/* * Copyright (C) 2018 Alyssa Rosenzweig * Copyright (C) 2020 Collabora Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "util/macros.h" #include "util/u_prim.h" #include "util/u_vbuf.h" #include "panfrost-quirks.h" #include "pan_allocate.h" #include "pan_bo.h" #include "pan_cmdstream.h" #include "pan_context.h" #include "pan_job.h" /* If a BO is accessed for a particular shader stage, will it be in the primary * batch (vertex/tiler) or the secondary batch (fragment)? Anything but * fragment will be primary, e.g. compute jobs will be considered * "vertex/tiler" by analogy */ static inline uint32_t panfrost_bo_access_for_stage(enum pipe_shader_type stage) { assert(stage == PIPE_SHADER_FRAGMENT || stage == PIPE_SHADER_VERTEX || stage == PIPE_SHADER_COMPUTE); return stage == PIPE_SHADER_FRAGMENT ? PAN_BO_ACCESS_FRAGMENT : PAN_BO_ACCESS_VERTEX_TILER; } static void panfrost_vt_emit_shared_memory(struct panfrost_context *ctx, struct mali_vertex_tiler_postfix *postfix) { struct panfrost_device *dev = pan_device(ctx->base.screen); struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx); unsigned shift = panfrost_get_stack_shift(batch->stack_size); struct mali_shared_memory shared = { .stack_shift = shift, .scratchpad = panfrost_batch_get_scratchpad(batch, shift, dev->thread_tls_alloc, dev->core_count)->gpu, .shared_workgroup_count = ~0, }; postfix->shared_memory = panfrost_upload_transient(batch, &shared, sizeof(shared)); } static void panfrost_vt_attach_framebuffer(struct panfrost_context *ctx, struct mali_vertex_tiler_postfix *postfix) { struct panfrost_device *dev = pan_device(ctx->base.screen); struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx); /* If we haven't, reserve space for the framebuffer */ if (!batch->framebuffer.gpu) { unsigned size = (dev->quirks & MIDGARD_SFBD) ? sizeof(struct mali_single_framebuffer) : sizeof(struct mali_framebuffer); batch->framebuffer = panfrost_allocate_transient(batch, size); /* Tag the pointer */ if (!(dev->quirks & MIDGARD_SFBD)) batch->framebuffer.gpu |= MALI_MFBD; } postfix->shared_memory = batch->framebuffer.gpu; } static void panfrost_vt_update_rasterizer(struct panfrost_context *ctx, struct mali_vertex_tiler_prefix *prefix, struct mali_vertex_tiler_postfix *postfix) { struct panfrost_rasterizer *rasterizer = ctx->rasterizer; postfix->gl_enables |= 0x7; SET_BIT(postfix->gl_enables, MALI_FRONT_CCW_TOP, rasterizer && rasterizer->base.front_ccw); SET_BIT(postfix->gl_enables, MALI_CULL_FACE_FRONT, rasterizer && (rasterizer->base.cull_face & PIPE_FACE_FRONT)); SET_BIT(postfix->gl_enables, MALI_CULL_FACE_BACK, rasterizer && (rasterizer->base.cull_face & PIPE_FACE_BACK)); SET_BIT(prefix->unknown_draw, MALI_DRAW_FLATSHADE_FIRST, rasterizer && rasterizer->base.flatshade_first); } void panfrost_vt_update_primitive_size(struct panfrost_context *ctx, struct mali_vertex_tiler_prefix *prefix, union midgard_primitive_size *primitive_size) { struct panfrost_rasterizer *rasterizer = ctx->rasterizer; if (!panfrost_writes_point_size(ctx)) { bool points = prefix->draw_mode == MALI_POINTS; float val = 0.0f; if (rasterizer) val = points ? rasterizer->base.point_size : rasterizer->base.line_width; primitive_size->constant = val; } } static void panfrost_vt_update_occlusion_query(struct panfrost_context *ctx, struct mali_vertex_tiler_postfix *postfix) { SET_BIT(postfix->gl_enables, MALI_OCCLUSION_QUERY, ctx->occlusion_query); if (ctx->occlusion_query) postfix->occlusion_counter = ctx->occlusion_query->bo->gpu; else postfix->occlusion_counter = 0; } void panfrost_vt_init(struct panfrost_context *ctx, enum pipe_shader_type stage, struct mali_vertex_tiler_prefix *prefix, struct mali_vertex_tiler_postfix *postfix) { struct panfrost_device *device = pan_device(ctx->base.screen); if (!ctx->shader[stage]) return; memset(prefix, 0, sizeof(*prefix)); memset(postfix, 0, sizeof(*postfix)); if (device->quirks & IS_BIFROST) { postfix->gl_enables = 0x2; panfrost_vt_emit_shared_memory(ctx, postfix); } else { postfix->gl_enables = 0x6; panfrost_vt_attach_framebuffer(ctx, postfix); } if (stage == PIPE_SHADER_FRAGMENT) { panfrost_vt_update_occlusion_query(ctx, postfix); panfrost_vt_update_rasterizer(ctx, prefix, postfix); } } static unsigned panfrost_translate_index_size(unsigned size) { switch (size) { case 1: return MALI_DRAW_INDEXED_UINT8; case 2: return MALI_DRAW_INDEXED_UINT16; case 4: return MALI_DRAW_INDEXED_UINT32; default: unreachable("Invalid index size"); } } /* Gets a GPU address for the associated index buffer. Only gauranteed to be * good for the duration of the draw (transient), could last longer. Also get * the bounds on the index buffer for the range accessed by the draw. We do * these operations together because there are natural optimizations which * require them to be together. */ static mali_ptr panfrost_get_index_buffer_bounded(struct panfrost_context *ctx, const struct pipe_draw_info *info, unsigned *min_index, unsigned *max_index) { struct panfrost_resource *rsrc = pan_resource(info->index.resource); struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx); off_t offset = info->start * info->index_size; bool needs_indices = true; mali_ptr out = 0; if (info->max_index != ~0u) { *min_index = info->min_index; *max_index = info->max_index; needs_indices = false; } if (!info->has_user_indices) { /* Only resources can be directly mapped */ panfrost_batch_add_bo(batch, rsrc->bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | PAN_BO_ACCESS_VERTEX_TILER); out = rsrc->bo->gpu + offset; /* Check the cache */ needs_indices = !panfrost_minmax_cache_get(rsrc->index_cache, info->start, info->count, min_index, max_index); } else { /* Otherwise, we need to upload to transient memory */ const uint8_t *ibuf8 = (const uint8_t *) info->index.user; out = panfrost_upload_transient(batch, ibuf8 + offset, info->count * info->index_size); } if (needs_indices) { /* Fallback */ u_vbuf_get_minmax_index(&ctx->base, info, min_index, max_index); if (!info->has_user_indices) panfrost_minmax_cache_add(rsrc->index_cache, info->start, info->count, *min_index, *max_index); } return out; } void panfrost_vt_set_draw_info(struct panfrost_context *ctx, const struct pipe_draw_info *info, enum mali_draw_mode draw_mode, struct mali_vertex_tiler_postfix *vertex_postfix, struct mali_vertex_tiler_prefix *tiler_prefix, struct mali_vertex_tiler_postfix *tiler_postfix, unsigned *vertex_count, unsigned *padded_count) { tiler_prefix->draw_mode = draw_mode; unsigned draw_flags = 0; if (panfrost_writes_point_size(ctx)) draw_flags |= MALI_DRAW_VARYING_SIZE; if (info->primitive_restart) draw_flags |= MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX; /* These doesn't make much sense */ draw_flags |= 0x3000; if (info->index_size) { unsigned min_index = 0, max_index = 0; tiler_prefix->indices = panfrost_get_index_buffer_bounded(ctx, info, &min_index, &max_index); /* Use the corresponding values */ *vertex_count = max_index - min_index + 1; tiler_postfix->offset_start = vertex_postfix->offset_start = min_index + info->index_bias; tiler_prefix->offset_bias_correction = -min_index; tiler_prefix->index_count = MALI_POSITIVE(info->count); draw_flags |= panfrost_translate_index_size(info->index_size); } else { tiler_prefix->indices = 0; *vertex_count = ctx->vertex_count; tiler_postfix->offset_start = vertex_postfix->offset_start = info->start; tiler_prefix->offset_bias_correction = 0; tiler_prefix->index_count = MALI_POSITIVE(ctx->vertex_count); } tiler_prefix->unknown_draw = draw_flags; /* Encode the padded vertex count */ if (info->instance_count > 1) { *padded_count = panfrost_padded_vertex_count(*vertex_count); unsigned shift = __builtin_ctz(ctx->padded_count); unsigned k = ctx->padded_count >> (shift + 1); tiler_postfix->instance_shift = vertex_postfix->instance_shift = shift; tiler_postfix->instance_odd = vertex_postfix->instance_odd = k; } else { *padded_count = *vertex_count; /* Reset instancing state */ tiler_postfix->instance_shift = vertex_postfix->instance_shift = 0; tiler_postfix->instance_odd = vertex_postfix->instance_odd = 0; } } static void panfrost_shader_meta_init(struct panfrost_context *ctx, enum pipe_shader_type st, struct mali_shader_meta *meta) { const struct panfrost_device *dev = pan_device(ctx->base.screen); struct panfrost_shader_state *ss = panfrost_get_shader_state(ctx, st); memset(meta, 0, sizeof(*meta)); meta->shader = (ss->bo ? ss->bo->gpu : 0) | ss->first_tag; meta->attribute_count = ss->attribute_count; meta->varying_count = ss->varying_count; meta->texture_count = ctx->sampler_view_count[st]; meta->sampler_count = ctx->sampler_count[st]; if (dev->quirks & IS_BIFROST) { meta->bifrost1.unk1 = 0x800200; meta->bifrost1.uniform_buffer_count = panfrost_ubo_count(ctx, st); meta->bifrost2.preload_regs = 0xC0; meta->bifrost2.uniform_count = MIN2(ss->uniform_count, ss->uniform_cutoff); } else { meta->midgard1.uniform_count = MIN2(ss->uniform_count, ss->uniform_cutoff); meta->midgard1.work_count = ss->work_reg_count; meta->midgard1.flags_hi = 0x8; /* XXX */ meta->midgard1.flags_lo = 0x220; meta->midgard1.uniform_buffer_count = panfrost_ubo_count(ctx, st); } } static unsigned panfrost_translate_compare_func(enum pipe_compare_func in) { switch (in) { case PIPE_FUNC_NEVER: return MALI_FUNC_NEVER; case PIPE_FUNC_LESS: return MALI_FUNC_LESS; case PIPE_FUNC_EQUAL: return MALI_FUNC_EQUAL; case PIPE_FUNC_LEQUAL: return MALI_FUNC_LEQUAL; case PIPE_FUNC_GREATER: return MALI_FUNC_GREATER; case PIPE_FUNC_NOTEQUAL: return MALI_FUNC_NOTEQUAL; case PIPE_FUNC_GEQUAL: return MALI_FUNC_GEQUAL; case PIPE_FUNC_ALWAYS: return