/* * Copyright (C) 2016 Rob Clark * Copyright © 2018 Google, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "pipe/p_state.h" #include "util/format/u_format.h" #include "util/u_helpers.h" #include "util/u_memory.h" #include "util/u_string.h" #include "util/u_viewport.h" #include "common/freedreno_guardband.h" #include "freedreno_query_hw.h" #include "freedreno_resource.h" #include "freedreno_state.h" #include "freedreno_tracepoints.h" #include "fd6_blend.h" #include "fd6_const.h" #include "fd6_context.h" #include "fd6_emit.h" #include "fd6_format.h" #include "fd6_image.h" #include "fd6_pack.h" #include "fd6_program.h" #include "fd6_rasterizer.h" #include "fd6_texture.h" #include "fd6_zsa.h" /* Border color layout is diff from a4xx/a5xx.. if it turns out to be * the same as a6xx then move this somewhere common ;-) * * Entry layout looks like (total size, 0x60 bytes): */ struct PACKED bcolor_entry { uint32_t fp32[4]; uint16_t ui16[4]; int16_t si16[4]; uint16_t fp16[4]; uint16_t rgb565; uint16_t rgb5a1; uint16_t rgba4; uint8_t __pad0[2]; uint8_t ui8[4]; int8_t si8[4]; uint32_t rgb10a2; uint32_t z24; /* also s8? */ uint16_t srgb[4]; /* appears to duplicate fp16[], but clamped, used for srgb */ uint8_t __pad1[56]; }; #define FD6_BORDER_COLOR_SIZE sizeof(struct bcolor_entry) #define FD6_BORDER_COLOR_UPLOAD_SIZE \ (2 * PIPE_MAX_SAMPLERS * FD6_BORDER_COLOR_SIZE) static void setup_border_colors(struct fd_texture_stateobj *tex, struct bcolor_entry *entries) { unsigned i, j; STATIC_ASSERT(sizeof(struct bcolor_entry) == FD6_BORDER_COLOR_SIZE); for (i = 0; i < tex->num_samplers; i++) { struct bcolor_entry *e = &entries[i]; struct pipe_sampler_state *sampler = tex->samplers[i]; union pipe_color_union *bc; if (!sampler) continue; bc = &sampler->border_color; /* * XXX HACK ALERT XXX * * The border colors need to be swizzled in a particular * format-dependent order. Even though samplers don't know about * formats, we can assume that with a GL state tracker, there's a * 1:1 correspondence between sampler and texture. Take advantage * of that knowledge. */ if ((i >= tex->num_textures) || !tex->textures[i]) continue; struct pipe_sampler_view *view = tex->textures[i]; enum pipe_format format = view->format; const struct util_format_description *desc = util_format_description(format); e->rgb565 = 0; e->rgb5a1 = 0; e->rgba4 = 0; e->rgb10a2 = 0; e->z24 = 0; unsigned char swiz[4]; fd6_tex_swiz(format, swiz, view->swizzle_r, view->swizzle_g, view->swizzle_b, view->swizzle_a); for (j = 0; j < 4; j++) { int c = swiz[j]; int cd = c; /* * HACK: for PIPE_FORMAT_X24S8_UINT we end up w/ the * stencil border color value in bc->ui[0] but according * to desc->swizzle and desc->channel, the .x/.w component * is NONE and the stencil value is in the y component. * Meanwhile the hardware wants this in the .w component * for x24s8 and the .x component for x32_s8x24. */ if ((format == PIPE_FORMAT_X24S8_UINT) || (format == PIPE_FORMAT_X32_S8X24_UINT)) { if (j == 0) { c = 1; cd = (format == PIPE_FORMAT_X32_S8X24_UINT) ? 0 : 3; } else { continue; } } if (c >= 4) continue; if (desc->channel[c].pure_integer) { uint16_t clamped; switch (desc->channel[c].size) { case 2: assert(desc->channel[c].type == UTIL_FORMAT_TYPE_UNSIGNED); clamped = CLAMP(bc->ui[j], 0, 0x3); break; case 8: if (desc->channel[c].type == UTIL_FORMAT_TYPE_SIGNED) clamped = CLAMP(bc->i[j], -128, 127); else clamped = CLAMP(bc->ui[j], 0, 255); break; case 10: assert(desc->channel[c].type == UTIL_FORMAT_TYPE_UNSIGNED); clamped = CLAMP(bc->ui[j], 0, 0x3ff); break; case 16: if (desc->channel[c].type == UTIL_FORMAT_TYPE_SIGNED) clamped = CLAMP(bc->i[j], -32768, 32767); else clamped = CLAMP(bc->ui[j], 0, 65535); break; default: assert(!"Unexpected bit size"); case 32: clamped = 0; break; } e->fp32[cd] = bc->ui[j]; e->fp16[cd] = clamped; } else { float f = bc->f[j]; float f_u = CLAMP(f, 0, 1); float f_s = CLAMP(f, -1, 1); e->fp32[c] = fui(f); e->fp16[c] = _mesa_float_to_half(f); e->srgb[c] = _mesa_float_to_half(f_u); e->ui16[c] = f_u * 0xffff; e->si16[c] = f_s * 0x7fff; e->ui8[c] = f_u * 0xff; e->si8[c] = f_s * 0x7f; if (c == 1) e->rgb565 |= (int)(f_u * 0x3f) << 5; else if (c < 3) e->rgb565 |= (int)(f_u * 0x1f) << (c ? 11 : 0); if (c == 3) e->rgb5a1 |= (f_u > 0.5) ? 