/************************************************************************** * * Copyright 2007 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Binning code for triangles */ #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_rect.h" #include "util/u_sse.h" #include "lp_perf.h" #include "lp_setup_context.h" #include "lp_rast.h" #include "lp_state_fs.h" #include "lp_state_setup.h" #include "lp_context.h" #include #define NUM_CHANNELS 4 #if defined(PIPE_ARCH_SSE) #include #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN #include #include "util/u_pwr8.h" #endif #if !defined(PIPE_ARCH_SSE) static inline int subpixel_snap(float a) { return util_iround(FIXED_ONE * a); } #endif /* Position and area in fixed point coordinates */ struct fixed_position { int32_t x[4]; int32_t y[4]; int32_t dx01; int32_t dy01; int32_t dx20; int32_t dy20; int64_t area; }; /** * Alloc space for a new triangle plus the input.a0/dadx/dady arrays * immediately after it. * The memory is allocated from the per-scene pool, not per-tile. * \param tri_size returns number of bytes allocated * \param num_inputs number of fragment shader inputs * \return pointer to triangle space */ struct lp_rast_triangle * lp_setup_alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned nr_planes, unsigned *tri_size) { unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float); unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane); struct lp_rast_triangle *tri; STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0); *tri_size = (sizeof(struct lp_rast_triangle) + 3 * input_array_sz + plane_sz); tri = lp_scene_alloc_aligned( scene, *tri_size, 16 ); if (!tri) return NULL; tri->inputs.stride = input_array_sz; { char *a = (char *)tri; char *b = (char *)&GET_PLANES(tri)[nr_planes]; assert(b - a == *tri_size); } return tri; } void lp_setup_print_vertex(struct lp_setup_context *setup, const char *name, const float (*v)[4]) { const struct lp_setup_variant_key *key = &setup->setup.variant->key; int i, j; debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n", name, v[0][0], v[0][1], v[0][2], v[0][3]); for (i = 0; i < key->num_inputs; i++) { const float *in = v[key->inputs[i].src_index]; debug_printf(" in[%d] (%s[%d]) %s%s%s%s ", i, name, key->inputs[i].src_index, (key->inputs[i].usage_mask & 0x1) ? "x" : " ", (key->inputs[i].usage_mask & 0x2) ? "y" : " ", (key->inputs[i].usage_mask & 0x4) ? "z" : " ", (key->inputs[i].usage_mask & 0x8) ? "w" : " "); for (j = 0; j < 4; j++) if (key->inputs[i].usage_mask & (1< 0.0f) debug_printf(" - cw\n"); else debug_printf(" - zero area\n"); } lp_setup_print_vertex(setup, "v0", v0); lp_setup_print_vertex(setup, "v1", v1); lp_setup_print_vertex(setup, "v2", v2); } #define MAX_PLANES 8 static unsigned lp_rast_tri_tab[MAX_PLANES+1] = { 0, /* should be impossible */ LP_RAST_OP_TRIANGLE_1, LP_RAST_OP_TRIANGLE_2, LP_RAST_OP_TRIANGLE_3, LP_RAST_OP_TRIANGLE_4, LP_RAST_OP_TRIANGLE_5, LP_RAST_OP_TRIANGLE_6, LP_RAST_OP_TRIANGLE_7, LP_RAST_OP_TRIANGLE_8 }; static unsigned lp_rast_32_tri_tab[MAX_PLANES+1] = { 0, /* should be impossible */ LP_RAST_OP_TRIANGLE_32_1, LP_RAST_OP_TRIANGLE_32_2, LP_RAST_OP_TRIANGLE_32_3, LP_RAST_OP_TRIANGLE_32_4, LP_RAST_OP_TRIANGLE_32_5, LP_RAST_OP_TRIANGLE_32_6, LP_RAST_OP_TRIANGLE_32_7, LP_RAST_OP_TRIANGLE_32_8 }; /** * The primitive covers the whole tile- shade whole tile. * * \param tx, ty the tile position in tiles, not pixels */ static boolean lp_setup_whole_tile(struct lp_setup_context *setup, const struct lp_rast_shader_inputs *inputs, int tx, int ty) { struct lp_scene *scene = setup->scene; LP_COUNT(nr_fully_covered_64); /* if variant is opaque and scissor doesn't effect the tile */ if (inputs->opaque) { /* Several things prevent this optimization from working: * - For layered rendering we can't determine if this covers the same layer * as previous rendering (or in case of clears those actually always cover * all layers so optimization is impossible). Need to use fb_max_layer and * not setup->layer_slot to determine this since even if there's currently * no slot assigned previous rendering could have used one. * - If there were any Begin/End