MALI_FUNC_ALWAYS; default: unreachable("Invalid func"); } } static unsigned panfrost_translate_stencil_op(enum pipe_stencil_op in) { switch (in) { case PIPE_STENCIL_OP_KEEP: return MALI_STENCIL_KEEP; case PIPE_STENCIL_OP_ZERO: return MALI_STENCIL_ZERO; case PIPE_STENCIL_OP_REPLACE: return MALI_STENCIL_REPLACE; case PIPE_STENCIL_OP_INCR: return MALI_STENCIL_INCR; case PIPE_STENCIL_OP_DECR: return MALI_STENCIL_DECR; case PIPE_STENCIL_OP_INCR_WRAP: return MALI_STENCIL_INCR_WRAP; case PIPE_STENCIL_OP_DECR_WRAP: return MALI_STENCIL_DECR_WRAP; case PIPE_STENCIL_OP_INVERT: return MALI_STENCIL_INVERT; default: unreachable("Invalid stencil op"); } } static unsigned translate_tex_wrap(enum pipe_tex_wrap w) { switch (w) { case PIPE_TEX_WRAP_REPEAT: return MALI_WRAP_REPEAT; case PIPE_TEX_WRAP_CLAMP: return MALI_WRAP_CLAMP; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return MALI_WRAP_CLAMP_TO_EDGE; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return MALI_WRAP_CLAMP_TO_BORDER; case PIPE_TEX_WRAP_MIRROR_REPEAT: return MALI_WRAP_MIRRORED_REPEAT; case PIPE_TEX_WRAP_MIRROR_CLAMP: return MALI_WRAP_MIRRORED_CLAMP; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return MALI_WRAP_MIRRORED_CLAMP_TO_EDGE; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return MALI_WRAP_MIRRORED_CLAMP_TO_BORDER; default: unreachable("Invalid wrap"); } } void panfrost_sampler_desc_init(const struct pipe_sampler_state *cso, struct mali_sampler_descriptor *hw) { unsigned func = panfrost_translate_compare_func(cso->compare_func); bool min_nearest = cso->min_img_filter == PIPE_TEX_FILTER_NEAREST; bool mag_nearest = cso->mag_img_filter == PIPE_TEX_FILTER_NEAREST; bool mip_linear = cso->min_mip_filter == PIPE_TEX_MIPFILTER_LINEAR; unsigned min_filter = min_nearest ? MALI_SAMP_MIN_NEAREST : 0; unsigned mag_filter = mag_nearest ? MALI_SAMP_MAG_NEAREST : 0; unsigned mip_filter = mip_linear ? (MALI_SAMP_MIP_LINEAR_1 | MALI_SAMP_MIP_LINEAR_2) : 0; unsigned normalized = cso->normalized_coords ? MALI_SAMP_NORM_COORDS : 0; *hw = (struct mali_sampler_descriptor) { .filter_mode = min_filter | mag_filter | mip_filter | normalized, .wrap_s = translate_tex_wrap(cso->wrap_s), .wrap_t = translate_tex_wrap(cso->wrap_t), .wrap_r = translate_tex_wrap(cso->wrap_r), .compare_func = panfrost_flip_compare_func(func), .border_color = { cso->border_color.f[0], cso->border_color.f[1], cso->border_color.f[2], cso->border_color.f[3] }, .min_lod = FIXED_16(cso->min_lod, false), /* clamp at 0 */ .max_lod = FIXED_16(cso->max_lod, false), .lod_bias = FIXED_16(cso->lod_bias, true), /* can be negative */ .seamless_cube_map = cso->seamless_cube_map, }; /* If necessary, we disable mipmapping in the sampler descriptor by * clamping the LOD as tight as possible (from 0 to epsilon, * essentially -- remember these are fixed point numbers, so * epsilon=1/256) */ if (cso->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) hw->max_lod = hw->min_lod + 1; } void panfrost_sampler_desc_init_bifrost(const struct pipe_sampler_state *cso, struct bifrost_sampler_descriptor *hw) { *hw = (struct bifrost_sampler_descriptor) { .unk1 = 0x1, .wrap_s = translate_tex_wrap(cso->wrap_s), .wrap_t = translate_tex_wrap(cso->wrap_t), .wrap_r = translate_tex_wrap(cso->wrap_r), .unk8 = 0x8, .unk2 = 0x2, .min_filter = cso->min_img_filter == PIPE_TEX_FILTER_NEAREST, .norm_coords = cso->normalized_coords, .mip_filter = cso->min_mip_filter == PIPE_TEX_MIPFILTER_LINEAR, .mag_filter = cso->mag_img_filter == PIPE_TEX_FILTER_LINEAR, .min_lod = FIXED_16(cso->min_lod, false), /* clamp at 0 */ .max_lod = FIXED_16(cso->max_lod, false), }; /* If necessary, we disable mipmapping in the sampler descriptor by * clamping the LOD as tight as possible (from 0 to epsilon, * essentially -- remember these are fixed point numbers, so * epsilon=1/256) */ if (cso->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) hw->max_lod = hw->min_lod + 1; } static void panfrost_make_stencil_state(const struct pipe_stencil_state *in, struct mali_stencil_test *out) { out->ref = 0; /* Gallium gets it from elsewhere */ out->mask = in->valuemask; out->func = panfrost_translate_compare_func(in->func); out->sfail = panfrost_translate_stencil_op(in->fail_op); out->dpfail = panfrost_translate_stencil_op(in->zfail_op); out->dppass = panfrost_translate_stencil_op(in->zpass_op); } static void panfrost_frag_meta_rasterizer_update(struct panfrost_context *ctx, struct mali_shader_meta *fragmeta) { if (!ctx->rasterizer) { SET_BIT(fragmeta->unknown2_4, MALI_NO_MSAA, true); SET_BIT(fragmeta->unknown2_3, MALI_HAS_MSAA, false); fragmeta->depth_units = 0.0f; fragmeta->depth_factor = 0.0f; SET_BIT(fragmeta->unknown2_4, MALI_DEPTH_RANGE_A, false); SET_BIT(fragmeta->unknown2_4, MALI_DEPTH_RANGE_B, false); return; } bool msaa = ctx->rasterizer->base.multisample; /* TODO: Sample size */ SET_BIT(fragmeta->unknown2_3, MALI_HAS_MSAA, msaa); SET_BIT(fragmeta->unknown2_4, MALI_NO_MSAA, !msaa); fragmeta->depth_units = ctx->rasterizer->base.offset_units * 2.0f; fragmeta->depth_factor = ctx->rasterizer->base.offset_scale; /* XXX: Which bit is which? Does this maybe allow offseting not-tri? */ SET_BIT(fragmeta->unknown2_4, MALI_DEPTH_RANGE_A, ctx->rasterizer->base.offset_tri); SET_BIT(fragmeta->unknown2_4, MALI_DEPTH_RANGE_B, ctx->rasterizer->base.offset_tri); } static void panfrost_frag_meta_zsa_update(struct panfrost_context *ctx, struct mali_shader_meta *fragmeta) { const struct pipe_depth_stencil_alpha_state *zsa = ctx->depth_stencil; int zfunc = PIPE_FUNC_ALWAYS; if (!zsa) { struct pipe_stencil_state default_stencil = { .enabled = 0, .func = PIPE_FUNC_ALWAYS, .fail_op = MALI_STENCIL_KEEP, .zfail_op = MALI_STENCIL_KEEP, .zpass_op = MALI_STENCIL_KEEP, .writemask = 0xFF, .valuemask = 0xFF }; panfrost_make_stencil_state(&default_stencil, &fragmeta->stencil_front); fragmeta->stencil_mask_front = default_stencil.writemask; fragmeta->stencil_back = fragmeta->stencil_front; fragmeta->stencil_mask_back = default_stencil.writemask; SET_BIT(fragmeta->unknown2_4, MALI_STENCIL_TEST, false); SET_BIT(fragmeta->unknown2_3, MALI_DEPTH_WRITEMASK, false); } else { SET_BIT(fragmeta->unknown2_4, MALI_STENCIL_TEST, zsa->stencil[0].enabled); panfrost_make_stencil_state(&zsa->stencil[0], &fragmeta->stencil_front); fragmeta->stencil_mask_front = zsa->stencil[0].writemask; fragmeta->stencil_front.ref = ctx->stencil_ref.ref_value[0]; /* If back-stencil is not enabled, use