER_BATCH - next->num_total_call_slots; /* If there isn't enough place for one draw, try to fill the next one */ if (nb_slots_left < slots_for_one_draw) nb_slots_left = TC_CALLS_PER_BATCH; const int size_left_bytes = nb_slots_left * sizeof(struct tc_call); /* How many draws can we fit in the current batch */ const int dr = MIN2(num_draws, (size_left_bytes - draw_overhead_bytes) / one_draw_payload_bytes); /* Non-indexed call or indexed with a real index buffer. */ struct tc_draw_multi *p = tc_add_slot_based_call(tc, TC_CALL_draw_multi, tc_draw_multi, dr); if (index_size && !take_index_buffer_ownership) { tc_set_resource_reference(&p->info.index.resource, info->index.resource); } take_index_buffer_ownership = false; memcpy(&p->info, info, DRAW_INFO_SIZE_WITHOUT_MIN_MAX_INDEX); p->num_draws = dr; memcpy(p->slot, &draws[total_offset], sizeof(draws[0]) * dr); num_draws -= dr; total_offset += dr; } } } static void tc_call_launch_grid(struct pipe_context *pipe, union tc_payload *payload) { struct pipe_grid_info *p = (struct pipe_grid_info *)payload; pipe->launch_grid(pipe, p); pipe_resource_reference(&p->indirect, NULL); } static void tc_launch_grid(struct pipe_context *_pipe, const struct pipe_grid_info *info) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_grid_info *p = tc_add_struct_typed_call(tc, TC_CALL_launch_grid, pipe_grid_info); assert(info->input == NULL); tc_set_resource_reference(&p->indirect, info->indirect); memcpy(p, info, sizeof(*info)); } static void tc_call_resource_copy_region(struct pipe_context *pipe, union tc_payload *payload) { struct tc_resource_copy_region *p = (struct tc_resource_copy_region *)payload; pipe->resource_copy_region(pipe, p->dst, p->dst_level, p->dstx, p->dsty, p->dstz, p->src, p->src_level, &p->src_box); pipe_resource_reference(&p->dst, NULL); pipe_resource_reference(&p->src, NULL); } static void tc_resource_copy_region(struct pipe_context *_pipe, struct pipe_resource *dst, unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz, struct pipe_resource *src, unsigned src_level, const struct pipe_box *src_box) { struct threaded_context *tc = threaded_context(_pipe); struct threaded_resource *tdst = threaded_resource(dst); struct tc_resource_copy_region *p = tc_add_struct_typed_call(tc, TC_CALL_resource_copy_region, tc_resource_copy_region); tc_set_resource_reference(&p->dst, dst); p->dst_level = dst_level; p->dstx = dstx; p->dsty = dsty; p->dstz = dstz; tc_set_resource_reference(&p->src, src); p->src_level = src_level; p->src_box = *src_box; if (dst->target == PIPE_BUFFER) util_range_add(&tdst->b, &tdst->valid_buffer_range, dstx, dstx + src_box->width); } static void tc_call_blit(struct pipe_context *pipe, union tc_payload *payload) { struct pipe_blit_info *blit = (struct pipe_blit_info*)payload; pipe->blit(pipe, blit); pipe_resource_reference(&blit->dst.resource, NULL); pipe_resource_reference(&blit->src.resource, NULL); } static void tc_blit(struct pipe_context *_pipe, const struct pipe_blit_info *info) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_blit_info *blit = tc_add_struct_typed_call(tc, TC_CALL_blit, pipe_blit_info); tc_set_resource_reference(&blit->dst.resource, info->dst.resource); tc_set_resource_reference(&blit->src.resource, info->src.resource); memcpy(blit, info, sizeof(*info)); } struct tc_generate_mipmap { struct pipe_resource *res; enum pipe_format format; unsigned base_level; unsigned last_level; unsigned first_layer; unsigned last_layer; }; static void tc_call_generate_mipmap(struct pipe_context *pipe, union tc_payload *payload) { struct tc_generate_mipmap *p = (struct tc_generate_mipmap *)payload; ASSERTED bool result = pipe->generate_mipmap(pipe, p->res, p->format, p->base_level, p->last_level, p->first_layer, p->last_layer); assert(result); pipe_resource_reference(&p->res, NULL); } static bool tc_generate_mipmap(struct pipe_context *_pipe, struct pipe_resource *res, enum pipe_format format, unsigned base_level, unsigned last_level, unsigned first_layer, unsigned last_layer) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; struct pipe_screen *screen = pipe->screen; unsigned bind = PIPE_BIND_SAMPLER_VIEW; if (util_format_is_depth_or_stencil(format)) bind = PIPE_BIND_DEPTH_STENCIL; else bind = PIPE_BIND_RENDER_TARGET; if (!screen->is_format_supported(screen, format, res->target, res->nr_samples, res->nr_storage_samples, bind)) return false; struct tc_generate_mipmap *p = tc_add_struct_typed_call(tc, TC_CALL_generate_mipmap, tc_generate_mipmap); tc_set_resource_reference(&p->res, res); p->format = format; p->base_level = base_level; p->last_level = last_level; p->first_layer = first_layer; p->last_layer = last_layer; return true; } static void tc_call_flush_resource(struct pipe_context *pipe, union tc_payload *payload) { pipe->flush_resource(pipe, payload->resource); pipe_resource_reference(&payload->resource, NULL); } static void tc_flush_resource(struct pipe_context *_pipe, struct pipe_resource *resource) { struct threaded_context *tc = threaded_context(_pipe); union tc_payload *payload = tc_add_small_call(tc, TC_CALL_flush_resource); tc_set_resource_reference(&payload->resource, resource); } static void tc_call_invalidate_resource(struct pipe_context *pipe, union tc_payload *payload) { pipe->invalidate_resource(pipe, payload->resource); pipe_resource_reference(&payload->resource, NULL); } static void tc_invalidate_resource(struct pipe_context *_pipe, struct pipe_resource *resource) { struct threaded_context *tc = threaded_context(_pipe); if (resource->target == PIPE_BUFFER) { tc_invalidate_buffer(tc, threaded_resource(resource)); return; } union tc_payload *payload = tc_add_small_call(tc, TC_CALL_invalidate_resource); tc_set_resource_reference(&payload->resource, resource); } struct tc_clear { unsigned buffers; struct pipe_scissor_state scissor_state; union pipe_color_union color; double depth; unsigned stencil; bool scissor_state_set; }; static void tc_call_clear(struct pipe_context *pipe, union tc_payload *payload) { struct tc_clear *p = (struct tc_clear *)payload; pipe->clear(pipe, p->buffers, p->scissor_state_set ? &p->scissor_state : NULL, &p->color, p->depth, p->stencil); } static void tc_clear(struct pipe_context *_pipe, unsigned buffers, const struct pipe_scissor_state *scissor_state, const union pipe_color_union *color, double depth, unsigned stencil) { struct threaded_context *tc = threaded_context(_pipe); struct tc_clear *p = tc_add_struct_typed_call(tc, TC_CALL_clear, tc_clear); p->buffers = buffers; if (scissor_state) p->scissor_state = *scissor_state; p->scissor_state_set = !!scissor_state; p->color = *color; p->depth = depth; p->stencil = stencil; } static void tc_clear_render_target(struct pipe_context *_pipe, struct pipe_surface *dst, const union pipe_color_union *color, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->clear_render_target(pipe, dst, color, dstx, dsty, width, height, render_condition_enabled); } static void tc_clear_depth_stencil(struct pipe_context *_pipe, struct pipe_surface *dst, unsigned clear_flags, double depth, unsigned stencil, unsigned