0x8000 : 0; else e->rgb5a1 |= (int)(f_u * 0x1f) << (c * 5); if (c == 3) e->rgb10a2 |= (int)(f_u * 0x3) << 30; else e->rgb10a2 |= (int)(f_u * 0x3ff) << (c * 10); e->rgba4 |= (int)(f_u * 0xf) << (c * 4); if (c == 0) e->z24 = f_u * 0xffffff; } } #ifdef DEBUG memset(&e->__pad0, 0, sizeof(e->__pad0)); memset(&e->__pad1, 0, sizeof(e->__pad1)); #endif } } static void emit_border_color(struct fd_context *ctx, struct fd_ringbuffer *ring) assert_dt { struct fd6_context *fd6_ctx = fd6_context(ctx); struct bcolor_entry *entries; unsigned off; void *ptr; STATIC_ASSERT(sizeof(struct bcolor_entry) == FD6_BORDER_COLOR_SIZE); u_upload_alloc(fd6_ctx->border_color_uploader, 0, FD6_BORDER_COLOR_UPLOAD_SIZE, FD6_BORDER_COLOR_UPLOAD_SIZE, &off, &fd6_ctx->border_color_buf, &ptr); entries = ptr; setup_border_colors(&ctx->tex[PIPE_SHADER_VERTEX], &entries[0]); setup_border_colors(&ctx->tex[PIPE_SHADER_FRAGMENT], &entries[ctx->tex[PIPE_SHADER_VERTEX].num_samplers]); OUT_PKT4(ring, REG_A6XX_SP_TP_BORDER_COLOR_BASE_ADDR, 2); OUT_RELOC(ring, fd_resource(fd6_ctx->border_color_buf)->bo, off, 0, 0); u_upload_unmap(fd6_ctx->border_color_uploader); } static void fd6_emit_fb_tex(struct fd_ringbuffer *state, struct fd_context *ctx) assert_dt { struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer; struct pipe_surface *psurf = pfb->cbufs[0]; struct fd_resource *rsc = fd_resource(psurf->texture); uint32_t texconst0 = fd6_tex_const_0( psurf->texture, psurf->u.tex.level, psurf->format, PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z, PIPE_SWIZZLE_W); /* always TILE6_2 mode in GMEM.. which also means no swap: */ texconst0 &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK); texconst0 |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2); OUT_RING(state, texconst0); OUT_RING(state, A6XX_TEX_CONST_1_WIDTH(pfb->width) | A6XX_TEX_CONST_1_HEIGHT(pfb->height)); OUT_RINGP(state, A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D), &ctx->batch->fb_read_patches); OUT_RING(state, A6XX_TEX_CONST_3_ARRAY_PITCH(rsc->layout.layer_size)); OUT_RING(state, A6XX_TEX_CONST_4_BASE_LO(ctx->screen->gmem_base)); OUT_RING(state, A6XX_TEX_CONST_5_BASE_HI(ctx->screen->gmem_base >> 32) | A6XX_TEX_CONST_5_DEPTH(1)); OUT_RING(state, 0); /* texconst6 */ OUT_RING(state, 0); /* texconst7 */ OUT_RING(state, 0); /* texconst8 */ OUT_RING(state, 0); /* texconst9 */ OUT_RING(state, 0); /* texconst10 */ OUT_RING(state, 0); /* texconst11 */ OUT_RING(state, 0); OUT_RING(state, 0); OUT_RING(state, 0); OUT_RING(state, 0); } bool fd6_emit_textures(struct fd_context *ctx, struct fd_ringbuffer *ring, enum pipe_shader_type type, struct fd_texture_stateobj *tex, unsigned bcolor_offset, /* can be NULL if no image/SSBO/fb state to merge in: */ const struct ir3_shader_variant *v) { bool needs_border = false; unsigned opcode, tex_samp_reg, tex_const_reg, tex_count_reg; enum a6xx_state_block sb; switch (type) { case PIPE_SHADER_VERTEX: sb = SB6_VS_TEX; opcode = CP_LOAD_STATE6_GEOM; tex_samp_reg = REG_A6XX_SP_VS_TEX_SAMP; tex_const_reg = REG_A6XX_SP_VS_TEX_CONST; tex_count_reg = REG_A6XX_SP_VS_TEX_COUNT; break; case PIPE_SHADER_TESS_CTRL: sb = SB6_HS_TEX; opcode = CP_LOAD_STATE6_GEOM; tex_samp_reg = REG_A6XX_SP_HS_TEX_SAMP; tex_const_reg = REG_A6XX_SP_HS_TEX_CONST; tex_count_reg = REG_A6XX_SP_HS_TEX_COUNT; break; case PIPE_SHADER_TESS_EVAL: sb = SB6_DS_TEX; opcode = CP_LOAD_STATE6_GEOM; tex_samp_reg = REG_A6XX_SP_DS_TEX_SAMP; tex_const_reg = REG_A6XX_SP_DS_TEX_CONST; tex_count_reg = REG_A6XX_SP_DS_TEX_COUNT; break; case PIPE_SHADER_GEOMETRY: sb = SB6_GS_TEX; opcode = CP_LOAD_STATE6_GEOM; tex_samp_reg = REG_A6XX_SP_GS_TEX_SAMP; tex_const_reg = REG_A6XX_SP_GS_TEX_CONST; tex_count_reg = REG_A6XX_SP_GS_TEX_COUNT; break; case PIPE_SHADER_FRAGMENT: sb = SB6_FS_TEX; opcode = CP_LOAD_STATE6_FRAG; tex_samp_reg = REG_A6XX_SP_FS_TEX_SAMP; tex_const_reg = REG_A6XX_SP_FS_TEX_CONST; tex_count_reg = REG_A6XX_SP_FS_TEX_COUNT; break; case PIPE_SHADER_COMPUTE: sb = SB6_CS_TEX; opcode = CP_LOAD_STATE6_FRAG; tex_samp_reg = REG_A6XX_SP_CS_TEX_SAMP; tex_const_reg = REG_A6XX_SP_CS_TEX_CONST; tex_count_reg = REG_A6XX_SP_CS_TEX_COUNT; break; default: unreachable("bad state block"); } if (tex->num_samplers > 0) { struct fd_ringbuffer *state = fd_ringbuffer_new_object(ctx->pipe, tex->num_samplers * 4 * 4); for (unsigned i = 0; i < tex->num_samplers; i++) { static const struct fd6_sampler_stateobj dummy_sampler = {}; const struct fd6_sampler_stateobj *sampler = tex->samplers[i] ? fd6_sampler_stateobj(tex->samplers[i]) : &dummy_sampler; OUT_RING(state, sampler->texsamp0); OUT_RING(state, sampler->texsamp1); OUT_RING(state, sampler->texsamp2 | A6XX_TEX_SAMP_2_BCOLOR(i + bcolor_offset)); OUT_RING(state, sampler->texsamp3); needs_border |= sampler->needs_border; } /* output sampler state: */ OUT_PKT7(ring, opcode, 3); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(sb) | CP_LOAD_STATE6_0_NUM_UNIT(tex->num_samplers)); OUT_RB(ring, state); /* SRC_ADDR_LO/HI */ OUT_PKT4(ring, tex_samp_reg, 2); OUT_RB(ring, state); /* SRC_ADDR_LO/HI */ fd_ringbuffer_del(state); } unsigned num_merged_textures = tex->num_textures; unsigned num_textures = tex->num_textures; if (v) { num_merged_textures += v->image_mapping.num_tex; if (v->fb_read) num_merged_textures++; /* There could be more bound textures than what the shader uses. * Which isn't known at shader compile time. So in the case we * are merging tex state, only emit the textures that the shader * uses (since the image/SSBO related tex state comes immediately * after) */ num_textures = v->image_mapping.tex_base; } if (num_merged_textures > 0) { struct fd_ringbuffer *state = fd_ringbuffer_new_object(ctx->pipe, num_merged_textures * 16 * 4); for (unsigned i = 0; i < num_textures; i++) { const struct fd6_pipe_sampler_view *view; if (tex->textures[i]) { view = fd6_pipe_sampler_view(tex->textures[i]); if (unlikely(view->rsc_seqno != fd_resource(view->base.texture)->seqno)) { fd6_sampler_view_update(ctx, fd6_pipe_sampler_view(tex->textures[i])); } } else { static const struct fd6_pipe_sampler_view dummy_view = {}; view = &dummy_view; } OUT_RING(state, view->texconst0); OUT_RING(state, view->texconst1); OUT_RING(state, view->texconst2); OUT_RING(state, view->texconst3); if (view->ptr1) { OUT_RELOC(state, view->ptr1->bo, view->offset1, (uint64_t)view->texconst5 << 32, 0); } else { OUT_RING(state, 0x00000000); OUT_RING(state, view->texconst5); } OUT_RING(state, view->texconst6); if (view->ptr2) { OUT_RELOC(state, view->ptr2->bo, view->offset2, 0, 0); } else { OUT_RING(state, 0); OUT_RING(state, 0); } OUT_RING(state, view->texconst9); OUT_RING(state, view->texconst10); OUT_RING(state, view->texconst11); OUT_RING(state, 0); OUT_RING(state, 0); OUT_RING(state, 0); OUT_RING(state, 0); } if (v) { const struct ir3_ibo_mapping *mapping = &v->image_mapping; struct fd_shaderbuf_stateobj *buf = &ctx->shaderbuf[type]; struct fd_shaderimg_stateobj *img = &ctx->shaderimg[type]; for (unsigned i = 0; i < mapping->num_tex; i++) { unsigned idx = mapping->tex_to_image[i]; if (idx & IBO_SSBO) { fd6_emit_ssbo_tex(state, &buf->sb[idx & ~IBO_SSBO]); } else { fd6_emit_image_tex(state, &img->si[idx]); } } if (v->fb_read) { fd6_emit_fb_tex(state, ctx); } } /* emit texture state: */ OUT_PKT7(ring, opcode, 3); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(sb) | CP_LOAD_STATE6_0_NUM_UNIT(num_merged_textures)); OUT_RB(ring, state); /* SRC_ADDR_LO/HI */ OUT_PKT4(ring, tex_const_reg, 2); OUT_RB(ring, state); /* SRC_ADDR_LO/HI */ fd_ringbuffer_del(state); } OUT_PKT4(ring, tex_count_reg, 1); OUT_RING(ring, num_merged_textures); return needs_border; } /* Emits combined texture state, which also includes any Image/SSBO * related texture state merged in (because we must have all texture * state for a given stage in a single buffer). In the fast-path, if * we don't need to merge in any image/ssbo related texture state, we * just use cached texture stateobj. Otherwise we generate a single- * use stateobj. * * TODO Is there some sane way we can still use cached texture stateobj * with image/ssbo in use? * * returns whether border_color is required: */ static bool fd6_emit_combined_textures(struct fd_ringbuffer *ring, struct fd6_emit *emit, enum pipe_shader_type type, const struct ir3_shader_variant *v) assert_dt { struct fd_context *ctx = emit->ctx; bool needs_border = false; static const struct { enum fd6_state_id state_id; unsigned enable_mask; } s[PIPE_SHADER_TYPES] = { [PIPE_SHADER_VERTEX] = {FD6_GROUP_VS_TEX, ENABLE_ALL}, [PIPE_SHADER_TESS_CTRL] = {FD6_GROUP_HS_TEX, ENABLE_ALL}, [PIPE_SHADER_TESS_EVAL] = {FD6_GROUP_DS_TEX, ENABLE_ALL}, [PIPE_SHADER_GEOMETRY] = {FD6_GROUP_GS_TEX, ENABLE_ALL}, [PIPE_SHADER_FRAGMENT] = {FD6_GROUP_FS_TEX, ENABLE_DRAW}, }; debug_assert(s[type].state_id); if (!v->image_mapping.num_tex && !v->fb_read) { /* in the fast-path, when we don't have to mix in any image/SSBO * related texture state, we can just lookup the stateobj and * re-emit that: * * Also, framebuffer-read is a slow-path because an extra * texture needs to be inserted. * * TODO we can probably simmplify things if we also treated * border_color as a slow-path.. this way the tex state key * wouldn't depend on bcolor_offset.. but fb_read might rather * be *somehow* a fast-path if we eventually used it for PLS. * I suppose there would be no harm in just *always* inserting * an fb_read texture? */ if ((ctx->dirty_shader[type] & FD_DIRTY_SHADER_TEX) && ctx->tex[type].num_textures > 0) { struct fd6_texture_state *tex = fd6_texture_state(ctx, type, &ctx->tex[type]); needs_border |= tex->needs_border; fd6_emit_add_group(emit, tex->stateobj, s[type].state_id, s[type].enable_mask); fd6_texture_state_reference(&tex, NULL); } } else { /* In the slow-path, create a one-shot texture state object * if either TEX|PROG|SSBO|IMAGE state is dirty: */ if ((ctx->dirty_shader[type] & (FD_DIRTY_SHADER_TEX | FD_DIRTY_SHADER_PROG | FD_DIRTY_SHADER_IMAGE | FD_DIRTY_SHADER_SSBO)) || v->fb_read) { struct fd_texture_stateobj *tex = &ctx->tex[type]; struct fd_ringbuffer *stateobj = fd_submit_new_ringbuffer( ctx->batch->submit, 0x1000, FD_RINGBUFFER_STREAMING); unsigned bcolor_offset = fd6_border_color_offset(ctx, type, tex); needs_border |= fd6_emit_textures(ctx, stateobj, type, tex, bcolor_offset, v); fd6_emit_take_group(emit, stateobj, s[type].state_id, s[type].enable_mask); } } return needs_border; } static struct fd_ringbuffer * build_vbo_state(struct fd6_emit *emit) assert_dt { const struct fd_vertex_state *vtx = emit->vtx; struct fd_ringbuffer *ring = fd_submit_new_ringbuffer( emit->ctx->batch->submit, 4 * (1 + vtx->vertexbuf.count * 4), FD_RINGBUFFER_STREAMING); OUT_PKT4(ring, REG_A6XX_VFD_FETCH(0), 