query commands in the scene then those * would get removed which would be very wrong. Furthermore, if queries * were just active we also can't do the optimization since to get * accurate query results we unfortunately need to execute the rendering * commands. */ if (!scene->fb.zsbuf && scene->fb_max_layer == 0 && !scene->had_queries) { /* * All previous rendering will be overwritten so reset the bin. */ lp_scene_bin_reset( scene, tx, ty ); } LP_COUNT(nr_shade_opaque_64); return lp_scene_bin_cmd_with_state( scene, tx, ty, setup->fs.stored, LP_RAST_OP_SHADE_TILE_OPAQUE, lp_rast_arg_inputs(inputs) ); } else { LP_COUNT(nr_shade_64); return lp_scene_bin_cmd_with_state( scene, tx, ty, setup->fs.stored, LP_RAST_OP_SHADE_TILE, lp_rast_arg_inputs(inputs) ); } } /** * Do basic setup for triangle rasterization and determine which * framebuffer tiles are touched. Put the triangle in the scene's * bins for the tiles which we overlap. */ static boolean do_triangle_ccw(struct lp_setup_context *setup, struct fixed_position* position, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4], boolean frontfacing ) { struct lp_scene *scene = setup->scene; const struct lp_setup_variant_key *key = &setup->setup.variant->key; struct lp_rast_triangle *tri; struct lp_rast_plane *plane; const struct u_rect *scissor; struct u_rect bbox, bboxpos; boolean s_planes[4]; unsigned tri_bytes; int nr_planes = 3; unsigned viewport_index = 0; unsigned layer = 0; const float (*pv)[4]; /* Area should always be positive here */ assert(position->area > 0); if (0) lp_setup_print_triangle(setup, v0, v1, v2); if (setup->flatshade_first) { pv = v0; } else { pv = v2; } if (setup->viewport_index_slot > 0) { unsigned *udata = (unsigned*)pv[setup->viewport_index_slot]; viewport_index = lp_clamp_viewport_idx(*udata); } if (setup->layer_slot > 0) { layer = *(unsigned*)pv[setup->layer_slot]; layer = MIN2(layer, scene->fb_max_layer); } /* Bounding rectangle (in pixels) */ { /* Yes this is necessary to accurately calculate bounding boxes * with the two fill-conventions we support. GL (normally) ends * up needing a bottom-left fill convention, which requires * slightly different rounding. */ int adj = (setup->bottom_edge_rule != 0) ? 1 : 0; /* Inclusive x0, exclusive x1 */ bbox.x0 = MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER; bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER; /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */ bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER; bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER; } if (bbox.x1 < bbox.x0 || bbox.y1 < bbox.y0) { if (0) debug_printf("empty bounding box\n"); LP_COUNT(nr_culled_tris); return TRUE; } if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) { if (0) debug_printf("offscreen\n"); LP_COUNT(nr_culled_tris); return TRUE; } bboxpos = bbox; /* Can safely discard negative regions, but need to keep hold of * information about when the triangle extends past screen * boundaries. See trimmed_box in lp_setup_bin_triangle(). */ bboxpos.x0 = MAX2(bboxpos.x0, 0); bboxpos.y0 = MAX2(bboxpos.y0, 0); nr_planes = 3; /* * Determine how many scissor planes we need, that is drop scissor * edges if the bounding box of the tri is fully inside that edge. */ if (setup->scissor_test) { /* why not just use draw_regions */ scissor = &setup->scissors[viewport_index]; scissor_planes_needed(s_planes, &bboxpos, scissor); nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3]; } tri = lp_setup_alloc_triangle(scene, key->num_inputs, nr_planes, &tri_bytes); if (!tri) return FALSE; #ifdef DEBUG tri->v[0][0] = v0[0][0]; tri->v[1][0] = v1[0][0]; tri->v[2][0] = v2[0][0]; tri->v[0][1] = v0[0][1]; tri->v[1][1] = v1[0][1]; tri->v[2][1] = v2[0][1]; #endif LP_COUNT(nr_tris); /* Setup parameter interpolants: */ setup->setup.variant->jit_function(v0, v1, v2, frontfacing, GET_A0(&tri->inputs), GET_DADX(&tri->inputs), GET_DADY(&tri->inputs)); tri->inputs.frontfacing = frontfacing; tri->inputs.disable = FALSE; tri->inputs.opaque = setup->fs.current.variant->opaque; tri->inputs.layer = layer; tri->inputs.viewport_index = viewport_index; if (0) lp_dump_setup_coef(&setup->setup.variant->key, (const float (*)[4])GET_A0(&tri->inputs), (const float (*)[4])GET_DADX(&tri->inputs), (const float (*)[4])GET_DADY(&tri->inputs)); plane = GET_PLANES(tri); #if defined(PIPE_ARCH_SSE) if (1) { __m128i vertx, verty; __m128i shufx, shufy; __m128i dcdx, dcdy; __m128i cdx02, cdx13, cdy02, cdy13, c02, c13; __m128i c01, c23, unused; __m128i dcdx_neg_mask; __m128i dcdy_neg_mask; __m128i dcdx_zero_mask; __m128i top_left_flag, c_dec; __m128i eo, p0, p1, p2; __m128i zero = _mm_setzero_si128(); vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */ verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */ shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1)); shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1)); dcdx = _mm_sub_epi32(verty, shufy); dcdy = _mm_sub_epi32(vertx, shufx); dcdx_neg_mask = _mm_srai_epi32(dcdx, 31); dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero); dcdy_neg_mask = _mm_srai_epi32(dcdy, 31); top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0); c_dec = _mm_or_si128(dcdx_neg_mask, _mm_and_si128(dcdx_zero_mask, _mm_xor_si128(dcdy_neg_mask, top_left_flag))); /* * 64 bit arithmetic. * Note we need _signed_ mul (_mm_mul_epi32) which we emulate. */ cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13); cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13); c02 = _mm_sub_epi64(cdx02, cdy02); c13 = _mm_sub_epi64(cdx13, cdy13); c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec, _MM_SHUFFLE(2,2,0,0))); c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec, _MM_SHUFFLE(3,3,1,1))); /* * Useful for very small fbs/tris (or fewer subpixel bits) only: * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx), * mm_mullo_epi32(dcdy, verty)); * * c = _mm_sub_epi32(c, c_dec); */ /* Scale up to match c: */ dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER); dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER); /* * Calculate trivial reject values: * Note eo cannot overflow even if dcdx/dcdy would already have * 31 bits (which they shouldn't have). This is because eo * is never negative (albeit if we rely on that need to be careful...) */ eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy), _mm_and_si128(dcdx_neg_mask, dcdx)); /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */ /* * Pointless transpose which gets undone immediately in * rasterization. * It is actually difficult to do away with it - would essentially * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations * for this then would need to depend on the number of planes. * The transpose is quite special here due to c being 64bit... * The store has to be unaligned (unless we'd make the plane size * a multiple of 128), and of course storing eo separately... */ c01 = _mm_unpacklo_epi64(c02, c13); c23 = _mm_unpackhi_epi64(c02, c13); transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy, &p0, &p1, &p2, &unused); _mm_storeu_si128((__m128i *)&plane[0], p0); plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo); _mm_storeu_si128((__m128i *)&plane[1], p1); eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1)); plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo); _mm_storeu_si128((__m128i *)&plane[2], p2); eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2)); plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo); } else #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN /* * XXX this code is effectively disabled for all practical purposes, * as the allowed fb size is tiny if FIXED_ORDER is 8. */ if (setup->fb.width <= MAX_FIXED_LENGTH32 && setup->fb.height <= MAX_FIXED_LENGTH32 && (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 && (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) { unsigned int bottom_edge; __m128i vertx, verty; __m128i shufx, shufy; __m128i dcdx, dcdy, c; __m128i unused; __m128i dcdx_neg_mask; __m128i dcdy_neg_mask; __m128i dcdx_zero_mask; __m128i top_left_flag; __m128i c_inc_mask, c_inc; __m128i eo, p0, p1, p2; __m128i_union vshuf_mask; __m128i zero = vec_splats((unsigned char) 0); PIPE_ALIGN_VAR(16) int32_t temp_vec[4]; #if UTIL_ARCH_LITTLE_ENDIAN