dstx, unsigned dsty, unsigned width, unsigned height, bool render_condition_enabled) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); pipe->clear_depth_stencil(pipe, dst, clear_flags, depth, stencil, dstx, dsty, width, height, render_condition_enabled); } struct tc_clear_buffer { struct pipe_resource *res; unsigned offset; unsigned size; char clear_value[16]; int clear_value_size; }; static void tc_call_clear_buffer(struct pipe_context *pipe, union tc_payload *payload) { struct tc_clear_buffer *p = (struct tc_clear_buffer *)payload; pipe->clear_buffer(pipe, p->res, p->offset, p->size, p->clear_value, p->clear_value_size); pipe_resource_reference(&p->res, NULL); } static void tc_clear_buffer(struct pipe_context *_pipe, struct pipe_resource *res, unsigned offset, unsigned size, const void *clear_value, int clear_value_size) { struct threaded_context *tc = threaded_context(_pipe); struct threaded_resource *tres = threaded_resource(res); struct tc_clear_buffer *p = tc_add_struct_typed_call(tc, TC_CALL_clear_buffer, tc_clear_buffer); tc_set_resource_reference(&p->res, res); p->offset = offset; p->size = size; memcpy(p->clear_value, clear_value, clear_value_size); p->clear_value_size = clear_value_size; util_range_add(&tres->b, &tres->valid_buffer_range, offset, offset + size); } struct tc_clear_texture { struct pipe_resource *res; unsigned level; struct pipe_box box; char data[16]; }; static void tc_call_clear_texture(struct pipe_context *pipe, union tc_payload *payload) { struct tc_clear_texture *p = (struct tc_clear_texture *)payload; pipe->clear_texture(pipe, p->res, p->level, &p->box, p->data); pipe_resource_reference(&p->res, NULL); } static void tc_clear_texture(struct pipe_context *_pipe, struct pipe_resource *res, unsigned level, const struct pipe_box *box, const void *data) { struct threaded_context *tc = threaded_context(_pipe); struct tc_clear_texture *p = tc_add_struct_typed_call(tc, TC_CALL_clear_texture, tc_clear_texture); tc_set_resource_reference(&p->res, res); p->level = level; p->box = *box; memcpy(p->data, data, util_format_get_blocksize(res->format)); } struct tc_resource_commit { struct pipe_resource *res; unsigned level; struct pipe_box box; bool commit; }; static void tc_call_resource_commit(struct pipe_context *pipe, union tc_payload *payload) { struct tc_resource_commit *p = (struct tc_resource_commit *)payload; pipe->resource_commit(pipe, p->res, p->level, &p->box, p->commit); pipe_resource_reference(&p->res, NULL); } static bool tc_resource_commit(struct pipe_context *_pipe, struct pipe_resource *res, unsigned level, struct pipe_box *box, bool commit) { struct threaded_context *tc = threaded_context(_pipe); struct tc_resource_commit *p = tc_add_struct_typed_call(tc, TC_CALL_resource_commit, tc_resource_commit); tc_set_resource_reference(&p->res, res); p->level = level; p->box = *box; p->commit = commit; return true; /* we don't care about the return value for this call */ } static unsigned tc_init_intel_perf_query_info(struct pipe_context *_pipe) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; return pipe->init_intel_perf_query_info(pipe); } static void tc_get_intel_perf_query_info(struct pipe_context *_pipe, unsigned query_index, const char **name, uint32_t *data_size, uint32_t *n_counters, uint32_t *n_active) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); /* n_active vs begin/end_intel_perf_query */ pipe->get_intel_perf_query_info(pipe, query_index, name, data_size, n_counters, n_active); } static void tc_get_intel_perf_query_counter_info(struct