/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * @file iris_resource.c * * Resources are images, buffers, and other objects used by the GPU. * * XXX: explain resources */ #include #include #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_context.h" #include "pipe/p_screen.h" #include "util/os_memory.h" #include "util/u_cpu_detect.h" #include "util/u_inlines.h" #include "util/format/u_format.h" #include "util/u_threaded_context.h" #include "util/u_transfer.h" #include "util/u_transfer_helper.h" #include "util/u_upload_mgr.h" #include "util/ralloc.h" #include "iris_batch.h" #include "iris_context.h" #include "iris_resource.h" #include "iris_screen.h" #include "intel/common/intel_aux_map.h" #include "intel/dev/gen_debug.h" #include "isl/isl.h" #include "drm-uapi/drm_fourcc.h" #include "drm-uapi/i915_drm.h" enum modifier_priority { MODIFIER_PRIORITY_INVALID = 0, MODIFIER_PRIORITY_LINEAR, MODIFIER_PRIORITY_X, MODIFIER_PRIORITY_Y, MODIFIER_PRIORITY_Y_CCS, MODIFIER_PRIORITY_Y_GFX12_RC_CCS, MODIFIER_PRIORITY_Y_GFX12_RC_CCS_CC, }; static const uint64_t priority_to_modifier[] = { [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID, [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR, [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED, [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED, [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS, [MODIFIER_PRIORITY_Y_GFX12_RC_CCS] = I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS, [MODIFIER_PRIORITY_Y_GFX12_RC_CCS_CC] = I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC, }; static bool modifier_is_supported(const struct gen_device_info *devinfo, enum pipe_format pfmt, unsigned bind, uint64_t modifier) { /* Check for basic device support. */ switch (modifier) { case DRM_FORMAT_MOD_LINEAR: case I915_FORMAT_MOD_X_TILED: break; case I915_FORMAT_MOD_Y_TILED: if (devinfo->ver <= 8 && (bind & PIPE_BIND_SCANOUT)) return false; break; case I915_FORMAT_MOD_Y_TILED_CCS: if (devinfo->ver <= 8 || devinfo->ver >= 12) return false; break; case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: if (devinfo->ver != 12) return false; break; case DRM_FORMAT_MOD_INVALID: default: return false; } /* Check remaining requirements. */ switch (modifier) { case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: if (pfmt != PIPE_FORMAT_BGRA8888_UNORM && pfmt != PIPE_FORMAT_RGBA8888_UNORM && pfmt != PIPE_FORMAT_BGRX8888_UNORM && pfmt != PIPE_FORMAT_RGBX8888_UNORM && pfmt != PIPE_FORMAT_NV12 && pfmt != PIPE_FORMAT_P010 && pfmt != PIPE_FORMAT_P012 && pfmt != PIPE_FORMAT_P016 && pfmt != PIPE_FORMAT_YUYV && pfmt != PIPE_FORMAT_UYVY) { return false; } break; case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_CCS: { if (INTEL_DEBUG & DEBUG_NO_RBC) return false; enum isl_format rt_format = iris_format_for_usage(devinfo, pfmt, ISL_SURF_USAGE_RENDER_TARGET_BIT).fmt; if (rt_format == ISL_FORMAT_UNSUPPORTED || !isl_format_supports_ccs_e(devinfo, rt_format)) return false; break; } default: break; } return true; } static uint64_t select_best_modifier(struct gen_device_info *devinfo, const struct pipe_resource *templ, const uint64_t *modifiers, int count) { enum modifier_priority prio = MODIFIER_PRIORITY_INVALID; for (int i = 0; i < count; i++) { if (!modifier_is_supported(devinfo, templ->format, templ->bind, modifiers[i])) continue; switch (modifiers[i]) { case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: prio = MAX2(prio, MODIFIER_PRIORITY_Y_GFX12_RC_CCS_CC); break; case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: prio = MAX2(prio, MODIFIER_PRIORITY_Y_GFX12_RC_CCS); break; case I915_FORMAT_MOD_Y_TILED_CCS: prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS); break; case I915_FORMAT_MOD_Y_TILED: prio = MAX2(prio, MODIFIER_PRIORITY_Y); break; case I915_FORMAT_MOD_X_TILED: prio = MAX2(prio, MODIFIER_PRIORITY_X); break; case DRM_FORMAT_MOD_LINEAR: prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR); break; case DRM_FORMAT_MOD_INVALID: default: break; } } return priority_to_modifier[prio]; } enum isl_surf_dim target_to_isl_surf_dim(enum pipe_texture_target target) { switch (target) { case PIPE_BUFFER: case PIPE_TEXTURE_1D: case PIPE_TEXTURE_1D_ARRAY: return ISL_SURF_DIM_1D; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_CUBE: case PIPE_TEXTURE_RECT: case PIPE_TEXTURE_2D_ARRAY: case PIPE_TEXTURE_CUBE_ARRAY: return ISL_SURF_DIM_2D; case PIPE_TEXTURE_3D: return ISL_SURF_DIM_3D; case PIPE_MAX_TEXTURE_TYPES: break; } unreachable("invalid texture type"); } static inline bool is_modifier_external_only(enum pipe_format pfmt, uint64_t modifier) { /* Only allow external usage for the following cases: YUV formats * and the media-compression modifier. The render engine lacks * support for rendering to a media-compressed surface if the * compression ratio is large enough. By requiring external usage * of media-compressed surfaces, resolves are avoided. */ return util_format_is_yuv(pfmt) || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; } static void iris_query_dmabuf_modifiers(struct pipe_screen *pscreen, enum pipe_format pfmt, int max, uint64_t *modifiers, unsigned int *external_only, int *count) { struct iris_screen *screen = (void *) pscreen; const struct gen_device_info *devinfo = &screen->devinfo; uint64_t all_modifiers[] = { DRM_FORMAT_MOD_LINEAR, I915_FORMAT_MOD_X_TILED, I915_FORMAT_MOD_Y_TILED, I915_FORMAT_MOD_Y_TILED_CCS, I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS, I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS, I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC, }; int supported_mods = 0; for (int i = 0; i < ARRAY_SIZE(all_modifiers); i++) { if (!modifier_is_supported(devinfo, pfmt, 0, all_modifiers[i])) continue; if (supported_mods < max) { if (modifiers) modifiers[supported_mods] = all_modifiers[i]; if (external_only) { external_only[supported_mods] = is_modifier_external_only(pfmt, all_modifiers[i]); } } supported_mods++; } *count = supported_mods; } static bool iris_is_dmabuf_modifier_supported(struct pipe_screen *pscreen, uint64_t modifier, enum pipe_format pfmt, bool *external_only) { struct iris_screen *screen = (void *) pscreen; const struct gen_device_info *devinfo = &screen->devinfo; if (modifier_is_supported(devinfo, pfmt, 0, modifier)) { if (external_only) *external_only = is_modifier_external_only(pfmt, modifier); return true; } return false; } static unsigned int iris_get_dmabuf_modifier_planes(struct pipe_screen *pscreen, uint64_t modifier, enum pipe_format format) { unsigned int planes = util_format_get_num_planes(format); switch (modifier) { case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: return 3; case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_CCS: return 2 * planes; default: return planes; } } enum isl_format iris_image_view_get_format(struct iris_context *ice, const struct pipe_image_view *img) { struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen; const struct gen_device_info *devinfo = &screen->devinfo; isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT; enum isl_format isl_fmt = iris_format_for_usage(devinfo, img->format, usage).fmt; if (img->shader_access & PIPE_IMAGE_ACCESS_READ) { /* On Gfx8, try to use typed surfaces reads (which support a * limited number of formats), and if not possible, fall back * to untyped reads. */ if (devinfo->ver == 8 && !