vshuf_mask.i[0] = 0x07060504; vshuf_mask.i[1] = 0x0B0A0908; vshuf_mask.i[2] = 0x03020100; vshuf_mask.i[3] = 0x0F0E0D0C; #else vshuf_mask.i[0] = 0x00010203; vshuf_mask.i[1] = 0x0C0D0E0F; vshuf_mask.i[2] = 0x04050607; vshuf_mask.i[3] = 0x08090A0B; #endif /* vertex x coords */ vertx = vec_load_si128((const uint32_t *) position->x); /* vertex y coords */ verty = vec_load_si128((const uint32_t *) position->y); shufx = vec_perm (vertx, vertx, vshuf_mask.m128i); shufy = vec_perm (verty, verty, vshuf_mask.m128i); dcdx = vec_sub_epi32(verty, shufy); dcdy = vec_sub_epi32(vertx, shufx); dcdx_neg_mask = vec_srai_epi32(dcdx, 31); dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero); dcdy_neg_mask = vec_srai_epi32(dcdy, 31); bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0; top_left_flag = (__m128i) vec_splats(bottom_edge); c_inc_mask = vec_or(dcdx_neg_mask, vec_and(dcdx_zero_mask, vec_xor(dcdy_neg_mask, top_left_flag))); c_inc = vec_srli_epi32(c_inc_mask, 31); c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx), vec_mullo_epi32(dcdy, verty)); c = vec_add_epi32(c, c_inc); /* Scale up to match c: */ dcdx = vec_slli_epi32(dcdx, FIXED_ORDER); dcdy = vec_slli_epi32(dcdy, FIXED_ORDER); /* Calculate trivial reject values: */ eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy), vec_and(dcdx_neg_mask, dcdx)); /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */ /* Pointless transpose which gets undone immediately in * rasterization: */ transpose4_epi32(&c, &dcdx, &dcdy, &eo, &p0, &p1, &p2, &unused); #define STORE_PLANE(plane, vec) do { \ vec_store_si128((uint32_t *)&temp_vec, vec); \ plane.c = (int64_t)temp_vec[0]; \ plane.dcdx = temp_vec[1]; \ plane.dcdy = temp_vec[2]; \ plane.eo = temp_vec[3]; \ } while(0) STORE_PLANE(plane[0], p0); STORE_PLANE(plane[1], p1); STORE_PLANE(plane[2], p2); #undef STORE_PLANE } else #endif { int i; plane[0].dcdy = position->dx01; plane[1].dcdy = position->x[1] - position->x[2]; plane[2].dcdy = position->dx20; plane[0].dcdx = position->dy01; plane[1].dcdx = position->y[1] - position->y[2]; plane[2].dcdx = position->dy20; for (i = 0; i < 3; i++) { /* half-edge constants, will be iterated over the whole render * target. */ plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) - IMUL64(plane[i].dcdy, position->y[i]); /* correct for top-left vs. bottom-left fill convention. */ if (plane[i].dcdx < 0) { /* both fill conventions want this - adjust for left edges */ plane[i].c++; } else if (plane[i].dcdx == 0) { if (setup->bottom_edge_rule == 0){ /* correct for top-left fill convention: */ if (plane[i].dcdy > 0) plane[i].c++; } else { /* correct for bottom-left fill convention: */ if (plane[i].dcdy < 0) plane[i].c++; } } /* Scale up to match c: */ assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx); assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy); plane[i].dcdx <<= FIXED_ORDER; plane[i].dcdy <<= FIXED_ORDER; /* find trivial reject offsets for each edge for a single-pixel * sized block. These will be scaled up at each recursive level to * match the active blocksize. Scaling in this way works best if * the blocks are square. */ plane[i].eo = 0; if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx; if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy; } } if (0) { debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n", plane[0].c, plane[0].dcdx, plane[0].dcdy, plane[0].eo); debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n", plane[1].c, plane[1].dcdx, plane[1].dcdy, plane[1].eo); debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n", plane[2].c, plane[2].dcdx, plane[2].dcdy, plane[2].eo); } /* * When rasterizing scissored tris, use the intersection of the * triangle bounding box and the scissor rect to generate the * scissor planes. * * This permits us to cut off the triangle "tails" that are present * in the intermediate recursive levels caused when two of the * triangles edges don't diverge quickly enough to trivially reject * exterior blocks from the triangle. * * It's not really clear if it's worth worrying about these tails, * but since we generate the planes for each scissored tri, it's * free to trim them in this case. * * Note that otherwise, the scissor planes only vary in 'C' value, * and even then only on state-changes. Could alternatively store * these planes elsewhere. * (Or only store the c value together with a bit indicating which * scissor edge this is, so rasterization would treat them differently * (easier to evaluate) to ordinary planes.) */ if (nr_planes > 3) { /* why not just use draw_regions */ struct lp_rast_plane *plane_s = &plane[3]; if (s_planes[0]) { plane_s->dcdx = ~0U << 8; plane_s->dcdy = 0; plane_s->c = (1-scissor->x0) << 8; plane_s->eo = 1 << 8; plane_s++; } if (s_planes[1]) { plane_s->dcdx = 1 << 8; plane_s->dcdy = 0; plane_s->c = (scissor->x1+1) << 8; plane_s->eo = 0 << 8; plane_s++; } if (s_planes[2]) { plane_s->dcdx = 0; plane_s->dcdy = 1 << 8; plane_s->c = (1-scissor->y0) << 8; plane_s->eo = 1 << 8; plane_s++; } if (s_planes[3]) { plane_s->dcdx = 0; plane_s->dcdy = ~0U << 8; plane_s->c = (scissor->y1+1) << 8; plane_s->eo = 0; plane_s++; } assert(plane_s == &plane[nr_planes]); } return lp_setup_bin_triangle(setup, tri, &bbox, &bboxpos, nr_planes, viewport_index); } /* * Round to nearest less or equal power of two of the input. * * Undefined if no bit set exists, so code should check against 0 first. */ static inline uint32_t floor_pot(uint32_t n) { #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)) if (n == 0) return 0; __asm__("bsr %1,%0" : "=r" (n) : "rm" (n) : "cc"); return 1 << n; #else n |= (n >> 1); n |= (n >> 2); n |= (n >> 4); n |= (n >> 8); n |= (n >> 16); return n - (n >> 1); #endif } boolean lp_setup_bin_triangle(struct lp_setup_context *setup, struct lp_rast_triangle *tri, const struct u_rect *bboxorig, const struct u_rect *bbox, int nr_planes, unsigned viewport_index) { struct lp_scene *scene = setup->scene; struct u_rect trimmed_box = *bbox; int i; /* What is the largest power-of-two boundary this triangle crosses: */ int dx = floor_pot((bbox->x0 ^ bbox->x1) | (bbox->y0 ^ bbox->y1)); /* The largest dimension of the rasterized area of the triangle * (aligned to a 4x4 grid), rounded down to the nearest power of two: */ int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) | (bbox->y1 - (bbox->y0 & ~3))); int sz = floor_pot(max_sz); /* * NOTE: It is important to use the original bounding box * which might contain negative values here, because if the * plane math may overflow or not with the 32bit rasterization * functions depends on the original extent of the triangle. */ int max_szorig = ((bboxorig->x1 - (bboxorig->x0 & ~3)) | (bboxorig->y1 - (bboxorig->y0 & ~3))); boolean use_32bits = max_szorig <= MAX_FIXED_LENGTH32; /* Now apply scissor, etc to the bounding box. Could do this * earlier, but it confuses the logic for tri-16 and would force * the rasterizer to also respect scissor, etc, just for the rare * cases where a small triangle extends beyond the scissor. */ u_rect_find_intersection(&setup->draw_regions[viewport_index], &trimmed_box); /* Determine which tile(s) intersect the triangle's bounding box */ if (dx < TILE_SIZE) { int ix0 = bbox->x0 / TILE_SIZE; int iy0 = bbox->y0 / TILE_SIZE; unsigned px = bbox->x0 & 63 & ~3; unsigned py = bbox->y0 & 63 & ~3; assert(iy0 == bbox->y1 / TILE_SIZE && ix0 == bbox->x1 / TILE_SIZE); if (nr_planes == 3) { if (sz < 4) { /* Triangle is contained in a single 4x4 stamp: */ assert(px + 4 <= TILE_SIZE); assert(py + 4 <= TILE_SIZE); return lp_scene_bin_cmd_with_state( scene, ix0, iy0, setup->fs.stored, use_32bits ? LP_RAST_OP_TRIANGLE_32_3_4 : LP_RAST_OP_TRIANGLE_3_4, lp_rast_arg_triangle_contained(tri, px, py) ); } if (sz < 16) { /* Triangle is contained in a single 16x16 block: */ /* * The 16x16 block is only 4x4 aligned, and can exceed the tile * dimensions if the triangle is 16 pixels in one dimension but 4 * in the other. So budge the 16x16 back inside the tile. */ px = MIN2(px, TILE_SIZE - 16); py = MIN2(py, TILE_SIZE - 16); assert(px + 16 <= TILE_SIZE); assert(py + 16 <= TILE_SIZE); return lp_scene_bin_cmd_with_state( scene, ix0, iy0, setup->fs.stored, use_32bits ? LP_RAST_OP_TRIANGLE_32_3_16 : LP_RAST_OP_TRIANGLE_3_16, lp_rast_arg_triangle_contained(tri, px, py) ); } } else