pipe_context *_pipe, unsigned query_index, unsigned counter_index, const char **name, const char **desc, uint32_t *offset, uint32_t *data_size, uint32_t *type_enum, uint32_t *data_type_enum, uint64_t *raw_max) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; pipe->get_intel_perf_query_counter_info(pipe, query_index, counter_index, name, desc, offset, data_size, type_enum, data_type_enum, raw_max); } static struct pipe_query * tc_new_intel_perf_query_obj(struct pipe_context *_pipe, unsigned query_index) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; return pipe->new_intel_perf_query_obj(pipe, query_index); } static void tc_call_begin_intel_perf_query(struct pipe_context *pipe, union tc_payload *payload) { (void)pipe->begin_intel_perf_query(pipe, payload->query); } static bool tc_begin_intel_perf_query(struct pipe_context *_pipe, struct pipe_query *q) { struct threaded_context *tc = threaded_context(_pipe); tc_add_small_call(tc, TC_CALL_begin_intel_perf_query)->query = q; /* assume success, begin failure can be signaled from get_intel_perf_query_data */ return true; } static void tc_call_end_intel_perf_query(struct pipe_context *pipe, union tc_payload *payload) { pipe->end_intel_perf_query(pipe, payload->query); } static void tc_end_intel_perf_query(struct pipe_context *_pipe, struct pipe_query *q) { struct threaded_context *tc = threaded_context(_pipe); tc_add_small_call(tc, TC_CALL_end_intel_perf_query)->query = q; } static void tc_delete_intel_perf_query(struct pipe_context *_pipe, struct pipe_query *q) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); /* flush potentially pending begin/end_intel_perf_queries */ pipe->delete_intel_perf_query(pipe, q); } static void tc_wait_intel_perf_query(struct pipe_context *_pipe, struct pipe_query *q) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); /* flush potentially pending begin/end_intel_perf_queries */ pipe->wait_intel_perf_query(pipe, q); } static bool tc_is_intel_perf_query_ready(struct pipe_context *_pipe, struct pipe_query *q) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); /* flush potentially pending begin/end_intel_perf_queries */ return pipe->is_intel_perf_query_ready(pipe, q); } static bool tc_get_intel_perf_query_data(struct pipe_context *_pipe, struct pipe_query *q, size_t data_size, uint32_t *data, uint32_t *bytes_written) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; tc_sync(tc); /* flush potentially pending begin/end_intel_perf_queries */ return pipe->get_intel_perf_query_data(pipe, q, data_size, data, bytes_written); } /******************************************************************** * callback */ struct tc_callback_payload { void (*fn)(void *data); void *data; }; static void tc_call_callback(UNUSED struct pipe_context *pipe, union tc_payload *payload) { struct tc_callback_payload *p = (struct tc_callback_payload *)payload; p->fn(p->data); } static void tc_callback(struct pipe_context *_pipe, void (*fn)(void *), void *data, bool asap) { struct threaded_context *tc = threaded_context(_pipe); if (asap && tc_is_sync(tc)) { fn(data); return; } struct tc_callback_payload *p = tc_add_struct_typed_call(tc, TC_CALL_callback, tc_callback_payload); p->fn = fn; p->data = data; } /******************************************************************** * create & destroy */ static void tc_destroy(struct pipe_context *_pipe) { struct threaded_context *tc = threaded_context(_pipe); struct pipe_context *pipe = tc->pipe; if (tc->base.const_uploader && tc->base.stream_uploader != tc->base.const_uploader) u_upload_destroy(tc->base.const_uploader); if (tc->base.stream_uploader) u_upload_destroy(tc->base.stream_uploader); tc_sync(tc); if (util_queue_is_initialized(&tc->queue)) { util_queue_destroy(&tc->queue); for (unsigned i = 0; i < TC_MAX_BATCHES; i++) { util_queue_fence_destroy(&tc->batch_slots[i].fence); assert(!tc->batch_slots[i].token); } } slab_destroy_child(&tc->pool_transfers); assert(tc->batch_slots[tc->next].num_total_call_slots == 0); pipe->destroy(pipe); FREE(tc); } static const tc_execute execute_func[TC_NUM_CALLS] = { #define CALL(name) tc_call_##name, #include "u_threaded_context_calls.h" #undef CALL }; /** * Wrap an existing pipe_context into a threaded_context. * * \param pipe pipe_context to wrap * \param parent_transfer_pool parent slab pool set up for creating pipe_- * transfer objects; the driver should have one * in pipe_screen. * \param replace_buffer callback for replacing a pipe_resource's storage * with another pipe_resource's storage. * \param out if successful, the threaded_context will be returned here in * addition to the return value if "out" != NULL */ struct pipe_context * threaded_context_create(struct pipe_context *pipe, struct slab_parent_pool *parent_transfer_pool, tc_replace_buffer_storage_func replace_buffer, tc_create_fence_func create_fence, struct threaded_context **out) { struct threaded_context *tc; STATIC_ASSERT(sizeof(union tc_payload) <= 8); STATIC_ASSERT(sizeof(struct tc_call) <= 16); if (!pipe) return NULL; util_cpu_detect(); if (!debug_get_bool_option("GALLIUM_THREAD", util_get_cpu_caps()->nr_cpus > 1)) return pipe; tc = CALLOC_STRUCT(threaded_context); if (!tc) { pipe->destroy(pipe); return NULL; } /* The driver context isn't wrapped, so set its "priv" to NULL. */ pipe->priv = NULL; tc->pipe = pipe; tc->replace_buffer_storage = replace_buffer; tc->create_fence = create_fence; tc->map_buffer_alignment = pipe->screen->get_param(pipe->screen, PIPE_CAP_MIN_MAP_BUFFER_ALIGNMENT); tc->ubo_alignment = MAX2(pipe->screen->get_param(pipe->screen, PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT), 64); tc->base.priv = pipe; /* priv points to the wrapped driver context */ tc->base.screen = pipe->screen; tc->base.destroy = tc_destroy; tc->base.callback = tc_callback; tc->base.stream_uploader = u_upload_clone(&tc->base, pipe->stream_uploader); if (pipe->stream_uploader == pipe->const_uploader) tc->base.const_uploader = tc->base.stream_uploader; else tc->base.const_uploader = u_upload_clone(&tc->base, pipe->const_uploader); if (!tc->base.stream_uploader || !tc->base.const_uploader) goto fail; tc->use_forced_staging_uploads = true; /* The queue size is the number of batches "waiting". Batches are removed * from the queue before being executed, so keep one tc_batch slot for that * execution. Also, keep one unused slot for an unflushed batch. */ if (!util_queue_init(&tc->queue, "gdrv", TC_MAX_BATCHES - 2, 1, 0)) goto fail; for (unsigned i = 0; i < TC_MAX_BATCHES; i++) { tc->batch_slots[i].sentinel = TC_SENTINEL; tc->batch_slots[i].tc = tc; util_queue_fence_init(&tc->batch_slots[i].fence); } list_inithead(&tc->unflushed_queries); slab_create_child(&tc->pool_transfers, parent_transfer_pool); tc->base.set_context_param = tc_set_context_param; /* always set this */ #define CTX_INIT(_member) \ tc->base._member = tc->pipe->_member ? tc_##_member : NULL