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt)) return ISL_FORMAT_RAW; else return isl_lower_storage_image_format(devinfo, isl_fmt); } return isl_fmt; } struct pipe_resource * iris_resource_get_separate_stencil(struct pipe_resource *p_res) { /* For packed depth-stencil, we treat depth as the primary resource * and store S8 as the "second plane" resource. */ if (p_res->next && p_res->next->format == PIPE_FORMAT_S8_UINT) return p_res->next; return NULL; } static void iris_resource_set_separate_stencil(struct pipe_resource *p_res, struct pipe_resource *stencil) { assert(util_format_has_depth(util_format_description(p_res->format))); pipe_resource_reference(&p_res->next, stencil); } void iris_get_depth_stencil_resources(struct pipe_resource *res, struct iris_resource **out_z, struct iris_resource **out_s) { if (!res) { *out_z = NULL; *out_s = NULL; return; } if (res->format != PIPE_FORMAT_S8_UINT) { *out_z = (void *) res; *out_s = (void *) iris_resource_get_separate_stencil(res); } else { *out_z = NULL; *out_s = (void *) res; } } enum isl_dim_layout iris_get_isl_dim_layout(const struct gen_device_info *devinfo, enum isl_tiling tiling, enum pipe_texture_target target) { switch (target) { case PIPE_TEXTURE_1D: case PIPE_TEXTURE_1D_ARRAY: return (devinfo->ver >= 9 && tiling == ISL_TILING_LINEAR ? ISL_DIM_LAYOUT_GFX9_1D : ISL_DIM_LAYOUT_GFX4_2D); case PIPE_TEXTURE_2D: case PIPE_TEXTURE_2D_ARRAY: case PIPE_TEXTURE_RECT: case PIPE_TEXTURE_CUBE: case PIPE_TEXTURE_CUBE_ARRAY: return ISL_DIM_LAYOUT_GFX4_2D; case PIPE_TEXTURE_3D: return (devinfo->ver >= 9 ? ISL_DIM_LAYOUT_GFX4_2D : ISL_DIM_LAYOUT_GFX4_3D); case PIPE_MAX_TEXTURE_TYPES: case PIPE_BUFFER: break; } unreachable("invalid texture type"); } void iris_resource_disable_aux(struct iris_resource *res) { iris_bo_unreference(res->aux.bo); iris_bo_unreference(res->aux.clear_color_bo); free(res->aux.state); res->aux.usage = ISL_AUX_USAGE_NONE; res->aux.possible_usages = 1 << ISL_AUX_USAGE_NONE; res->aux.sampler_usages = 1 << ISL_AUX_USAGE_NONE; res->aux.surf.size_B = 0; res->aux.bo = NULL; res->aux.extra_aux.surf.size_B = 0; res->aux.clear_color_bo = NULL; res->aux.state = NULL; } static void iris_resource_destroy(struct pipe_screen *screen, struct pipe_resource *p_res) { struct iris_resource *res = (struct iris_resource *) p_res; if (p_res->target == PIPE_BUFFER) util_range_destroy(&res->valid_buffer_range); iris_resource_disable_aux(res); threaded_resource_deinit(p_res); iris_bo_unreference(res->bo); iris_pscreen_unref(res->orig_screen); free(res); } static struct iris_resource * iris_alloc_resource(struct pipe_screen *pscreen, const struct pipe_resource *templ) { struct iris_resource *res = calloc(1, sizeof(struct iris_resource)); if (!res) return NULL; res->base.b = *templ; res->base.b.screen = pscreen; res->orig_screen = iris_pscreen_ref(pscreen); pipe_reference_init(&res->base.b.reference, 1); threaded_resource_init(&res->base.b); res->aux.possible_usages = 1 << ISL_AUX_USAGE_NONE; res->aux.sampler_usages = 1 << ISL_AUX_USAGE_NONE; if (templ->target == PIPE_BUFFER) util_range_init(&res->valid_buffer_range); return res; } unsigned iris_get_num_logical_layers(const struct iris_resource *res, unsigned level) { if (res->surf.dim == ISL_SURF_DIM_3D) return minify(res->surf.logical_level0_px.depth, level); else return res->surf.logical_level0_px.array_len; } static enum isl_aux_state ** create_aux_state_map(struct iris_resource *res, enum isl_aux_state initial) { assert(res->aux.state == NULL); uint32_t total_slices = 0; for (uint32_t level = 0; level < res->surf.levels; level++) total_slices += iris_get_num_logical_layers(res, level); const size_t per_level_array_size = res->surf.levels * sizeof(enum isl_aux_state *); /* We're going to allocate a single chunk of data for both the per-level * reference array and the arrays of aux_state. This makes cleanup * significantly easier. */ const size_t total_size = per_level_array_size + total_slices * sizeof(enum isl_aux_state); void *data = malloc(total_size); if (!data) return NULL; enum isl_aux_state **per_level_arr = data; enum isl_aux_state *s = data + per_level_array_size; for (uint32_t level = 0; level < res->surf.levels; level++) { per_level_arr[level] = s; const unsigned level_layers = iris_get_num_logical_layers(res, level); for (uint32_t a = 0; a < level_layers; a++) *(s++) = initial; } assert((void *)s == data + total_size); return per_level_arr; } static unsigned iris_get_aux_clear_color_state_size(struct iris_screen *screen) { const struct gen_device_info *devinfo = &screen->devinfo; return devinfo->ver >= 10 ? screen->isl_dev.ss.clear_color_state_size : 0; } static void map_aux_addresses(struct iris_screen *screen, struct iris_resource *res, enum isl_format format, unsigned plane) { const struct gen_device_info *devinfo = &screen->devinfo; if (devinfo->ver >= 12 && isl_aux_usage_has_ccs(res->aux.usage)) { void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr); assert(aux_map_ctx); const unsigned aux_offset = res->aux.extra_aux.surf.size_B > 0 ? res->aux.extra_aux.offset : res->aux.offset; const uint64_t format_bits = intel_aux_map_format_bits(res->surf.tiling, format, plane); intel_aux_map_add_mapping(aux_map_ctx, res->bo->gtt_offset + res->offset, res->aux.bo->gtt_offset + aux_offset, res->surf.size_B, format_bits); res->bo->aux_map_address = res->aux.bo->gtt_offset; } } static bool want_ccs_e_for_format(const struct gen_device_info *devinfo, enum isl_format format) { if (!isl_format_supports_ccs_e(devinfo, format)) return false; const struct isl_format_layout *fmtl = isl_format_get_layout(format); /* CCS_E seems to significantly hurt performance with 32-bit floating * point formats. For example, Paraview's "Wavelet Volume" case uses * both R32_FLOAT and R32G32B32A32_FLOAT, and enabling CCS_E for those * formats causes a 62% FPS drop. * * However, many benchmarks seem to use 16-bit float with no issues. */ if (fmtl->channels.r.bits == 32 && fmtl->channels.r.type == ISL_SFLOAT) return false; return true; } static bool iris_resource_configure_main(const struct iris_screen *screen, struct iris_resource *res, const struct pipe_resource *templ, uint64_t modifier, uint32_t row_pitch_B) { res->mod_info = isl_drm_modifier_get_info(modifier); if (modifier != DRM_FORMAT_MOD_INVALID && res->mod_info == NULL) return false; isl_tiling_flags_t tiling_flags = 0; if (res->mod_info != NULL) { tiling_flags = 1 << res->mod_info->tiling; } else if (templ->usage == PIPE_USAGE_STAGING || templ->bind & (PIPE_BIND_LINEAR | PIPE_BIND_CURSOR)) { tiling_flags = ISL_TILING_LINEAR_BIT; } else if (templ->bind & PIPE_BIND_SCANOUT) { tiling_flags = screen->devinfo.has_tiling_uapi ? ISL_TILING_X_BIT : ISL_TILING_LINEAR_BIT; } else { tiling_flags = ISL_TILING_ANY_MASK; } isl_surf_usage_flags_t usage = 0; if (templ->usage == PIPE_USAGE_STAGING) usage |= ISL_SURF_USAGE_STAGING_BIT; if (templ->bind & PIPE_BIND_RENDER_TARGET) usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; if (templ->bind & PIPE_BIND_SAMPLER_VIEW) usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (templ->bind & PIPE_BIND_SHADER_IMAGE) usage |= ISL_SURF_USAGE_STORAGE_BIT; if (templ->bind & PIPE_BIND_SCANOUT) usage |= ISL_SURF_USAGE_DISPLAY_BIT; if (templ->target == PIPE_TEXTURE_CUBE || templ->target == PIPE_TEXTURE_CUBE_ARRAY) { usage |= ISL_SURF_USAGE_CUBE_BIT; } if (templ->usage != PIPE_USAGE_STAGING && util_format_is_depth_or_stencil(templ->format)) { /* Should be handled by u_transfer_helper */ assert(!util_format_is_depth_and_stencil(templ->format)); usage |= templ->format == PIPE_FORMAT_S8_UINT ? ISL_SURF_USAGE_STENCIL_BIT : ISL_SURF_USAGE_DEPTH_BIT; } const enum isl_format format = iris_format_for_usage(&screen->devinfo, templ->format, usage).fmt; const struct isl_surf_init_info init_info = { .dim = target_to_isl_surf_dim(templ->target), .format = format, .width = templ->width0, .height = templ->height0, .depth = templ->depth0, .levels = templ->last_level + 1, .array_len = templ->array_size, .samples = MAX2(templ->nr_samples, 1), .min_alignment_B = 0, .row_pitch_B = row_pitch_B, .usage = usage, .tiling_flags = tiling_flags }; if (!isl_surf_init_s(&screen->isl_dev, &res->surf, &init_info)) return false; res->internal_format = templ->format; return true; } /** * Configure aux for the resource, but don't allocate it. For images which * might be shared with modifiers, we must allocate the image and aux data in * a single bo. * * Returns false on unexpected error (e.g. allocation failed, or invalid * configuration result). */ static bool iris_resource_configure_aux(struct iris_screen *screen, struct iris_resource *res, bool imported) { const struct gen_device_info *devinfo = &screen->devinfo; /* Try to create the auxiliary surfaces allowed by the modifier or by * the user if no modifier is specified. */ assert(!res->mod_info || res->mod_info->aux_usage == ISL_AUX_USAGE_NONE || res->mod_info->aux_usage == ISL_AUX_USAGE_CCS_E || res->mod_info->aux_usage == ISL_AUX_USAGE_GFX12_CCS_E || res->mod_info->aux_usage == ISL_AUX_USAGE_MC); const bool has_mcs = !res->mod_info && isl_surf_get_mcs_surf(&screen->isl_dev, &res->surf, &res->aux.surf); const bool has_hiz = !res->mod_info && !