if (nr_planes == 4 && sz < 16) { px = MIN2(px, TILE_SIZE - 16); py = MIN2(py, TILE_SIZE - 16); assert(px + 16 <= TILE_SIZE); assert(py + 16 <= TILE_SIZE); return lp_scene_bin_cmd_with_state(scene, ix0, iy0, setup->fs.stored, use_32bits ? LP_RAST_OP_TRIANGLE_32_4_16 : LP_RAST_OP_TRIANGLE_4_16, lp_rast_arg_triangle_contained(tri, px, py)); } /* Triangle is contained in a single tile: */ return lp_scene_bin_cmd_with_state( scene, ix0, iy0, setup->fs.stored, use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes], lp_rast_arg_triangle(tri, (1<> 63); partial |= ((int) (planepartial >> 63)) & (1<fs.stored, use_32bits ? lp_rast_32_tri_tab[count] : lp_rast_tri_tab[count], lp_rast_arg_triangle(tri, partial) )) goto fail; LP_COUNT(nr_partially_covered_64); } else { /* triangle covers the whole tile- shade whole tile */ LP_COUNT(nr_fully_covered_64); in = TRUE; if (!lp_setup_whole_tile(setup, &tri->inputs, x, y)) goto fail; } /* Iterate cx values across the region: */ for (i = 0; i < nr_planes; i++) cx[i] += xstep[i]; } /* Iterate c values down the region: */ for (i = 0; i < nr_planes; i++) c[i] += ystep[i]; } } return TRUE; fail: /* Need to disable any partially binned triangle. This is easier * than trying to locate all the triangle, shade-tile, etc, * commands which may have been binned. */ tri->inputs.disable = TRUE; return FALSE; } /** * Try to draw the triangle, restart the scene on failure. */ static void retry_triangle_ccw( struct lp_setup_context *setup, struct fixed_position* position, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4], boolean front) { if (!do_triangle_ccw( setup, position, v0, v1, v2, front )) { if (!lp_setup_flush_and_restart(setup)) return; if (!do_triangle_ccw( setup, position, v0, v1, v2, front )) return; } } /** * Calculate fixed position data for a triangle * It is unfortunate we need to do that here (as we need area * calculated in fixed point), as there's quite some code duplication * to what is done in the jit setup prog. */ static inline void calc_fixed_position(struct lp_setup_context *setup, struct fixed_position* position, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4]) { /* * The rounding may not be quite the same with PIPE_ARCH_SSE * (util_iround right now only does nearest/even on x87, * otherwise nearest/away-from-zero). * Both should be acceptable, I think. */ #if defined(PIPE_ARCH_SSE) __m128 v0r, v1r; __m128 vxy0xy2, vxy1xy0; __m128i vxy0xy2i, vxy1xy0i; __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120; __m128 pix_offset = _mm_set1_ps(setup->pixel_offset); __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE); v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0])); vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]); v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0])); vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2); vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset); vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset); vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one); vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one); vxy0xy2i = _mm_cvtps_epi32(vxy0xy2); vxy1xy0i = _mm_cvtps_epi32(vxy1xy0); dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i); _mm_store_si128((__m128i *)&position->dx01, dxdy0120); /* * For the mul, would need some more shuffles, plus emulation * for the signed mul (without sse41), so don't bother. */ x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0)); x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0)); x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0); y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0); _mm_store_si128((__m128i *)&position->x[0], x0120); _mm_store_si128((__m128i *)&position->y[0], y0120); #else position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset); position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset); position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset); position->x[3] = 0; // should be unused position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset); position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset); position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset); position->y[3] = 