CTX_INIT(flush); CTX_INIT(draw_vbo); CTX_INIT(launch_grid); CTX_INIT(resource_copy_region); CTX_INIT(blit); CTX_INIT(clear); CTX_INIT(clear_render_target); CTX_INIT(clear_depth_stencil); CTX_INIT(clear_buffer); CTX_INIT(clear_texture); CTX_INIT(flush_resource); CTX_INIT(generate_mipmap); CTX_INIT(render_condition); CTX_INIT(create_query); CTX_INIT(create_batch_query); CTX_INIT(destroy_query); CTX_INIT(begin_query); CTX_INIT(end_query); CTX_INIT(get_query_result); CTX_INIT(get_query_result_resource); CTX_INIT(set_active_query_state); CTX_INIT(create_blend_state); CTX_INIT(bind_blend_state); CTX_INIT(delete_blend_state); CTX_INIT(create_sampler_state); CTX_INIT(bind_sampler_states); CTX_INIT(delete_sampler_state); CTX_INIT(create_rasterizer_state); CTX_INIT(bind_rasterizer_state); CTX_INIT(delete_rasterizer_state); CTX_INIT(create_depth_stencil_alpha_state); CTX_INIT(bind_depth_stencil_alpha_state); CTX_INIT(delete_depth_stencil_alpha_state); CTX_INIT(create_fs_state); CTX_INIT(bind_fs_state); CTX_INIT(delete_fs_state); CTX_INIT(create_vs_state); CTX_INIT(bind_vs_state); CTX_INIT(delete_vs_state); CTX_INIT(create_gs_state); CTX_INIT(bind_gs_state); CTX_INIT(delete_gs_state); CTX_INIT(create_tcs_state); CTX_INIT(bind_tcs_state); CTX_INIT(delete_tcs_state); CTX_INIT(create_tes_state); CTX_INIT(bind_tes_state); CTX_INIT(delete_tes_state); CTX_INIT(create_compute_state); CTX_INIT(bind_compute_state); CTX_INIT(delete_compute_state); CTX_INIT(create_vertex_elements_state); CTX_INIT(bind_vertex_elements_state); CTX_INIT(delete_vertex_elements_state); CTX_INIT(set_blend_color); CTX_INIT(set_stencil_ref); CTX_INIT(set_sample_mask); CTX_INIT(set_min_samples); CTX_INIT(set_clip_state); CTX_INIT(set_constant_buffer); CTX_INIT(set_inlinable_constants); CTX_INIT(set_framebuffer_state); CTX_INIT(set_polygon_stipple); CTX_INIT(set_sample_locations); CTX_INIT(set_scissor_states); CTX_INIT(set_viewport_states); CTX_INIT(set_window_rectangles); CTX_INIT(set_sampler_views); CTX_INIT(set_tess_state); CTX_INIT(set_shader_buffers); CTX_INIT(set_shader_images); CTX_INIT(set_vertex_buffers); CTX_INIT(create_stream_output_target); CTX_INIT(stream_output_target_destroy); CTX_INIT(set_stream_output_targets); CTX_INIT(create_sampler_view); CTX_INIT(sampler_view_destroy); CTX_INIT(create_surface); CTX_INIT(surface_destroy); CTX_INIT(transfer_map); CTX_INIT(transfer_flush_region); CTX_INIT(transfer_unmap); CTX_INIT(buffer_subdata); CTX_INIT(texture_subdata); CTX_INIT(texture_barrier); CTX_INIT(memory_barrier); CTX_INIT(resource_commit); CTX_INIT(create_video_codec); CTX_INIT(create_video_buffer); CTX_INIT(set_compute_resources); CTX_INIT(set_global_binding); CTX_INIT(get_sample_position); CTX_INIT(invalidate_resource); CTX_INIT(get_device_reset_status); CTX_INIT(set_device_reset_callback); CTX_INIT(dump_debug_state); CTX_INIT(set_log_context); CTX_INIT(emit_string_marker); CTX_INIT(set_debug_callback); CTX_INIT(create_fence_fd); CTX_INIT(fence_server_sync); CTX_INIT(fence_server_signal); CTX_INIT(get_timestamp); CTX_INIT(create_texture_handle); CTX_INIT(delete_texture_handle); CTX_INIT(make_texture_handle_resident); CTX_INIT(create_image_handle); CTX_INIT(delete_image_handle); CTX_INIT(make_image_handle_resident); CTX_INIT(set_frontend_noop); CTX_INIT(init_intel_perf_query_info); CTX_INIT(get_intel_perf_query_info); CTX_INIT(get_intel_perf_query_counter_info); CTX_INIT(new_intel_perf_query_obj); CTX_INIT(begin_intel_perf_query); CTX_INIT(end_intel_perf_query); CTX_INIT(delete_intel_perf_query); CTX_INIT(wait_intel_perf_query); CTX_INIT(is_intel_perf_query_ready); CTX_INIT(get_intel_perf_query_data); #undef CTX_INIT if (out) *out = tc; return &tc->base; fail: tc_destroy(&tc->base); return NULL; }