(INTEL_DEBUG & DEBUG_NO_HIZ) && isl_surf_get_hiz_surf(&screen->isl_dev, &res->surf, &res->aux.surf); const bool has_ccs = ((!res->mod_info && !(INTEL_DEBUG & DEBUG_NO_RBC)) || (res->mod_info && res->mod_info->aux_usage != ISL_AUX_USAGE_NONE)) && isl_surf_get_ccs_surf(&screen->isl_dev, &res->surf, &res->aux.surf, &res->aux.extra_aux.surf, 0); /* Having both HIZ and MCS is impossible. */ assert(!has_mcs || !has_hiz); /* Ensure aux surface creation for MCS_CCS and HIZ_CCS is correct. */ if (has_ccs && (has_mcs || has_hiz)) { assert(res->aux.extra_aux.surf.size_B > 0 && res->aux.extra_aux.surf.usage & ISL_SURF_USAGE_CCS_BIT); assert(res->aux.surf.size_B > 0 && res->aux.surf.usage & (ISL_SURF_USAGE_HIZ_BIT | ISL_SURF_USAGE_MCS_BIT)); } if (res->mod_info && has_ccs) { /* Only allow a CCS modifier if the aux was created successfully. */ res->aux.possible_usages |= 1 << res->mod_info->aux_usage; } else if (has_mcs) { res->aux.possible_usages |= 1 << (has_ccs ? ISL_AUX_USAGE_MCS_CCS : ISL_AUX_USAGE_MCS); } else if (has_hiz) { if (!has_ccs) { res->aux.possible_usages |= 1 << ISL_AUX_USAGE_HIZ; } else if (res->surf.samples == 1 && (res->surf.usage & ISL_SURF_USAGE_TEXTURE_BIT)) { /* If this resource is single-sampled and will be used as a texture, * put the HiZ surface in write-through mode so that we can sample * from it. */ res->aux.possible_usages |= 1 << ISL_AUX_USAGE_HIZ_CCS_WT; } else { res->aux.possible_usages |= 1 << ISL_AUX_USAGE_HIZ_CCS; } } else if (has_ccs && isl_surf_usage_is_stencil(res->surf.usage)) { res->aux.possible_usages |= 1 << ISL_AUX_USAGE_STC_CCS; } else if (has_ccs) { if (want_ccs_e_for_format(devinfo, res->surf.format)) { res->aux.possible_usages |= devinfo->ver < 12 ? 1 << ISL_AUX_USAGE_CCS_E : 1 << ISL_AUX_USAGE_GFX12_CCS_E; } else if (isl_format_supports_ccs_d(devinfo, res->surf.format)) { res->aux.possible_usages |= 1 << ISL_AUX_USAGE_CCS_D; } } res->aux.usage = util_last_bit(res->aux.possible_usages) - 1; if (!has_hiz || iris_sample_with_depth_aux(devinfo, res)) res->aux.sampler_usages = res->aux.possible_usages; enum isl_aux_state initial_state; assert(!res->aux.bo); switch (res->aux.usage) { case ISL_AUX_USAGE_NONE: /* Update relevant fields to indicate that aux is disabled. */ iris_resource_disable_aux(res); /* Having no aux buffer is only okay if there's no modifier with aux. */ return !res->mod_info || res->mod_info->aux_usage == ISL_AUX_USAGE_NONE; case ISL_AUX_USAGE_HIZ: case ISL_AUX_USAGE_HIZ_CCS: case ISL_AUX_USAGE_HIZ_CCS_WT: initial_state = ISL_AUX_STATE_AUX_INVALID; break; case ISL_AUX_USAGE_MCS: case ISL_AUX_USAGE_MCS_CCS: /* The Ivybridge PRM, Vol 2 Part 1 p326 says: * * "When MCS buffer is enabled and bound to MSRT, it is required * that it is cleared prior to any rendering." * * Since we only use the MCS buffer for rendering, we just clear it * immediately on allocation. The clear value for MCS buffers is all * 1's, so we simply memset it to 0xff. */ initial_state = ISL_AUX_STATE_CLEAR; break; case ISL_AUX_USAGE_CCS_D: case ISL_AUX_USAGE_CCS_E: case ISL_AUX_USAGE_GFX12_CCS_E: case ISL_AUX_USAGE_STC_CCS: case ISL_AUX_USAGE_MC: /* When CCS_E is used, we need to ensure that the CCS starts off in * a valid state. From the Sky Lake PRM, "MCS Buffer for Render * Target(s)": * * "If Software wants to enable Color Compression without Fast * clear, Software needs to initialize MCS with zeros." * * A CCS value of 0 indicates that the corresponding block is in the * pass-through state which is what we want. * * For CCS_D, do the same thing. On Gfx9+, this avoids having any * undefined bits in the aux buffer. */ if (imported) { assert(res->aux.usage != ISL_AUX_USAGE_STC_CCS); initial_state = isl_drm_modifier_get_default_aux_state(res->mod_info->modifier); } else { initial_state = ISL_AUX_STATE_PASS_THROUGH; } break; default: unreachable("Unsupported aux mode"); } /* Create the aux_state for the auxiliary buffer. */ res->aux.state = create_aux_state_map(res, initial_state); if (!res->aux.state) return false; return true; } /** * Initialize the aux buffer contents. * * Returns false on unexpected error (e.g. mapping a BO failed). */ static bool iris_resource_init_aux_buf(struct iris_resource *res, unsigned clear_color_state_size) { void *map = iris_bo_map(NULL, res->aux.bo, MAP_WRITE | MAP_RAW); if (!map) return false; if (iris_resource_get_aux_state(res, 0, 0) != ISL_AUX_STATE_AUX_INVALID) { /* See iris_resource_configure_aux for the memset_value rationale. */ uint8_t memset_value = isl_aux_usage_has_mcs(res->aux.usage) ? 0xFF : 0; memset((char*)map + res->aux.offset, memset_value, res->aux.surf.size_B); } memset((char*)map + res->aux.extra_aux.offset, 0, res->aux.extra_aux.surf.size_B); /* Zero the indirect clear color to match ::fast_clear_color. */ memset((char *)map + res->aux.clear_color_offset, 0, clear_color_state_size); iris_bo_unmap(res->aux.bo); if (clear_color_state_size > 0) { res->aux.clear_color_bo = res->aux.bo; iris_bo_reference(res->aux.clear_color_bo); } return true; } static void import_aux_info(struct iris_resource *res, const struct iris_resource *aux_res) { assert(aux_res->aux.surf.row_pitch_B && aux_res->aux.offset); assert(res->bo == aux_res->aux.bo); assert(res->aux.surf.row_pitch_B == aux_res->aux.surf.row_pitch_B); assert(res->bo->size >= aux_res->aux.offset + res->aux.surf.size_B); iris_bo_reference(aux_res->aux.bo); res->aux.bo = aux_res->aux.bo; res->aux.offset = aux_res->aux.offset; } void iris_resource_finish_aux_import(struct pipe_screen *pscreen, struct iris_resource *res) { struct iris_screen *screen = (struct iris_screen *)pscreen; assert(iris_resource_unfinished_aux_import(res)); /* Create an array of resources. Combining main and aux planes is easier * with indexing as opposed to scanning the linked list. */ struct iris_resource *r[4] = { NULL, }; unsigned num_planes = 0; unsigned num_main_planes = 0; for (struct pipe_resource *p_res = &res->base.b; p_res; p_res = p_res->next) { r[num_planes] = (struct iris_resource *)p_res; num_main_planes += r[num_planes++]->bo != NULL; } /* Get an ISL format to use with the aux-map. */ enum isl_format format; switch (res->external_format) { case PIPE_FORMAT_NV12: format = ISL_FORMAT_PLANAR_420_8; break; case PIPE_FORMAT_P010: format = ISL_FORMAT_PLANAR_420_10; break; case PIPE_FORMAT_P012: format = ISL_FORMAT_PLANAR_420_12; break; case PIPE_FORMAT_P016: format = ISL_FORMAT_PLANAR_420_16; break; case PIPE_FORMAT_YUYV: format = ISL_FORMAT_YCRCB_NORMAL; break; case PIPE_FORMAT_UYVY: format = ISL_FORMAT_YCRCB_SWAPY; break; default: format = res->surf.format; break; } /* Combine main and aux plane information. */ if (num_main_planes == 1 && num_planes == 2) { import_aux_info(r[0], r[1]); map_aux_addresses(screen, r[0], format, 0); /* Add on a clear color BO. */ if (iris_get_aux_clear_color_state_size(screen) > 0) { res->aux.clear_color_bo = iris_bo_alloc_tiled(screen->bufmgr, "clear color_buffer", iris_get_aux_clear_color_state_size(screen), 1, IRIS_MEMZONE_OTHER, I915_TILING_NONE, 0, BO_ALLOC_ZEROED); } } else if (num_main_planes == 1 && num_planes == 3) { import_aux_info(r[0], r[1]); map_aux_addresses(screen, r[0], format, 0); /* Import the clear color BO. */ iris_bo_reference(r[2]->aux.clear_color_bo); r[0]->aux.clear_color_bo = r[2]->aux.clear_color_bo; r[0]->aux.clear_color_offset = r[2]->aux.clear_color_offset; memcpy(res->aux.clear_color.f32, iris_bo_map(NULL, res->aux.clear_color_bo, MAP_READ|MAP_RAW) + res->aux.clear_color_offset, sizeof(res->aux.clear_color.f32)); } else if (num_main_planes == 2 && num_planes == 4) { import_aux_info(r[0], r[2]); import_aux_info(r[1], r[3]); map_aux_addresses(screen, r[0], format, 0); map_aux_addresses(screen, r[1], format, 1); } else { /* Gallium has lowered a single main plane into two. */ assert(num_main_planes == 2 && num_planes == 3); assert(isl_format_is_yuv(format) && !isl_format_is_planar(format)); import_aux_info(r[0], r[2]); import_aux_info(r[1], r[2]); map_aux_addresses(screen, r[0], format, 