4 * vtx->vertexbuf.count); for (int32_t j = 0; j < vtx->vertexbuf.count; j++) { const struct pipe_vertex_buffer *vb = &vtx->vertexbuf.vb[j]; struct fd_resource *rsc = fd_resource(vb->buffer.resource); if (rsc == NULL) { OUT_RING(ring, 0); OUT_RING(ring, 0); OUT_RING(ring, 0); OUT_RING(ring, 0); } else { uint32_t off = vb->buffer_offset; uint32_t size = fd_bo_size(rsc->bo) - off; OUT_RELOC(ring, rsc->bo, off, 0, 0); OUT_RING(ring, size); /* VFD_FETCH[j].SIZE */ OUT_RING(ring, vb->stride); /* VFD_FETCH[j].STRIDE */ } } return ring; } static enum a6xx_ztest_mode compute_ztest_mode(struct fd6_emit *emit, bool lrz_valid) assert_dt { struct fd_context *ctx = emit->ctx; struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer; struct fd6_zsa_stateobj *zsa = fd6_zsa_stateobj(ctx->zsa); const struct ir3_shader_variant *fs = emit->fs; if (fs->shader->nir->info.fs.early_fragment_tests) return A6XX_EARLY_Z; if (fs->no_earlyz || fs->writes_pos || !zsa->base.depth_enabled || fs->writes_stencilref) { return A6XX_LATE_Z; } else if ((fs->has_kill || zsa->alpha_test) && (zsa->writes_zs || !pfb->zsbuf)) { /* Slightly odd, but seems like the hw wants us to select * LATE_Z mode if there is no depth buffer + discard. Either * that, or when occlusion query is enabled. See: * * dEQP-GLES31.functional.fbo.no_attachments.* */ return lrz_valid ? A6XX_EARLY_LRZ_LATE_Z : A6XX_LATE_Z; } else { return A6XX_EARLY_Z; } } /** * Calculate normalized LRZ state based on zsa/prog/blend state, updating * the zsbuf's lrz state as necessary to detect the cases where we need * to invalidate lrz. */ static struct fd6_lrz_state compute_lrz_state(struct fd6_emit *emit, bool binning_pass) assert_dt { struct fd_context *ctx = emit->ctx; struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer; const struct ir3_shader_variant *fs = emit->fs; struct fd6_lrz_state lrz; if (!pfb->zsbuf) { memset(&lrz, 0, sizeof(lrz)); if (!binning_pass) { lrz.z_mode = compute_ztest_mode(emit, false); } return lrz; } struct fd6_blend_stateobj *blend = fd6_blend_stateobj(ctx->blend); struct fd6_zsa_stateobj *zsa = fd6_zsa_stateobj(ctx->zsa); struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture); lrz = zsa->lrz; /* normalize lrz state: */ if (blend->reads_dest || fs->writes_pos || fs->no_earlyz || fs->has_kill) { lrz.write = false; if (binning_pass) lrz.enable = false; } /* if we change depthfunc direction, bail out on using LRZ. The * LRZ buffer encodes a min/max depth value per block, but if * we switch from GT/GE <-> LT/LE, those values cannot be * interpreted properly. */ if (zsa->base.depth_enabled && (rsc->lrz_direction != FD_LRZ_UNKNOWN) && (rsc->lrz_direction != lrz.direction)) { rsc->lrz_valid = false; } if (zsa->invalidate_lrz || !rsc->lrz_valid) { rsc->lrz_valid = false; memset(&lrz, 0, sizeof(lrz)); } if (fs->no_earlyz || fs->writes_pos) { lrz.enable = false; lrz.write = false; lrz.test = false; } if (!binning_pass) { lrz.z_mode = compute_ztest_mode(emit, rsc->lrz_valid); } /* Once we start writing to the real depth buffer, we lock in the * direction for LRZ.. if we have to skip a LRZ write for any * reason, it is still safe to have LRZ until there is a direction * reversal. Prior to the reversal, since we disabled LRZ writes * in the "unsafe" cases, this just means that the LRZ test may * not early-discard some things that end up not passing a later * test (ie. be overly concervative). But once you have a reversal * of direction, it is possible to increase/decrease the z value * to the point where the overly-conservative test is incorrect. */ if (zsa->base.depth_writemask) { rsc->lrz_direction = lrz.direction; } return lrz; } static struct fd_ringbuffer * build_lrz(struct fd6_emit *emit, bool binning_pass) assert_dt { struct fd_context *ctx = emit->ctx; struct fd6_context *fd6_ctx = fd6_context(ctx); struct fd6_lrz_state lrz = compute_lrz_state(emit, binning_pass); /* If the LRZ state has not changed, we can skip the emit: */ if (!ctx->last.dirty && !memcmp(&fd6_ctx->last.lrz[binning_pass], &lrz, sizeof(lrz))) return NULL; fd6_ctx->last.lrz[binning_pass] = lrz; struct fd_ringbuffer *ring = fd_submit_new_ringbuffer( ctx->batch->submit, 8 * 4, FD_RINGBUFFER_STREAMING); OUT_REG(ring, A6XX_GRAS_LRZ_CNTL(.enable = lrz.enable, .lrz_write = lrz.write, .greater = lrz.direction == FD_LRZ_GREATER, .z_test_enable = lrz.test, )); OUT_REG(ring, A6XX_RB_LRZ_CNTL(.enable = lrz.enable, )); OUT_REG(ring, A6XX_RB_DEPTH_PLANE_CNTL(.z_mode = lrz.z_mode, )); OUT_REG(ring, A6XX_GRAS_SU_DEPTH_PLANE_CNTL(.z_mode = lrz.z_mode, )); return ring; } static struct fd_ringbuffer * build_scissor(struct fd6_emit *emit) assert_dt { struct fd_context *ctx = emit->ctx; struct pipe_scissor_state *scissor = fd_context_get_scissor(ctx); struct fd_ringbuffer *ring = fd_submit_new_ringbuffer( emit->ctx->batch->submit, 3 * 4, FD_RINGBUFFER_STREAMING); OUT_REG( ring, A6XX_GRAS_SC_SCREEN_SCISSOR_TL(0, .x = scissor->minx, .y = scissor->miny), A6XX_GRAS_SC_SCREEN_SCISSOR_BR(0, .x = MAX2(scissor->maxx, 1) - 1, .y = MAX2(scissor->maxy, 1) - 1)); ctx->batch->max_scissor.minx = MIN2(ctx->batch->max_scissor.minx, scissor->minx); ctx->batch->max_scissor.miny = MIN2(ctx->batch->max_scissor.miny, scissor->miny); ctx->batch->max_scissor.maxx = MAX2(ctx->batch->max_scissor.maxx, scissor->maxx); ctx->batch->max_scissor.maxy = MAX2(ctx->batch->max_scissor.maxy, scissor->maxy); return ring; } /* Combination of FD_DIRTY_FRAMEBUFFER | FD_DIRTY_RASTERIZER_DISCARD | * FD_DIRTY_PROG | FD_DIRTY_DUAL_BLEND */ static struct fd_ringbuffer * build_prog_fb_rast(struct fd6_emit *emit) assert_dt { struct fd_context *ctx = emit->ctx; struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer; const struct fd6_program_state *prog = fd6_emit_get_prog(emit); const struct ir3_shader_variant *fs = emit->fs; struct fd_ringbuffer *ring = fd_submit_new_ringbuffer( ctx->batch->submit, 9 * 4, FD_RINGBUFFER_STREAMING); unsigned nr = pfb->nr_cbufs; if (ctx->rasterizer->rasterizer_discard) nr = 0; struct fd6_blend_stateobj *blend = fd6_blend_stateobj(ctx->blend); if (blend->use_dual_src_blend) nr++; OUT_PKT4(ring, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2); OUT_RING(ring, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) | COND(fs->writes_smask && pfb->samples > 1, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) | COND(fs->writes_stencilref, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_STENCILREF) | COND(blend->use_dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE)); OUT_RING(ring, A6XX_RB_FS_OUTPUT_CNTL1_MRT(nr)); OUT_PKT4(ring, REG_A6XX_SP_FS_OUTPUT_CNTL1, 1); OUT_RING(ring, A6XX_SP_FS_OUTPUT_CNTL1_MRT(nr)); unsigned mrt_components = 0; for (unsigned i = 0; i < pfb->nr_cbufs; i++) { if (!pfb->cbufs[i]) continue; mrt_components |= 0xf << (i * 4); } /* dual source blending has an extra fs output in the 2nd slot */ if (blend->use_dual_src_blend) mrt_components |= 0xf << 4; mrt_components &= prog->mrt_components; OUT_REG(ring, A6XX_SP_FS_RENDER_COMPONENTS(.dword = mrt_components)); OUT_REG(ring, A6XX_RB_RENDER_COMPONENTS(.dword = mrt_components)); return ring; } static struct fd_ringbuffer * build_blend_color(struct fd6_emit *emit) assert_dt { struct fd_context *ctx = emit->ctx; struct pipe_blend_color *bcolor = &ctx->blend_color; struct fd_ringbuffer *ring = fd_submit_new_ringbuffer( ctx->batch->submit, 5 * 4, FD_RINGBUFFER_STREAMING); OUT_REG(ring, A6XX_RB_BLEND_RED_F32(bcolor->color[0]), A6XX_RB_BLEND_GREEN_F32(bcolor->color[1]), A6XX_RB_BLEND_BLUE_F32(bcolor->color[2]), A6XX_RB_BLEND_ALPHA_F32(bcolor->color[3])); return ring; } static struct fd_ringbuffer * build_ibo(struct fd6_emit *emit) assert_dt { struct fd_context *ctx = emit->ctx; if (emit->hs) { debug_assert(ir3_shader_nibo(emit->hs) == 0); debug_assert(ir3_shader_nibo(emit->ds) == 0); } if (emit->gs) { debug_assert(ir3_shader_nibo(emit->gs) == 0); } struct fd_ringbuffer *ibo_state = fd6_build_ibo_state(ctx, emit->fs, PIPE_SHADER_FRAGMENT); struct fd_ringbuffer *ring = fd_submit_new_ringbuffer( ctx->batch->submit, 0x100, FD_RINGBUFFER_STREAMING); OUT_PKT7(ring, CP_LOAD_STATE6, 3); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) | CP_LOAD_STATE6_0_NUM_UNIT(ir3_shader_nibo(emit->fs))); OUT_RB(ring, ibo_state); OUT_PKT4(ring, REG_A6XX_SP_IBO, 2); OUT_RB(ring, ibo_state); /* TODO if we used CP_SET_DRAW_STATE for compute shaders, we could * de-duplicate this from program->config_stateobj */ OUT_PKT4(ring, REG_A6XX_SP_IBO_COUNT, 1); OUT_RING(ring, ir3_shader_nibo(emit->fs)); fd_ringbuffer_del(ibo_state); return ring; } static void fd6_emit_streamout(struct fd_ringbuffer *ring, struct fd6_emit *emit) assert_dt { struct fd_context *ctx = emit->ctx; const struct fd6_program_state *prog = fd6_emit_get_prog(emit); struct ir3_stream_output_info *info = prog->stream_output; struct fd_streamout_stateobj *so = &ctx->streamout; emit->streamout_mask = 0; if (!info) return; for (unsigned i = 0; i < so->num_targets; i++) { struct fd_stream_output_target *target = fd_stream_output_target(so->targets[i]); if (!target) continue; target->stride = info->stride[i]; OUT_PKT4(ring, REG_A6XX_VPC_SO_BUFFER_BASE(i), 3); /* VPC_SO[i].BUFFER_BASE_LO: */ OUT_RELOC(ring, fd_resource(target->base.buffer)->bo, 0, 0, 0); OUT_RING(ring, target->base.buffer_size + target->base.buffer_offset); struct fd_bo *offset_bo = fd_resource(target->offset_buf)->bo; if (so->reset & (1 << i)) { assert(so->offsets[i] == 0); OUT_PKT7(ring, CP_MEM_WRITE, 3); OUT_RELOC(ring, offset_bo, 0, 0, 0); OUT_RING(ring, target->base.buffer_offset); OUT_PKT4(ring, REG_A6XX_VPC_SO_BUFFER_OFFSET(i), 1); OUT_RING(ring, target->base.buffer_offset); } else { OUT_PKT7(ring, CP_MEM_TO_REG, 3); OUT_RING(ring, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(i)) | CP_MEM_TO_REG_0_SHIFT_BY_2 | CP_MEM_TO_REG_0_UNK31 | CP_MEM_TO_REG_0_CNT(0)); OUT_RELOC(ring, offset_bo, 0, 0, 0); } // After a draw HW would write the new offset to offset_bo