0; // should be unused position->dx01 = position->x[0] - position->x[1]; position->dy01 = position->y[0] - position->y[1]; position->dx20 = position->x[2] - position->x[0]; position->dy20 = position->y[2] - position->y[0]; #endif position->area = IMUL64(position->dx01, position->dy20) - IMUL64(position->dx20, position->dy01); } /** * Rotate a triangle, flipping its clockwise direction, * Swaps values for xy[0] and xy[1] */ static inline void rotate_fixed_position_01( struct fixed_position* position ) { int x, y; x = position->x[1]; y = position->y[1]; position->x[1] = position->x[0]; position->y[1] = position->y[0]; position->x[0] = x; position->y[0] = y; position->dx01 = -position->dx01; position->dy01 = -position->dy01; position->dx20 = position->x[2] - position->x[0]; position->dy20 = position->y[2] - position->y[0]; position->area = -position->area; } /** * Rotate a triangle, flipping its clockwise direction, * Swaps values for xy[1] and xy[2] */ static inline void rotate_fixed_position_12( struct fixed_position* position ) { int x, y; x = position->x[2]; y = position->y[2]; position->x[2] = position->x[1]; position->y[2] = position->y[1]; position->x[1] = x; position->y[1] = y; x = position->dx01; y = position->dy01; position->dx01 = -position->dx20; position->dy01 = -position->dy20; position->dx20 = -x; position->dy20 = -y; position->area = -position->area; } /** * Draw triangle if it's CW, cull otherwise. */ static void triangle_cw(struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4]) { PIPE_ALIGN_VAR(16) struct fixed_position position; struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe; if (lp_context->active_statistics_queries) { lp_context->pipeline_statistics.c_primitives++; } calc_fixed_position(setup, &position, v0, v1, v2); if (position.area < 0) { if (setup->flatshade_first) { rotate_fixed_position_12(&position); retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface); } else { rotate_fixed_position_01(&position); retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface); } } } static void triangle_ccw(struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4]) { PIPE_ALIGN_VAR(16) struct fixed_position position; struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe; if (lp_context->active_statistics_queries) { lp_context->pipeline_statistics.c_primitives++; } calc_fixed_position(setup, &position, v0, v1, v2); if (position.area > 0) retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface); } /** * Draw triangle whether it's CW or CCW. */ static void triangle_both(struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4]) { PIPE_ALIGN_VAR(16) struct fixed_position position; struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe; if (lp_context->active_statistics_queries) { lp_context->pipeline_statistics.c_primitives++; } calc_fixed_position(setup, &position, v0, v1, v2); if (0) { assert(!util_is_inf_or_nan(v0[0][0])); assert(!util_is_inf_or_nan(v0[0][1])); assert(!util_is_inf_or_nan(v1[0][0])); assert(!util_is_inf_or_nan(v1[0][1])); assert(!util_is_inf_or_nan(v2[0][0])); assert(!util_is_inf_or_nan(v2[0][1])); } if (position.area > 0) retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface ); else if (position.area < 0) { if (setup->flatshade_first) { rotate_fixed_position_12( &position ); retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface ); } else { rotate_fixed_position_01( &position ); retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface ); } } } static void triangle_noop(struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4]) { } void lp_setup_choose_triangle(struct lp_setup_context *setup) { if (setup->rasterizer_discard) { setup->triangle = triangle_noop; return; } switch (setup->cullmode) { case PIPE_FACE_NONE: setup->triangle = triangle_both; break; case PIPE_FACE_BACK: setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw; break; case PIPE_FACE_FRONT: setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw; break; default: setup->triangle = triangle_noop; break; } }