0); } } static struct pipe_resource * iris_resource_create_for_buffer(struct pipe_screen *pscreen, const struct pipe_resource *templ) { struct iris_screen *screen = (struct iris_screen *)pscreen; struct iris_resource *res = iris_alloc_resource(pscreen, templ); assert(templ->target == PIPE_BUFFER); assert(templ->height0 <= 1); assert(templ->depth0 <= 1); assert(templ->format == PIPE_FORMAT_NONE || util_format_get_blocksize(templ->format) == 1); res->internal_format = templ->format; res->surf.tiling = ISL_TILING_LINEAR; enum iris_memory_zone memzone = IRIS_MEMZONE_OTHER; const char *name = templ->target == PIPE_BUFFER ? "buffer" : "miptree"; if (templ->flags & IRIS_RESOURCE_FLAG_SHADER_MEMZONE) { memzone = IRIS_MEMZONE_SHADER; name = "shader kernels"; } else if (templ->flags & IRIS_RESOURCE_FLAG_SURFACE_MEMZONE) { memzone = IRIS_MEMZONE_SURFACE; name = "surface state"; } else if (templ->flags & IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE) { memzone = IRIS_MEMZONE_DYNAMIC; name = "dynamic state"; } res->bo = iris_bo_alloc(screen->bufmgr, name, templ->width0, memzone); if (!res->bo) { iris_resource_destroy(pscreen, &res->base.b); return NULL; } if (templ->bind & PIPE_BIND_SHARED) { iris_bo_make_external(res->bo); res->base.is_shared = true; } return &res->base.b; } static struct pipe_resource * iris_resource_create_with_modifiers(struct pipe_screen *pscreen, const struct pipe_resource *templ, const uint64_t *modifiers, int modifiers_count) { struct iris_screen *screen = (struct iris_screen *)pscreen; struct gen_device_info *devinfo = &screen->devinfo; struct iris_resource *res = iris_alloc_resource(pscreen, templ); if (!res) return NULL; uint64_t modifier = select_best_modifier(devinfo, templ, modifiers, modifiers_count); if (modifier == DRM_FORMAT_MOD_INVALID && modifiers_count > 0) { fprintf(stderr, "Unsupported modifier, resource creation failed.\n"); goto fail; } UNUSED const bool isl_surf_created_successfully = iris_resource_configure_main(screen, res, templ, modifier, 0); assert(isl_surf_created_successfully); const char *name = "miptree"; enum iris_memory_zone memzone = IRIS_MEMZONE_OTHER; unsigned int flags = 0; if (templ->usage == PIPE_USAGE_STAGING) flags |= BO_ALLOC_COHERENT; /* These are for u_upload_mgr buffers only */ assert(!(templ->flags & (IRIS_RESOURCE_FLAG_SHADER_MEMZONE | IRIS_RESOURCE_FLAG_SURFACE_MEMZONE | IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE))); if (!iris_resource_configure_aux(screen, res, false)) goto fail; /* Modifiers require the aux data to be in the same buffer as the main * surface, but we combine them even when a modifier is not being used. */ uint64_t bo_size = res->surf.size_B; /* Allocate space for the aux buffer. */ if (res->aux.surf.size_B > 0) { res->aux.offset = ALIGN(bo_size, res->aux.surf.alignment_B); bo_size = res->aux.offset + res->aux.surf.size_B; } /* Allocate space for the extra aux buffer. */ if (res->aux.extra_aux.surf.size_B > 0) { res->aux.extra_aux.offset = ALIGN(bo_size, res->aux.extra_aux.surf.alignment_B); bo_size = res->aux.extra_aux.offset + res->aux.extra_aux.surf.size_B; } /* Allocate space for the indirect clear color. * * Also add some padding to make sure the fast clear color state buffer * starts at a 4K alignment. We believe that 256B might be enough, but due * to lack of testing we will leave this as 4K for now. */ if (res->aux.surf.size_B > 0) { res->aux.clear_color_offset = ALIGN(bo_size, 4096); bo_size = res->aux.clear_color_offset + iris_get_aux_clear_color_state_size(screen); } uint32_t alignment = MAX2(4096, res->surf.alignment_B); res->bo = iris_bo_alloc_tiled(screen->bufmgr, name, bo_size, alignment, memzone, isl_tiling_to_i915_tiling(res->surf.tiling), res->surf.row_pitch_B, flags); if (!res->bo) goto fail; if (res->aux.surf.size_B > 0) { res->aux.bo = res->bo; iris_bo_reference(res->aux.bo); unsigned clear_color_state_size = iris_get_aux_clear_color_state_size(screen); if (!iris_resource_init_aux_buf(res, clear_color_state_size)) goto fail; map_aux_addresses(screen, res, res->surf.format, 0); } if (templ->bind & PIPE_BIND_SHARED) { iris_bo_make_external(res->bo); res->base.is_shared = true; } return &res->base.b; fail: fprintf(stderr, "XXX: resource creation failed\n"); iris_resource_destroy(pscreen, &res->base.b); return NULL; } static struct pipe_resource * iris_resource_create(struct pipe_screen *pscreen, const struct pipe_resource *templ) { if (templ->target == PIPE_BUFFER) return iris_resource_create_for_buffer(pscreen, templ); else return iris_resource_create_with_modifiers(pscreen, templ, NULL, 0); } static uint64_t tiling_to_modifier(uint32_t tiling) { static const uint64_t map[] = { [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR, [I915_TILING_X] = I915_FORMAT_MOD_X_TILED, [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED, }; assert(tiling < ARRAY_SIZE(map)); return map[tiling]; } static struct pipe_resource * iris_resource_from_user_memory(struct pipe_screen *pscreen, const struct pipe_resource *templ, void *user_memory) { struct iris_screen *screen = (struct iris_screen *)pscreen; struct iris_bufmgr *bufmgr = screen->bufmgr; struct iris_resource *res = iris_alloc_resource(pscreen, templ); if (!res) return NULL; assert(templ->target == PIPE_BUFFER); res->internal_format = templ->format; res->base.is_user_ptr = true; res->bo = iris_bo_create_userptr(bufmgr, "user", user_memory, templ->width0, IRIS_MEMZONE_OTHER); if (!res->bo) { iris_resource_destroy(pscreen, &res->base.b); return NULL; } util_range_add(&res->base.b, &res->valid_buffer_range, 0, templ->width0); return &res->base.b; } static bool mod_plane_is_clear_color(uint64_t modifier, uint32_t plane) { ASSERTED const struct isl_drm_modifier_info *mod_info = isl_drm_modifier_get_info(modifier); assert(mod_info); switch (modifier) { case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: assert(mod_info->supports_clear_color); return plane == 2; default: assert(!mod_info->supports_clear_color); return false; } } static struct pipe_resource * iris_resource_from_handle(struct pipe_screen *pscreen, const struct pipe_resource *templ, struct winsys_handle *whandle, unsigned usage) { assert(templ->target != PIPE_BUFFER); struct iris_screen *screen = (struct iris_screen *)pscreen; struct iris_bufmgr *bufmgr = screen->bufmgr; struct iris_resource *res = iris_alloc_resource(pscreen, templ); if (!res) return NULL; switch (whandle->type) { case WINSYS_HANDLE_TYPE_FD: res->bo = iris_bo_import_dmabuf(bufmgr, whandle->handle, whandle->modifier); break; case WINSYS_HANDLE_TYPE_SHARED: res->bo = iris_bo_gem_create_from_name(bufmgr, "winsys image", whandle->handle); break; default: unreachable("invalid winsys handle type"); } if (!res->bo) goto fail; res->offset = whandle->offset; res->external_format = whandle->format; /* Create a surface for each plane specified by the external format. */ if (whandle->plane < util_format_get_num_planes(whandle->format)) { const uint64_t modifier = whandle->modifier != DRM_FORMAT_MOD_INVALID ? whandle->modifier : tiling_to_modifier(res->bo->tiling_mode); UNUSED const bool isl_surf_created_successfully = iris_resource_configure_main(screen, res, templ, modifier, whandle->stride); assert(isl_surf_created_successfully); assert(res->bo->tiling_mode == isl_tiling_to_i915_tiling(res->surf.tiling)); UNUSED const bool ok = iris_resource_configure_aux(screen, res, true); assert(ok); /* The gallium dri layer will create a separate plane resource for the * aux image. iris_resource_finish_aux_import will merge the separate aux * parameters back into a single iris_resource. */ } else if (mod_plane_is_clear_color(whandle->modifier, whandle->plane)) { res->aux.clear_color_offset = whandle->offset; res->aux.clear_color_bo = res->bo; res->bo = NULL; } else { /* Save modifier import information to reconstruct later. After import, * this will be available under a second image accessible from the main * image with res->base.next. See iris_resource_finish_aux_import. */ res->aux.surf.row_pitch_B = whandle->stride; res->aux.offset = whandle->offset; res->aux.bo = res->bo; res->bo = NULL; } return &res->base.b; fail: iris_resource_destroy(pscreen, &res->base.b); return NULL; } static void iris_flush_resource(struct pipe_context *ctx, struct pipe_resource *resource) { struct iris_context *ice = (struct iris_context *)ctx; struct iris_resource *res = (void *) resource; const struct isl_drm_modifier_info *mod = res->mod_info; iris_resource_prepare_access(ice, res, 0, INTEL_REMAINING_LEVELS, 0, INTEL_REMAINING_LAYERS, mod ? mod->aux_usage : ISL_AUX_USAGE_NONE, mod ? mod->supports_clear_color : false); if (!res->mod_info && res->aux.usage != ISL_AUX_USAGE_NONE) { /* flush_resource may be used to prepare an image for sharing external * to the driver (e.g. via eglCreateImage). To account for this, make * sure to get rid of any compression that a consumer wouldn't know how * to handle. */ for (int i = 0; i < IRIS_BATCH_COUNT; i++) { if (iris_batch_references(&ice->batches[i], res->bo)) iris_batch_flush(&ice->batches[i]); } iris_resource_disable_aux(res); } } static void iris_resource_disable_aux_on_first_query(struct pipe_resource *resource, unsigned usage) { struct iris_resource *res = (struct iris_resource *)resource; bool mod_with_aux = res->mod_info && res->mod_info->aux_usage != ISL_AUX_USAGE_NONE; /* Disable aux usage if explicit flush not set and this is the first time * we are dealing with this resource and the resource was not created with * a modifier with aux. */ if (!mod_with_aux && (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) && res->aux.usage != 0) && p_atomic_read(&resource->reference.count) == 1) { iris_resource_disable_aux(res); } } static bool iris_resource_get_param(struct pipe_screen *pscreen, struct pipe_context *context, struct pipe_resource *resource, unsigned plane, unsigned layer, unsigned level, enum pipe_resource_param param, unsigned handle_usage, uint64_t *value) { struct iris_screen *screen = (struct iris_screen *)pscreen; struct iris_resource *res = (struct iris_resource *)resource; bool mod_with_aux = res->mod_info && res->mod_info->aux_usage != ISL_AUX_USAGE_NONE; bool wants_aux = mod_with_aux && plane > 0; bool result; unsigned handle; if (iris_resource_unfinished_aux_import(res)) iris_resource_finish_aux_import(pscreen, res); struct iris_bo *bo = wants_aux ? res->aux.bo : res->bo; iris_resource_disable_aux_on_first_query(resource, handle_usage); switch (param) { case PIPE_RESOURCE_PARAM_NPLANES: if (mod_with_aux) { *value = iris_get_dmabuf_modifier_planes(pscreen, res->mod_info->modifier, res->external_format); } else { unsigned count = 0; for (struct pipe_resource *cur = resource; cur; cur = cur->next) count++; *value = count; } return true; case PIPE_RESOURCE_PARAM_STRIDE: *value = wants_aux ? res->aux.surf.row_pitch_B : res->surf.row_pitch_B; return true; case PIPE_RESOURCE_PARAM_OFFSET: *value = wants_aux ? mod_plane_is_clear_color(res->mod_info->modifier, plane) ? res->aux.clear_color_offset : res->aux.offset : 0; return true; case PIPE_RESOURCE_PARAM_MODIFIER: *value = res->mod_info ? res->mod_info->modifier : tiling_to_modifier(res->bo->tiling_mode); return true; case PIPE_RESOURCE_PARAM_HANDLE_TYPE_SHARED: result = iris_bo_flink(bo, &handle) == 0; if (result) *value = handle; return result; case PIPE_RESOURCE_PARAM_HANDLE_TYPE_KMS: { /* Because we share the same drm file across multiple iris_screen, when * we export a GEM handle we must make sure it is valid in the DRM file * descriptor the caller is using (this is the FD given at screen * creation). */ uint32_t handle; if (iris_bo_export_gem_handle_for_device(bo, screen->winsys_fd, &handle)) return false; *value = handle; return true; } case PIPE_RESOURCE_PARAM_HANDLE_TYPE_FD: result = iris_bo_export_dmabuf(bo, (int *) &handle) == 0; if (result) *value = handle; return result; default: return false; } } static bool iris_resource_get_handle(struct pipe_screen *pscreen, struct pipe_context *unused_ctx, struct pipe_resource *resource, struct winsys_handle *whandle, unsigned usage) { struct iris_screen *screen = (struct iris_screen *) pscreen; struct iris_resource *res = (struct iris_resource *)resource; bool mod_with_aux = res->mod_info && res->mod_info->aux_usage != ISL_AUX_USAGE_NONE; /* if ctx is ever used, do ctx = threaded_context_unwrap_sync(ctx) */ iris_resource_disable_aux_on_first_query(resource, usage); struct iris_bo *bo; if (res->mod_info && mod_plane_is_clear_color(res->mod_info->modifier, whandle->plane)) { bo = res->aux.clear_color_bo; whandle->offset = res->aux.clear_color_offset; } else if (mod_with_aux && whandle->plane > 0) { bo = res->aux.bo; whandle->stride = res->aux.surf.row_pitch_B; whandle->offset = res->aux.offset; } else { /* If this is a buffer, stride should be 0 - no need to special case */ whandle->stride = res->surf.row_pitch_B; bo = res->bo; } whandle->format = res->external_format; whandle->modifier = res->mod_info ? res->mod_info->modifier : tiling_to_modifier(res->bo->tiling_mode); #ifndef NDEBUG enum isl_aux_usage allowed_usage = usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH ? res->aux.usage : res->mod_info ? res->mod_info->aux_usage : ISL_AUX_USAGE_NONE; if (res->aux.usage != allowed_usage) { enum isl_aux_state aux_state = iris_resource_get_aux_state(res, 0, 0); assert(aux_state == ISL_AUX_STATE_RESOLVED || aux_state == ISL_AUX_STATE_PASS_THROUGH); } #endif switch (whandle->type) { case WINSYS_HANDLE_TYPE_SHARED: return iris_bo_flink(bo, &whandle->handle) == 0; case WINSYS_HANDLE_TYPE_KMS: { /* Because we share the same drm file across multiple iris_screen, when * we export a GEM handle we must make sure it is valid in the DRM file * descriptor the caller is using (this is the FD given at screen * creation). */ uint32_t handle; if (iris_bo_export_gem_handle_for_device(bo, screen->winsys_fd, &handle)) return false; whandle->handle = handle; return true; } case WINSYS_HANDLE_TYPE_FD: return iris_bo_export_dmabuf(bo, (int *) &whandle->handle) == 0; } return false; } static bool resource_is_busy(struct iris_context *ice, struct iris_resource *res) { bool busy = iris_bo_busy(res->bo); for (int i = 0; i < IRIS_BATCH_COUNT; i++) busy |= iris_batch_references(&ice->batches[i], res->bo); return busy; } void iris_replace_buffer_storage(struct pipe_context *ctx, struct pipe_resource *p_dst, struct pipe_resource *p_src) { struct iris_screen *screen = (void *) ctx->screen; struct iris_context *ice = (void *) ctx; struct iris_resource *dst = (void *) p_dst; struct iris_resource *src = (void *) p_src; assert(memcmp(&dst->surf, &src->surf, sizeof(dst->surf)) == 0); struct iris_bo *old_bo = dst->bo; /* Swap out the backing storage */ iris_bo_reference(src->bo); dst->bo = src->bo; /* Rebind the buffer, replacing any state referring to the old BO's * address, and marking state dirty so it's reemitted. */ screen->vtbl.rebind_buffer(ice, dst); iris_bo_unreference(old_bo); } static void iris_invalidate_resource(struct pipe_context *ctx, struct pipe_resource *resource) { struct iris_screen *screen = (void *) ctx->screen; struct iris_context *ice = (void *) ctx; struct iris_resource *res = (void *) resource; if (resource->target != PIPE_BUFFER) return; /* If it's already invalidated, don't bother doing anything. */ if (res->valid_buffer_range.start > res->valid_buffer_range.end) return; if (!resource_is_busy(ice, res)) { /* The resource is idle, so just mark that it contains no data and * keep using the same underlying buffer object. */ util_range_set_empty(&res->valid_buffer_range); return; } /* Otherwise, try and replace the backing storage with a new BO. */ /* We can't reallocate memory we didn't allocate in the first place. */ if (res->bo->userptr) return; struct iris_bo *old_bo = res->bo; struct iris_bo *new_bo = iris_bo_alloc(screen->bufmgr, res->bo->name, resource->width0, iris_memzone_for_address(old_bo->gtt_offset)); if (!new_bo) return; /* Swap out the backing storage */ res->bo = new_bo; /* Rebind the buffer, replacing any state referring to the old BO's * address, and marking state dirty so it's reemitted. */ screen->vtbl.rebind_buffer(ice, res); util_range_set_empty(&res->valid_buffer_range); iris_bo_unreference(old_bo); } static void iris_flush_staging_region(struct pipe_transfer *xfer, const struct pipe_box *flush_box) { if (!