OUT_PKT4(ring, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2); OUT_RELOC(ring, offset_bo, 0, 0, 0); so->reset &= ~(1 << i); emit->streamout_mask |= (1 << i); } if (emit->streamout_mask) { fd6_emit_add_group(emit, prog->streamout_stateobj, FD6_GROUP_SO, ENABLE_ALL); } else { /* If we transition from a draw with streamout to one without, turn * off streamout. */ if (ctx->last.streamout_mask != 0) { struct fd_ringbuffer *obj = fd_submit_new_ringbuffer( emit->ctx->batch->submit, 5 * 4, FD_RINGBUFFER_STREAMING); OUT_PKT7(obj, CP_CONTEXT_REG_BUNCH, 4); OUT_RING(obj, REG_A6XX_VPC_SO_CNTL); OUT_RING(obj, 0); OUT_RING(obj, REG_A6XX_VPC_SO_STREAM_CNTL); OUT_RING(obj, 0); fd6_emit_take_group(emit, obj, FD6_GROUP_SO, ENABLE_ALL); } } ctx->last.streamout_mask = emit->streamout_mask; } /** * Stuff that less frequently changes and isn't (yet) moved into stategroups */ static void fd6_emit_non_ring(struct fd_ringbuffer *ring, struct fd6_emit *emit) assert_dt { struct fd_context *ctx = emit->ctx; const enum fd_dirty_3d_state dirty = emit->dirty; if (dirty & FD_DIRTY_STENCIL_REF) { struct pipe_stencil_ref *sr = &ctx->stencil_ref; OUT_PKT4(ring, REG_A6XX_RB_STENCILREF, 1); OUT_RING(ring, A6XX_RB_STENCILREF_REF(sr->ref_value[0]) | A6XX_RB_STENCILREF_BFREF(sr->ref_value[1])); } if (dirty & FD_DIRTY_VIEWPORT) { struct pipe_scissor_state *scissor = &ctx->viewport_scissor; OUT_REG(ring, A6XX_GRAS_CL_VPORT_XOFFSET(0, ctx->viewport.translate[0]), A6XX_GRAS_CL_VPORT_XSCALE(0, ctx->viewport.scale[0]), A6XX_GRAS_CL_VPORT_YOFFSET(0, ctx->viewport.translate[1]), A6XX_GRAS_CL_VPORT_YSCALE(0, ctx->viewport.scale[1]), A6XX_GRAS_CL_VPORT_ZOFFSET(0, ctx->viewport.translate[2]), A6XX_GRAS_CL_VPORT_ZSCALE(0, ctx->viewport.scale[2])); OUT_REG( ring, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL(0, .x = scissor->minx, .y = scissor->miny), A6XX_GRAS_SC_VIEWPORT_SCISSOR_BR(0, .x = MAX2(scissor->maxx, 1) - 1, .y = MAX2(scissor->maxy, 1) - 1)); unsigned guardband_x = fd_calc_guardband(ctx->viewport.translate[0], ctx->viewport.scale[0], false); unsigned guardband_y = fd_calc_guardband(ctx->viewport.translate[1], ctx->viewport.scale[1], false); OUT_REG(ring, A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ(.horz = guardband_x, .vert = guardband_y)); } /* The clamp ranges are only used when the rasterizer wants depth * clamping. */ if ((dirty & (FD_DIRTY_VIEWPORT | FD_DIRTY_RASTERIZER)) && fd_depth_clamp_enabled(ctx)) { float zmin, zmax; util_viewport_zmin_zmax(&ctx->viewport, ctx->rasterizer->clip_halfz, &zmin, &zmax); OUT_REG(ring, A6XX_GRAS_CL_Z_CLAMP_MIN(0, zmin), A6XX_GRAS_CL_Z_CLAMP_MAX(0, zmax)); OUT_REG(ring, A6XX_RB_Z_CLAMP_MIN(zmin), A6XX_RB_Z_CLAMP_MAX(zmax)); } } void fd6_emit_state(struct fd_ringbuffer *ring, struct fd6_emit *emit) { struct fd_context *ctx = emit->ctx; struct pipe_framebuffer_state *pfb = &ctx->batch->framebuffer; const struct fd6_program_state *prog = fd6_emit_get_prog(emit); const struct ir3_shader_variant *vs = emit->vs; const struct ir3_shader_variant *hs = emit->hs; const struct ir3_shader_variant *ds = emit->ds; const struct ir3_shader_variant *gs = emit->gs; const struct ir3_shader_variant *fs = emit->fs; bool needs_border = false; emit_marker6(ring, 5); /* NOTE: we track fb_read differently than _BLEND_ENABLED since we * might decide to do sysmem in some cases when blend is enabled: */ if (fs->fb_read) ctx->batch->gmem_reason |= FD_GMEM_FB_READ; u_foreach_bit (b, emit->dirty_groups) { enum fd6_state_id group = b; struct fd_ringbuffer *state = NULL; uint32_t enable_mask = ENABLE_ALL; switch (group) { case FD6_GROUP_VTXSTATE: state = fd6_vertex_stateobj(ctx->vtx.vtx)->stateobj; fd_ringbuffer_ref(state); break; case FD6_GROUP_VBO: state = build_vbo_state(emit); break; case FD6_GROUP_ZSA: state = fd6_zsa_state( ctx, util_format_is_pure_integer(pipe_surface_format(pfb->cbufs[0])), fd_depth_clamp_enabled(ctx)); fd_ringbuffer_ref(state); break; case FD6_GROUP_LRZ: state = build_lrz(emit, false); if (!state) continue; enable_mask = ENABLE_DRAW; break; case FD6_GROUP_LRZ_BINNING: state = build_lrz(emit, true); if (!state) continue; enable_mask = CP_SET_DRAW_STATE__0_BINNING; break; case FD6_GROUP_SCISSOR: state = build_scissor(emit); break; case FD6_GROUP_PROG: fd6_emit_add_group(emit, prog->config_stateobj, FD6_GROUP_PROG_CONFIG, ENABLE_ALL); fd6_emit_add_group(emit, prog->stateobj, FD6_GROUP_PROG, ENABLE_DRAW); fd6_emit_add_group(emit, prog->binning_stateobj, FD6_GROUP_PROG_BINNING, CP_SET_DRAW_STATE__0_BINNING); /* emit remaining streaming program state, ie. what depends on * other emit state, so cannot be pre-baked. */ fd6_emit_take_group(emit, fd6_program_interp_state(emit), FD6_GROUP_PROG_INTERP, ENABLE_DRAW); continue; case FD6_GROUP_RASTERIZER: state = fd6_rasterizer_state(ctx, emit->primitive_restart); fd_ringbuffer_ref(state); break; case FD6_GROUP_PROG_FB_RAST: state = build_prog_fb_rast(emit); break; case FD6_GROUP_BLEND: state = fd6_blend_variant(ctx->blend, pfb->samples, ctx->sample_mask) ->stateobj; fd_ringbuffer_ref(state); break; case