(xfer->usage & PIPE_MAP_WRITE)) return; struct iris_transfer *map = (void *) xfer; struct pipe_box src_box = *flush_box; /* Account for extra alignment padding in staging buffer */ if (xfer->resource->target == PIPE_BUFFER) src_box.x += xfer->box.x % IRIS_MAP_BUFFER_ALIGNMENT; struct pipe_box dst_box = (struct pipe_box) { .x = xfer->box.x + flush_box->x, .y = xfer->box.y + flush_box->y, .z = xfer->box.z + flush_box->z, .width = flush_box->width, .height = flush_box->height, .depth = flush_box->depth, }; iris_copy_region(map->blorp, map->batch, xfer->resource, xfer->level, dst_box.x, dst_box.y, dst_box.z, map->staging, 0, &src_box); } static void iris_unmap_copy_region(struct iris_transfer *map) { iris_resource_destroy(map->staging->screen, map->staging); map->ptr = NULL; } static void iris_map_copy_region(struct iris_transfer *map) { struct pipe_screen *pscreen = &map->batch->screen->base; struct pipe_transfer *xfer = &map->base.b; struct pipe_box *box = &xfer->box; struct iris_resource *res = (void *) xfer->resource; unsigned extra = xfer->resource->target == PIPE_BUFFER ? box->x % IRIS_MAP_BUFFER_ALIGNMENT : 0; struct pipe_resource templ = (struct pipe_resource) { .usage = PIPE_USAGE_STAGING, .width0 = box->width + extra, .height0 = box->height, .depth0 = 1, .nr_samples = xfer->resource->nr_samples, .nr_storage_samples = xfer->resource->nr_storage_samples, .array_size = box->depth, .format = res->internal_format, }; if (xfer->resource->target == PIPE_BUFFER) templ.target = PIPE_BUFFER; else if (templ.array_size > 1) templ.target = PIPE_TEXTURE_2D_ARRAY; else templ.target = PIPE_TEXTURE_2D; map->staging = iris_resource_create(pscreen, &templ); assert(map->staging); if (templ.target != PIPE_BUFFER) { struct isl_surf *surf = &((struct iris_resource *) map->staging)->surf; xfer->stride = isl_surf_get_row_pitch_B(surf); xfer->layer_stride = isl_surf_get_array_pitch(surf); } if (!(xfer->usage & PIPE_MAP_DISCARD_RANGE)) { iris_copy_region(map->blorp, map->batch, map->staging, 0, extra, 0, 0, xfer->resource, xfer->level, box); /* Ensure writes to the staging BO land before we map it below. */ iris_emit_pipe_control_flush(map->batch, "transfer read: flush before mapping", PIPE_CONTROL_RENDER_TARGET_FLUSH | PIPE_CONTROL_CS_STALL); } struct iris_bo *staging_bo = iris_resource_bo(map->staging); if (iris_batch_references(map->batch, staging_bo)) iris_batch_flush(map->batch); map->ptr = iris_bo_map(map->dbg, staging_bo, xfer->usage & MAP_FLAGS) + extra; map->unmap = iris_unmap_copy_region; } static void get_image_offset_el(const struct isl_surf *surf, unsigned level, unsigned z, unsigned *out_x0_el, unsigned *out_y0_el) { if (surf->dim == ISL_SURF_DIM_3D) { isl_surf_get_image_offset_el(surf, level, 0, z, out_x0_el, out_y0_el); } else { isl_surf_get_image_offset_el(surf, level, z, 0, out_x0_el, out_y0_el); } } /** * Compute the offset (in bytes) from the start of the BO to the given x * and y coordinate. For tiled BOs, caller must ensure that x and y are * multiples of the tile size. */ static uint32_t iris_resource_get_aligned_offset(const struct iris_resource *res, uint32_t x, uint32_t y) { const struct isl_format_layout *fmtl = isl_format_get_layout(res->surf.format); unsigned cpp = fmtl->bpb / 8; uint32_t pitch = res->surf.row_pitch_B; switch (res->surf.tiling) { default: unreachable("not reached"); case ISL_TILING_LINEAR: return y * pitch + x * cpp; case ISL_TILING_X: assert((x % (512 / cpp)) == 0); assert((y % 8) == 0); return y * pitch + x / (512 / cpp) * 4096; case ISL_TILING_Y0: assert((x % (128 / cpp)) == 0); assert((y % 32) == 0); return y * pitch + x / (128 / cpp) * 4096; } } /** * Rendering with tiled buffers requires that the base address of the buffer * be aligned to a page boundary. For renderbuffers, and sometimes with * textures, we may want the surface to point at a texture image level that * isn't at a page boundary. * * This function returns an appropriately-aligned base offset * according to the tiling restrictions, plus any required x/y offset * from there. */ uint32_t iris_resource_get_tile_offsets(const struct iris_resource *res, uint32_t level, uint32_t z, uint32_t *tile_x, uint32_t *tile_y) { uint32_t x, y; uint32_t mask_x, mask_y; const struct isl_format_layout *fmtl = isl_format_get_layout(res->surf.format); const unsigned cpp = fmtl->bpb / 8; isl_get_tile_masks(res->surf.tiling, cpp, &mask_x, &mask_y); get_image_offset_el(&res->surf, level, z, &x, &y); *tile_x = x & mask_x; *tile_y = y & mask_y; return iris_resource_get_aligned_offset(res, x & ~mask_x, y & ~mask_y); } /** * Get pointer offset into stencil buffer. * * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we * must decode the tile's layout in software. * * See * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile * Format. * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm * * Even though the returned offset is always positive, the return type is * signed due to * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137 * mesa: Fix return type of _mesa_get_format_bytes() (#37351) */ static intptr_t s8_offset(uint32_t stride, uint32_t x, uint32_t y) { uint32_t tile_size = 4096; uint32_t tile_width = 64; uint32_t tile_height = 64; uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */ uint32_t tile_x = x / tile_width; uint32_t tile_y = y / tile_height; /* The byte's address relative to the tile's base addres. */ uint32_t byte_x = x % tile_width; uint32_t byte_y = y % tile_height; uintptr_t u = tile_y * row_size + tile_x * tile_size + 512 * (byte_x / 8) + 64 * (byte_y / 8) + 32 * ((byte_y / 4) % 2) + 16 * ((byte_x / 4) % 2) + 8 * ((byte_y / 2) % 2) + 4 * ((byte_x / 2) % 2) + 2 * (byte_y % 2) + 1 * (byte_x % 2); return u; } static void iris_unmap_s8(struct iris_transfer *map) { struct pipe_transfer *xfer = &map->base.b; const struct pipe_box *box = &xfer->box; struct iris_resource *res = (struct iris_resource *) xfer->resource; struct isl_surf *surf = &res->surf; if (xfer->usage & PIPE_MAP_WRITE) { uint8_t *untiled_s8_map = map->ptr; uint8_t *tiled_s8_map = iris_bo_map(map->dbg, res->bo, (xfer->usage | MAP_RAW) & MAP_FLAGS); for (int s = 0; s < box->depth; s++) { unsigned x0_el, y0_el; get_image_offset_el(surf, xfer->level, box->z + s, &x0_el, &y0_el); for (uint32_t y = 0; y < box->height; y++) { for (uint32_t x = 0; x < box->width; x++) { ptrdiff_t offset = s8_offset(surf->row_pitch_B, x0_el + box->x + x, y0_el + box->y + y); tiled_s8_map[offset] = untiled_s8_map[s * xfer->layer_stride + y * xfer->stride + x]; } } } } free(map->buffer); } static void iris_map_s8(struct iris_transfer *map) { struct pipe_transfer *xfer = &map->base.b; const struct pipe_box *box = &xfer->box; struct iris_resource *res = (struct iris_resource *) xfer->resource; struct isl_surf *surf = &res->surf; xfer->stride = surf->row_pitch_B; xfer->layer_stride = xfer->stride * box->height; /* The tiling and detiling functions require that the linear buffer has * a 16-byte alignment (that is, its `x0` is 16-byte aligned). Here we * over-allocate the linear buffer to get the proper alignment. */ map->buffer = map->ptr = malloc(xfer->layer_stride * box->depth); assert(map->buffer); /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless * invalidate is set, since we'll be writing the whole rectangle from our * temporary buffer back out. */ if (!