FD6_GROUP_BLEND_COLOR: state = build_blend_color(emit); break; case FD6_GROUP_IBO: state = build_ibo(emit); fd6_emit_ibo_consts(emit, fs, PIPE_SHADER_FRAGMENT, ring); break; case FD6_GROUP_CONST: state = fd6_build_user_consts(emit); break; case FD6_GROUP_VS_DRIVER_PARAMS: state = fd6_build_vs_driver_params(emit); break; case FD6_GROUP_PRIMITIVE_PARAMS: state = fd6_build_tess_consts(emit); break; case FD6_GROUP_VS_TEX: needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_VERTEX, vs); continue; case FD6_GROUP_HS_TEX: if (hs) { needs_border |= fd6_emit_combined_textures( ring, emit, PIPE_SHADER_TESS_CTRL, hs); } continue; case FD6_GROUP_DS_TEX: if (ds) { needs_border |= fd6_emit_combined_textures( ring, emit, PIPE_SHADER_TESS_EVAL, ds); } continue; case FD6_GROUP_GS_TEX: if (gs) { needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_GEOMETRY, gs); } continue; case FD6_GROUP_FS_TEX: needs_border |= fd6_emit_combined_textures(ring, emit, PIPE_SHADER_FRAGMENT, fs); continue; case FD6_GROUP_SO: fd6_emit_streamout(ring, emit); continue; case FD6_GROUP_NON_GROUP: fd6_emit_non_ring(ring, emit); continue; default: unreachable("bad state group"); } fd6_emit_take_group(emit, state, group, enable_mask); } if (needs_border) emit_border_color(ctx, ring); if (emit->num_groups > 0) { OUT_PKT7(ring, CP_SET_DRAW_STATE, 3 * emit->num_groups); for (unsigned i = 0; i < emit->num_groups; i++) { struct fd6_state_group *g = &emit->groups[i]; unsigned n = g->stateobj ? fd_ringbuffer_size(g->stateobj) / 4 : 0; debug_assert((g->enable_mask & ~ENABLE_ALL) == 0); if (n == 0) { OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(0) | CP_SET_DRAW_STATE__0_DISABLE | g->enable_mask | CP_SET_DRAW_STATE__0_GROUP_ID(g->group_id)); OUT_RING(ring, 0x00000000); OUT_RING(ring, 0x00000000); } else { OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(n) | g->enable_mask | CP_SET_DRAW_STATE__0_GROUP_ID(g->group_id)); OUT_RB(ring, g->stateobj); } if (g->stateobj) fd_ringbuffer_del(g->stateobj); } emit->num_groups = 0; } } void fd6_emit_cs_state(struct fd_context *ctx, struct fd_ringbuffer *ring, struct ir3_shader_variant *cp) { enum fd_dirty_shader_state dirty = ctx->dirty_shader[PIPE_SHADER_COMPUTE]; if (dirty & (FD_DIRTY_SHADER_TEX | FD_DIRTY_SHADER_PROG | FD_DIRTY_SHADER_IMAGE | FD_DIRTY_SHADER_SSBO)) { struct fd_texture_stateobj *tex = &ctx->tex[PIPE_SHADER_COMPUTE]; unsigned bcolor_offset = fd6_border_color_offset(ctx, PIPE_SHADER_COMPUTE, tex); bool needs_border = fd6_emit_textures(ctx, ring, PIPE_SHADER_COMPUTE, tex, bcolor_offset, cp); if (needs_border) emit_border_color(ctx, ring); OUT_PKT4(ring, REG_A6XX_SP_VS_TEX_COUNT, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_HS_TEX_COUNT, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_DS_TEX_COUNT, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_GS_TEX_COUNT, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_SP_FS_TEX_COUNT, 1); OUT_RING(ring, 0); } if (dirty & (FD_DIRTY_SHADER_SSBO | FD_DIRTY_SHADER_IMAGE)) { struct fd_ringbuffer *state = fd6_build_ibo_state(ctx, cp, PIPE_SHADER_COMPUTE); OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3); OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) | CP_LOAD_STATE6_0_STATE_TYPE(ST6_IBO) | CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) | CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) | CP_LOAD_STATE6_0_NUM_UNIT(ir3_shader_nibo(cp))); OUT_RB(ring, state); OUT_PKT4(ring, REG_A6XX_SP_CS_IBO, 2); OUT_RB(ring, state); OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_COUNT, 1); OUT_RING(ring, ir3_shader_nibo(cp)); fd_ringbuffer_del(state); } } /* emit setup at begin of new cmdstream buffer (don't rely on previous * state, there could have been a context switch between ioctls): */ void fd6_emit_restore(struct fd_batch *batch, struct fd_ringbuffer *ring) { // struct fd_context *ctx = batch->ctx; if (!batch->nondraw) { trace_start_state_restore(&batch->trace); } fd6_cache_inv(batch, ring); OUT_REG(ring, A6XX_HLSQ_INVALIDATE_CMD(.vs_state = true, .hs_state = true, .ds_state = true, .gs_state = true, .fs_state = true, .cs_state = true, .gfx_ibo = true, .cs_ibo = true, .gfx_shared_const = true, .cs_shared_const = true, .gfx_bindless = 0x1f, .cs_bindless = 0x1f)); OUT_WFI5(ring); WRITE(REG_A6XX_RB_UNKNOWN_8E04, 0x0); WRITE(REG_A6XX_SP_FLOAT_CNTL, A6XX_SP_FLOAT_CNTL_F16_NO_INF); WRITE(REG_A6XX_SP_UNKNOWN_AE00, 0); WRITE(REG_A6XX_SP_PERFCTR_ENABLE, 0x3f); WRITE(REG_A6XX_TPL1_UNKNOWN_B605, 0x44); WRITE(REG_A6XX_TPL1_UNKNOWN_B600, 0x100000); WRITE(REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80); WRITE(REG_A6XX_HLSQ_UNKNOWN_BE01, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9600, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_8600, 0x880); WRITE(REG_A6XX_HLSQ_UNKNOWN_BE04, 0x80000); WRITE(REG_A6XX_SP_UNKNOWN_AE03, 0x1430); WRITE(REG_A6XX_SP_IBO_COUNT, 0); WRITE(REG_A6XX_SP_UNKNOWN_B182, 0); WRITE(REG_A6XX_HLSQ_SHARED_CONSTS, 