(xfer->usage & PIPE_MAP_DISCARD_RANGE)) { uint8_t *untiled_s8_map = map->ptr; uint8_t *tiled_s8_map = iris_bo_map(map->dbg, res->bo, (xfer->usage | MAP_RAW) & MAP_FLAGS); for (int s = 0; s < box->depth; s++) { unsigned x0_el, y0_el; get_image_offset_el(surf, xfer->level, box->z + s, &x0_el, &y0_el); for (uint32_t y = 0; y < box->height; y++) { for (uint32_t x = 0; x < box->width; x++) { ptrdiff_t offset = s8_offset(surf->row_pitch_B, x0_el + box->x + x, y0_el + box->y + y); untiled_s8_map[s * xfer->layer_stride + y * xfer->stride + x] = tiled_s8_map[offset]; } } } } map->unmap = iris_unmap_s8; } /* Compute extent parameters for use with tiled_memcpy functions. * xs are in units of bytes and ys are in units of strides. */ static inline void tile_extents(const struct isl_surf *surf, const struct pipe_box *box, unsigned level, int z, unsigned *x1_B, unsigned *x2_B, unsigned *y1_el, unsigned *y2_el) { const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); const unsigned cpp = fmtl->bpb / 8; assert(box->x % fmtl->bw == 0); assert(box->y % fmtl->bh == 0); unsigned x0_el, y0_el; get_image_offset_el(surf, level, box->z + z, &x0_el, &y0_el); *x1_B = (box->x / fmtl->bw + x0_el) * cpp; *y1_el = box->y / fmtl->bh + y0_el; *x2_B = (DIV_ROUND_UP(box->x + box->width, fmtl->bw) + x0_el) * cpp; *y2_el = DIV_ROUND_UP(box->y + box->height, fmtl->bh) + y0_el; } static void iris_unmap_tiled_memcpy(struct iris_transfer *map) { struct pipe_transfer *xfer = &map->base.b; const struct pipe_box *box = &xfer->box; struct iris_resource *res = (struct iris_resource *) xfer->resource; struct isl_surf *surf = &res->surf; const bool has_swizzling = false; if (xfer->usage & PIPE_MAP_WRITE) { char *dst = iris_bo_map(map->dbg, res->bo, (xfer->usage | MAP_RAW) & MAP_FLAGS); for (int s = 0; s < box->depth; s++) { unsigned x1, x2, y1, y2; tile_extents(surf, box, xfer->level, s, &x1, &x2, &y1, &y2); void *ptr = map->ptr + s * xfer->layer_stride; isl_memcpy_linear_to_tiled(x1, x2, y1, y2, dst, ptr, surf->row_pitch_B, xfer->stride, has_swizzling, surf->tiling, ISL_MEMCPY); } } os_free_aligned(map->buffer); map->buffer = map->ptr = NULL; } static void iris_map_tiled_memcpy(struct iris_transfer *map) { struct pipe_transfer *xfer = &map->base.b; const struct pipe_box *box = &xfer->box; struct iris_resource *res = (struct iris_resource *) xfer->resource; struct isl_surf *surf = &res->surf; xfer->stride = ALIGN(surf->row_pitch_B, 16); xfer->layer_stride = xfer->stride * box->height; unsigned x1, x2, y1, y2; tile_extents(surf, box, xfer->level, 0, &x1, &x2, &y1, &y2); /* The tiling and detiling functions require that the linear buffer has * a 16-byte alignment (that is, its `x0` is 16-byte aligned). Here we * over-allocate the linear buffer to get the proper alignment. */ map->buffer = os_malloc_aligned(xfer->layer_stride * box->depth, 16); assert(map->buffer); map->ptr = (char *)map->buffer + (x1 & 0xf); const bool has_swizzling = false; if (!(xfer->usage & PIPE_MAP_DISCARD_RANGE)) { char *src = iris_bo_map(map->dbg, res->bo, (xfer->usage | MAP_RAW) & MAP_FLAGS); for (int s = 0; s < box->depth; s++) { unsigned x1, x2, y1, y2; tile_extents(surf, box, xfer->level, s, &x1, &x2, &y1, &y2); /* Use 's' rather than 'box->z' to rebase the first slice to 0. */ void *ptr = map->ptr + s * xfer->layer_stride; isl_memcpy_tiled_to_linear(x1, x2, y1, y2, ptr, src, xfer->stride, surf->row_pitch_B, has_swizzling, surf->tiling, ISL_MEMCPY_STREAMING_LOAD); } } map->unmap = iris_unmap_tiled_memcpy; } static void iris_map_direct(struct iris_transfer *map) { struct pipe_transfer *xfer = &map->base.b; struct pipe_box *box = &xfer->box; struct iris_resource *res = (struct iris_resource *) xfer->resource; void *ptr = iris_bo_map(map->dbg, res->bo, xfer->usage & MAP_FLAGS); if (res->base.b.target == PIPE_BUFFER) { xfer->stride = 0; xfer->layer_stride = 0; map->ptr = ptr + box->x; } else { struct isl_surf *surf = &res->surf; const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); const unsigned cpp = fmtl->bpb / 8; unsigned x0_el, y0_el; get_image_offset_el(surf, xfer->level, box->z, &x0_el, &y0_el); xfer->stride = isl_surf_get_row_pitch_B(surf); xfer->layer_stride = isl_surf_get_array_pitch(surf); map->ptr = ptr + (y0_el + box->y) * xfer->stride + (x0_el + box->x) * cpp; } } static bool can_promote_to_async(const struct iris_resource *res, const struct pipe_box *box, enum pipe_map_flags usage) { /* If we're writing to a section of the buffer that hasn't even been * initialized with useful data, then we can safely promote this write * to be unsynchronized. This helps the common pattern of appending data. */ return res->base.b.target == PIPE_BUFFER && (usage & PIPE_MAP_WRITE) && !(usage & TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED) && !util_ranges_intersect(&res->valid_buffer_range, box->x, box->x + box->width); } static void * iris_transfer_map(struct pipe_context *ctx, struct pipe_resource *resource, unsigned level, enum pipe_map_flags usage, const struct pipe_box *box, struct pipe_transfer **ptransfer) { struct iris_context *ice = (struct iris_context *)ctx; struct iris_resource *res = (struct iris_resource *)resource; struct isl_surf *surf = &res->surf; if (iris_resource_unfinished_aux_import(res)) iris_resource_finish_aux_import(ctx->screen, res); if (usage & PIPE_MAP_DISCARD_WHOLE_RESOURCE) { /* Replace the backing storage with a fresh buffer for non-async maps */ if (!(usage & (PIPE_MAP_UNSYNCHRONIZED | TC_TRANSFER_MAP_NO_INVALIDATE))) iris_invalidate_resource(ctx, resource); /* If we can discard the whole resource, we can discard the range. */ usage |= PIPE_MAP_DISCARD_RANGE; } if (!(usage & PIPE_MAP_UNSYNCHRONIZED) && can_promote_to_async(res, box, usage)) { usage |= PIPE_MAP_UNSYNCHRONIZED; } bool map_would_stall = false; if (!(usage & PIPE_MAP_UNSYNCHRONIZED)) { map_would_stall = resource_is_busy(ice, res) || iris_has_invalid_primary(res, level, 1, box->z, box->depth); if (map_would_stall && (usage & PIPE_MAP_DONTBLOCK) && (usage & PIPE_MAP_DIRECTLY)) return NULL; } if (surf->tiling != ISL_TILING_LINEAR && (usage & PIPE_MAP_DIRECTLY)) return NULL; struct iris_transfer *map; if (usage & TC_TRANSFER_MAP_THREADED_UNSYNC) map = slab_alloc(&ice->transfer_pool_unsync); else map = slab_alloc(&ice->transfer_pool); if (!map) return NULL; struct pipe_transfer *xfer = &map->base.b; memset(map, 0, sizeof(*map)); map->dbg = &ice->dbg; pipe_resource_reference(&xfer->resource, resource); xfer->level = level; xfer->usage = usage; xfer->box = *box; *ptransfer = xfer; map->dest_had_defined_contents = util_ranges_intersect(&res->valid_buffer_range, box->x, box->x + box->width); if (usage & PIPE_MAP_WRITE) util_range_add(&res->base.b, &res->valid_buffer_range, box->x, box->x + box->width); /* Avoid using GPU copies for persistent/coherent buffers, as the idea * there is to access them simultaneously on the CPU & GPU. This also * avoids trying to use GPU copies for our u_upload_mgr buffers which * contain state we're constructing for a GPU draw call, which would * kill us with infinite stack recursion. */ bool no_gpu = usage & (PIPE_MAP_PERSISTENT | PIPE_MAP_COHERENT | PIPE_MAP_DIRECTLY); /* GPU copies are not useful for buffer reads. Instead of stalling to * read from the original buffer, we'd simply copy it to a temporary... * then stall (a bit longer) to read from that buffer. * * Images are less clear-cut. Resolves can be destructive, removing some * of the underlying compression, so we'd rather blit the data to a linear * temporary and map that, to avoid the resolve. (It might be better to * a tiled temporary and use the tiled_memcpy paths...) */ if (!(usage & PIPE_MAP_DISCARD_RANGE) && !iris_has_invalid_primary(res, level, 1, box->z, box->depth)) { no_gpu = true; } const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); if (fmtl->txc == ISL_TXC_ASTC) no_gpu = true; if (!map_would_stall && res->aux.usage != ISL_AUX_USAGE_CCS_E && res->aux.usage != ISL_AUX_USAGE_GFX12_CCS_E) { no_gpu = true; } if (!no_gpu) { /* If we need a synchronous mapping and the resource is busy, or needs * resolving, we copy to/from a linear temporary buffer using the GPU. */ map->batch = &ice->batches[IRIS_BATCH_RENDER]; map->blorp = &ice->blorp; iris_map_copy_region(map); } else { /* Otherwise we're free to map on the CPU. */ if (resource->target != PIPE_BUFFER) { iris_resource_access_raw(ice, res, level, box->z, box->depth, usage & PIPE_MAP_WRITE); } if (!