0); WRITE(REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000); WRITE(REG_A6XX_UCHE_CLIENT_PF, 4); WRITE(REG_A6XX_RB_UNKNOWN_8E01, 0x1); WRITE(REG_A6XX_SP_MODE_CONTROL, A6XX_SP_MODE_CONTROL_CONSTANT_DEMOTION_ENABLE | 4); WRITE(REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX); WRITE(REG_A6XX_RB_UNKNOWN_8811, 0x00000010); WRITE(REG_A6XX_PC_MODE_CNTL, 0x1f); WRITE(REG_A6XX_GRAS_UNKNOWN_8101, 0); WRITE(REG_A6XX_GRAS_SAMPLE_CNTL, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_8110, 0x2); WRITE(REG_A6XX_RB_UNKNOWN_8818, 0); WRITE(REG_A6XX_RB_UNKNOWN_8819, 0); WRITE(REG_A6XX_RB_UNKNOWN_881A, 0); WRITE(REG_A6XX_RB_UNKNOWN_881B, 0); WRITE(REG_A6XX_RB_UNKNOWN_881C, 0); WRITE(REG_A6XX_RB_UNKNOWN_881D, 0); WRITE(REG_A6XX_RB_UNKNOWN_881E, 0); WRITE(REG_A6XX_RB_UNKNOWN_88F0, 0); WRITE(REG_A6XX_VPC_POINT_COORD_INVERT, A6XX_VPC_POINT_COORD_INVERT(0).value); WRITE(REG_A6XX_VPC_UNKNOWN_9300, 0); WRITE(REG_A6XX_VPC_SO_DISABLE, A6XX_VPC_SO_DISABLE(true).value); WRITE(REG_A6XX_PC_RASTER_CNTL, 0); WRITE(REG_A6XX_PC_MULTIVIEW_CNTL, 0); WRITE(REG_A6XX_SP_UNKNOWN_B183, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_8099, 0); WRITE(REG_A6XX_GRAS_VS_LAYER_CNTL, 0); WRITE(REG_A6XX_GRAS_UNKNOWN_80A0, 2); WRITE(REG_A6XX_GRAS_UNKNOWN_80AF, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9210, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9211, 0); WRITE(REG_A6XX_VPC_UNKNOWN_9602, 0); WRITE(REG_A6XX_PC_UNKNOWN_9E72, 0); WRITE(REG_A6XX_SP_TP_SAMPLE_CONFIG, 0); /* NOTE blob seems to (mostly?) use 0xb2 for SP_TP_UNKNOWN_B309 * but this seems to kill texture gather offsets. */ WRITE(REG_A6XX_SP_TP_UNKNOWN_B309, 0xa2); WRITE(REG_A6XX_RB_SAMPLE_CONFIG, 0); WRITE(REG_A6XX_GRAS_SAMPLE_CONFIG, 0); WRITE(REG_A6XX_RB_Z_BOUNDS_MIN, 0); WRITE(REG_A6XX_RB_Z_BOUNDS_MAX, 0); WRITE(REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc); emit_marker6(ring, 7); OUT_PKT4(ring, REG_A6XX_VFD_MODE_CNTL, 1); OUT_RING(ring, 0x00000000); /* VFD_MODE_CNTL */ WRITE(REG_A6XX_VFD_MULTIVIEW_CNTL, 0); OUT_PKT4(ring, REG_A6XX_PC_MODE_CNTL, 1); OUT_RING(ring, 0x0000001f); /* PC_MODE_CNTL */ /* Clear any potential pending state groups to be safe: */ OUT_PKT7(ring, CP_SET_DRAW_STATE, 3); OUT_RING(ring, CP_SET_DRAW_STATE__0_COUNT(0) | CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS | CP_SET_DRAW_STATE__0_GROUP_ID(0)); OUT_RING(ring, CP_SET_DRAW_STATE__1_ADDR_LO(0)); OUT_RING(ring, CP_SET_DRAW_STATE__2_ADDR_HI(0)); OUT_PKT4(ring, REG_A6XX_VPC_SO_STREAM_CNTL, 1); OUT_RING(ring, 0x00000000); /* VPC_SO_STREAM_CNTL */ OUT_PKT4(ring, REG_A6XX_GRAS_LRZ_CNTL, 1); OUT_RING(ring, 0x00000000); OUT_PKT4(ring, REG_A6XX_RB_LRZ_CNTL, 1); OUT_RING(ring, 0x00000000); if (!batch->nondraw) { trace_end_state_restore(&batch->trace); } } static void fd6_mem_to_mem(struct fd_ringbuffer *ring, struct pipe_resource *dst, unsigned dst_off, struct pipe_resource *src, unsigned src_off, unsigned sizedwords) { struct fd_bo *src_bo = fd_resource(src)->bo; struct fd_bo *dst_bo = fd_resource(dst)->bo; unsigned i; for (i = 0; i < sizedwords; i++) { OUT_PKT7(ring, CP_MEM_TO_MEM, 5); OUT_RING(ring, 0x00000000); OUT_RELOC(ring, dst_bo, dst_off, 0, 0); OUT_RELOC(ring, src_bo, src_off, 0, 0); dst_off += 4; src_off += 4; } } /* this is *almost* the same as fd6_cache_flush().. which I guess * could be re-worked to be something a bit more generic w/ param * indicating what needs to be flushed.. although that would mean * figuring out which events trigger what state to flush.. */ static void fd6_framebuffer_barrier(struct fd_context *ctx) assert_dt { struct fd6_context *fd6_ctx = fd6_context(ctx); struct fd_batch *batch = fd_context_batch_locked(ctx); struct fd_ringbuffer *ring = batch->draw; unsigned seqno; fd_batch_needs_flush(batch); seqno = fd6_event_write(batch, ring, RB_DONE_TS, true); OUT_PKT7(ring, CP_WAIT_REG_MEM, 6); OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) | CP_WAIT_REG_MEM_0_POLL_MEMORY); OUT_RELOC(ring, control_ptr(fd6_ctx, seqno)); OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(seqno)); OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(~0)); OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(16)); fd6_event_write(batch, ring, PC_CCU_FLUSH_COLOR_TS, true); fd6_event_write(batch, ring, PC_CCU_FLUSH_DEPTH_TS, true); seqno = fd6_event_write(batch, ring, CACHE_FLUSH_TS, true); fd6_event_write(batch, ring, 0x31, false); OUT_PKT7(ring, CP_WAIT_MEM_GTE, 4); OUT_RING(ring, CP_WAIT_MEM_GTE_0_RESERVED(0)); OUT_RELOC(ring, control_ptr(fd6_ctx, seqno)); OUT_RING(ring, CP_WAIT_MEM_GTE_3_REF(seqno)); fd_batch_unlock_submit(batch); fd_batch_reference(&batch, NULL); } void fd6_emit_init_screen(struct pipe_screen *pscreen) { struct fd_screen *screen = fd_screen(pscreen); screen->emit_ib = fd6_emit_ib; screen->mem_to_mem = fd6_mem_to_mem; } void fd6_emit_init(struct pipe_context *pctx) disable_thread_safety_analysis { struct fd_context *ctx = fd_context(pctx); ctx->framebuffer_barrier = fd6_framebuffer_barrier; }