(usage & PIPE_MAP_UNSYNCHRONIZED)) { for (int i = 0; i < IRIS_BATCH_COUNT; i++) { if (iris_batch_references(&ice->batches[i], res->bo)) iris_batch_flush(&ice->batches[i]); } } if (surf->tiling == ISL_TILING_W) { /* TODO: Teach iris_map_tiled_memcpy about W-tiling... */ iris_map_s8(map); } else if (surf->tiling != ISL_TILING_LINEAR) { iris_map_tiled_memcpy(map); } else { iris_map_direct(map); } } return map->ptr; } static void iris_transfer_flush_region(struct pipe_context *ctx, struct pipe_transfer *xfer, const struct pipe_box *box) { struct iris_context *ice = (struct iris_context *)ctx; struct iris_resource *res = (struct iris_resource *) xfer->resource; struct iris_transfer *map = (void *) xfer; if (map->staging) iris_flush_staging_region(xfer, box); uint32_t history_flush = 0; if (res->base.b.target == PIPE_BUFFER) { if (map->staging) history_flush |= PIPE_CONTROL_RENDER_TARGET_FLUSH; if (map->dest_had_defined_contents) history_flush |= iris_flush_bits_for_history(ice, res); util_range_add(&res->base.b, &res->valid_buffer_range, box->x, box->x + box->width); } if (history_flush & ~PIPE_CONTROL_CS_STALL) { for (int i = 0; i < IRIS_BATCH_COUNT; i++) { struct iris_batch *batch = &ice->batches[i]; if (batch->contains_draw || batch->cache.render->entries) { iris_batch_maybe_flush(batch, 24); iris_emit_pipe_control_flush(batch, "cache history: transfer flush", history_flush); } } } /* Make sure we flag constants dirty even if there's no need to emit * any PIPE_CONTROLs to a batch. */ iris_dirty_for_history(ice, res); } static void iris_transfer_unmap(struct pipe_context *ctx, struct pipe_transfer *xfer) { struct iris_context *ice = (struct iris_context *)ctx; struct iris_transfer *map = (void *) xfer; if (!(xfer->usage & (PIPE_MAP_FLUSH_EXPLICIT | PIPE_MAP_COHERENT))) { struct pipe_box flush_box = { .x = 0, .y = 0, .z = 0, .width = xfer->box.width, .height = xfer->box.height, .depth = xfer->box.depth, }; iris_transfer_flush_region(ctx, xfer, &flush_box); } if (map->unmap) map->unmap(map); pipe_resource_reference(&xfer->resource, NULL); /* transfer_unmap is always called from the driver thread, so we have to * use transfer_pool, not transfer_pool_unsync. Freeing an object into a * different pool is allowed, however. */ slab_free(&ice->transfer_pool, map); } /** * The pipe->texture_subdata() driver hook. * * Mesa's state tracker takes this path whenever possible, even with * PIPE_CAP_PREFER_BLIT_BASED_TEXTURE_TRANSFER set. */ static void iris_texture_subdata(struct pipe_context *ctx, struct pipe_resource *resource, unsigned level, unsigned usage, const struct pipe_box *box, const void *data, unsigned stride, unsigned layer_stride) { struct iris_context *ice = (struct iris_context *)ctx; struct iris_resource *res = (struct iris_resource *)resource; const struct isl_surf *surf = &res->surf; assert(resource->target != PIPE_BUFFER); if (iris_resource_unfinished_aux_import(res)) iris_resource_finish_aux_import(ctx->screen, res); /* Just use the transfer-based path for linear buffers - it will already * do a direct mapping, or a simple linear staging buffer. * * Linear staging buffers appear to be better than tiled ones, too, so * take that path if we need the GPU to perform color compression, or * stall-avoidance blits. */ if (surf->tiling == ISL_TILING_LINEAR || (isl_aux_usage_has_ccs(res->aux.usage) && res->aux.usage != ISL_AUX_USAGE_CCS_D) || resource_is_busy(ice, res)) { return u_default_texture_subdata(ctx, resource, level, usage, box, data, stride, layer_stride); } /* No state trackers pass any flags other than PIPE_MAP_WRITE */ iris_resource_access_raw(ice, res, level, box->z, box->depth, true); for (int i = 0; i < IRIS_BATCH_COUNT; i++) { if (iris_batch_references(&ice->batches[i], res->bo)) iris_batch_flush(&ice->batches[i]); } uint8_t *dst = iris_bo_map(&ice->dbg, res->bo, MAP_WRITE | MAP_RAW); for (int s = 0; s < box->depth; s++) { const uint8_t *src = data + s * layer_stride; if (surf->tiling == ISL_TILING_W) { unsigned x0_el, y0_el; get_image_offset_el(surf, level, box->z + s, &x0_el, &y0_el); for (unsigned y = 0; y < box->height; y++) { for (unsigned x = 0; x < box->width; x++) { ptrdiff_t offset = s8_offset(surf->row_pitch_B, x0_el + box->x + x, y0_el + box->y + y); dst[offset] = src[y * stride + x]; } } } else { unsigned x1, x2, y1, y2; tile_extents(surf, box, level, s, &x1, &x2, &y1, &y2); isl_memcpy_linear_to_tiled(x1, x2, y1, y2, (void *)dst, (void *)src, surf->row_pitch_B, stride, false, surf->tiling, ISL_MEMCPY); } } } /** * Mark state dirty that needs to be re-emitted when a resource is written. */ void iris_dirty_for_history(struct iris_context *ice, struct iris_resource *res) { uint64_t stage_dirty = 0ull; if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) { stage_dirty |= ((uint64_t)res->bind_stages) << IRIS_SHIFT_FOR_STAGE_DIRTY_CONSTANTS; } ice->state.stage_dirty |= stage_dirty; } /** * Produce a set of PIPE_CONTROL bits which ensure data written to a * resource becomes visible, and any stale read cache data is invalidated. */ uint32_t iris_flush_bits_for_history(struct iris_context *ice, struct iris_resource *res) { struct iris_screen *screen = (struct iris_screen *) ice->ctx.screen; uint32_t flush = PIPE_CONTROL_CS_STALL; if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) { flush |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flush |= screen->compiler->indirect_ubos_use_sampler ? PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE : PIPE_CONTROL_DATA_CACHE_FLUSH; } if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) flush |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; if (res->bind_history & (PIPE_BIND_VERTEX_BUFFER | PIPE_BIND_INDEX_BUFFER)) flush |= PIPE_CONTROL_VF_CACHE_INVALIDATE; if (res->bind_history & (PIPE_BIND_SHADER_BUFFER | PIPE_BIND_SHADER_IMAGE)) flush |= PIPE_CONTROL_DATA_CACHE_FLUSH; return flush; } void iris_flush_and_dirty_for_history(struct iris_context *ice, struct iris_batch *batch, struct iris_resource *res, uint32_t extra_flags, const char *reason) { if (res->base.b.target != PIPE_BUFFER) return; uint32_t flush = iris_flush_bits_for_history(ice, res) | extra_flags; iris_emit_pipe_control_flush(batch, reason, flush); iris_dirty_for_history(ice, res); } bool iris_resource_set_clear_color(struct iris_context *ice, struct iris_resource *res, union isl_color_value color) { if (memcmp(&res->aux.clear_color, &color, sizeof(color)) != 0) { res->aux.clear_color = color; return true; } return false; } union isl_color_value iris_resource_get_clear_color(const struct iris_resource *res, struct iris_bo **clear_color_bo, uint64_t *clear_color_offset) { assert(res->aux.bo); if (clear_color_bo) *clear_color_bo = res->aux.clear_color_bo; if (clear_color_offset) *clear_color_offset = res->aux.clear_color_offset; return res->aux.clear_color; } static enum pipe_format iris_resource_get_internal_format(struct pipe_resource *p_res) { struct iris_resource *res = (void *) p_res; return res->internal_format; } static const struct u_transfer_vtbl transfer_vtbl = { .resource_create = iris_resource_create, .resource_destroy = iris_resource_destroy, .transfer_map = iris_transfer_map, .transfer_unmap = iris_transfer_unmap, .transfer_flush_region = iris_transfer_flush_region, .get_internal_format = iris_resource_get_internal_format, .set_stencil = iris_resource_set_separate_stencil, .get_stencil = iris_resource_get_separate_stencil, }; void iris_init_screen_resource_functions(struct pipe_screen *pscreen) { pscreen->query_dmabuf_modifiers = iris_query_dmabuf_modifiers; pscreen->is_dmabuf_modifier_supported = iris_is_dmabuf_modifier_supported; pscreen->get_dmabuf_modifier_planes = iris_get_dmabuf_modifier_planes; pscreen->resource_create_with_modifiers = iris_resource_create_with_modifiers; pscreen->resource_create = u_transfer_helper_resource_create; pscreen->resource_from_user_memory = iris_resource_from_user_memory; pscreen->resource_from_handle = iris_resource_from_handle; pscreen->resource_get_handle = iris_resource_get_handle; pscreen->resource_get_param = iris_resource_get_param; pscreen->resource_destroy = u_transfer_helper_resource_destroy; pscreen->transfer_helper = u_transfer_helper_create(&transfer_vtbl, true, true, false, true); } void iris_init_resource_functions(struct pipe_context *ctx) { ctx->flush_resource = iris_flush_resource; ctx->invalidate_resource = iris_invalidate_resource; ctx->transfer_map = u_transfer_helper_transfer_map; ctx->transfer_flush_region = u_transfer_helper_transfer_flush_region; ctx->transfer_unmap = u_transfer_helper_transfer_unmap; ctx->buffer_subdata = u_default_buffer_subdata; ctx->texture_subdata = iris_texture_subdata; }