the front values */ if (zsa->stencil[1].enabled) { panfrost_make_stencil_state(&zsa->stencil[1], &fragmeta->stencil_back); fragmeta->stencil_mask_back = zsa->stencil[1].writemask; fragmeta->stencil_back.ref = ctx->stencil_ref.ref_value[1]; } else { fragmeta->stencil_back = fragmeta->stencil_front; fragmeta->stencil_mask_back = fragmeta->stencil_mask_front; fragmeta->stencil_back.ref = fragmeta->stencil_front.ref; } if (zsa->depth.enabled) zfunc = zsa->depth.func; /* Depth state (TODO: Refactor) */ SET_BIT(fragmeta->unknown2_3, MALI_DEPTH_WRITEMASK, zsa->depth.writemask); } fragmeta->unknown2_3 &= ~MALI_DEPTH_FUNC_MASK; fragmeta->unknown2_3 |= MALI_DEPTH_FUNC(panfrost_translate_compare_func(zfunc)); } static void panfrost_frag_meta_blend_update(struct panfrost_context *ctx, struct mali_shader_meta *fragmeta, struct midgard_blend_rt *rts) { const struct panfrost_device *dev = pan_device(ctx->base.screen); SET_BIT(fragmeta->unknown2_4, MALI_NO_DITHER, (dev->quirks & MIDGARD_SFBD) && ctx->blend && !ctx->blend->base.dither); /* Get blending setup */ unsigned rt_count = MAX2(ctx->pipe_framebuffer.nr_cbufs, 1); struct panfrost_blend_final blend[PIPE_MAX_COLOR_BUFS]; unsigned shader_offset = 0; struct panfrost_bo *shader_bo = NULL; for (unsigned c = 0; c < rt_count; ++c) blend[c] = panfrost_get_blend_for_context(ctx, c, &shader_bo, &shader_offset); /* If there is a blend shader, work registers are shared. XXX: opt */ for (unsigned c = 0; c < rt_count; ++c) { if (blend[c].is_shader) fragmeta->midgard1.work_count = 16; } /* Even on MFBD, the shader descriptor gets blend shaders. It's *also* * copied to the blend_meta appended (by convention), but this is the * field actually read by the hardware. (Or maybe both are read...?). * Specify the last RTi with a blend shader. */ fragmeta->blend.shader = 0; for (signed rt = (rt_count - 1); rt >= 0; --rt) { if (!blend[rt].is_shader) continue; fragmeta->blend.shader = blend[rt].shader.gpu | blend[rt].shader.first_tag; break; } if (dev->quirks & MIDGARD_SFBD) { /* When only a single render target platform is used, the blend * information is inside the shader meta itself. We additionally * need to signal CAN_DISCARD for nontrivial blend modes (so * we're able to read back the destination buffer) */ SET_BIT(fragmeta->unknown2_3, MALI_HAS_BLEND_SHADER, blend[0].is_shader); if (!blend[0].is_shader) { fragmeta->blend.equation = *blend[0].equation.equation; fragmeta->blend.constant = blend[0].equation.constant; } SET_BIT(fragmeta->unknown2_3, MALI_CAN_DISCARD, !blend[0].no_blending); return; } /* Additional blend descriptor tacked on for jobs using MFBD */ for (unsigned i = 0; i < rt_count; ++i) { rts[i].flags = 0x200; bool is_srgb = (ctx->pipe_framebuffer.nr_cbufs > i) && (ctx->pipe_framebuffer.cbufs[i]) && util_format_is_srgb(ctx->pipe_framebuffer.cbufs[i]->format); SET_BIT(rts[i].flags, MALI_BLEND_MRT_SHADER, blend[i].is_shader); SET_BIT(rts[i].flags, MALI_BLEND_LOAD_TIB, !blend[i].no_blending); SET_BIT(rts[i].flags, MALI_BLEND_SRGB, is_srgb); SET_BIT(rts[i].flags, MALI_BLEND_NO_DITHER, !ctx->blend->base.dither); if (blend[i].is_shader) { rts[i].blend.shader = blend[i].shader.gpu | blend[i].shader.first_tag; } else { rts[i].blend.equation = *blend[i].equation.equation; rts[i].blend.constant = blend[i].equation.constant; } } } static void panfrost_frag_shader_meta_init(struct panfrost_context *ctx, struct mali_shader_meta *fragmeta, struct midgard_blend_rt *rts) { const struct panfrost_device *dev = pan_device(ctx->base.screen); struct panfrost_shader_state *fs; fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT); fragmeta->alpha_coverage = ~MALI_ALPHA_COVERAGE(0.000000); fragmeta->unknown2_3 = MALI_DEPTH_FUNC(MALI_FUNC_ALWAYS) | 0x3010; fragmeta->unknown2_4 = 0x4e0; /* unknown2_4 has 0x10 bit set on T6XX and T720. We don't know why this * is required (independent of 32-bit/64-bit descriptors), or why it's * not used on later GPU revisions. Otherwise, all shader jobs fault on * these earlier chips (perhaps this is a chicken bit of some kind). * More investigation is needed. */ SET_BIT(fragmeta->unknown2_4, 0x10, dev->quirks & MIDGARD_SFBD); /* Depending on whether it's legal to in the given shader, we try to * enable early-z testing (or forward-pixel kill?) */ SET_BIT(fragmeta->midgard1.flags_lo, MALI_EARLY_Z, !fs->can_discard && !fs->writes_depth); /* Add the writes Z/S flags if needed. */ SET_BIT(fragmeta->midgard1.flags_lo, MALI_WRITES_Z, fs->writes_depth); SET_BIT(fragmeta->midgard1.flags_hi, MALI_WRITES_S, fs->writes_stencil); /* Any time texturing is used, derivatives are implicitly calculated, * so we need to enable helper invocations */ SET_BIT(fragmeta->midgard1.flags_lo, MALI_HELPER_INVOCATIONS, fs->helper_invocations); /* CAN_DISCARD should be set if the fragment shader possibly contains a * 'discard' instruction. It is likely this is related to optimizations * related to forward-pixel kill, as per "Mali Performance 3: Is * EGL_BUFFER_PRESERVED a good thing?" by Peter Harris */ const struct pipe_depth_stencil_alpha_state *zsa = ctx->depth_stencil; bool depth_enabled = fs->writes_depth || (zsa && zsa->depth.enabled && zsa->depth.func != PIPE_FUNC_ALWAYS); SET_BIT(fragmeta->unknown2_3, MALI_CAN_DISCARD, fs->can_discard); SET_BIT(fragmeta->midgard1.flags_lo, 0x400, !depth_enabled && fs->can_discard); SET_BIT(fragmeta->midgard1.flags_lo, MALI_READS_ZS, depth_enabled && fs->can_discard); panfrost_frag_meta_rasterizer_update(ctx, fragmeta); panfrost_frag_meta_zsa_update(ctx, fragmeta); panfrost_frag_meta_blend_update(ctx, fragmeta, rts); } void panfrost_emit_shader_meta(struct panfrost_batch *batch, enum pipe_shader_type st, struct mali_vertex_tiler_postfix *postfix) { struct panfrost_context *ctx = batch->ctx; struct panfrost_shader_state *ss = panfrost_get_shader_state(ctx, st); if (!ss) { postfix->shader = 0; return; } struct mali_shader_meta meta; panfrost_shader_meta_init(ctx, st, &meta); /* Add the shader BO to the batch. */ panfrost_batch_add_bo(batch, ss->bo, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_READ | panfrost_bo_access_for_stage(st)); mali_ptr shader_ptr; if (st == PIPE_SHADER_FRAGMENT) { struct panfrost_device *dev = pan_device(ctx->base.screen); unsigned rt_count = MAX2(ctx->pipe_framebuffer.nr_cbufs, 1); size_t desc_size = sizeof(meta); struct midgard_blend_rt rts[4]; struct panfrost_transfer xfer; assert(rt_count <= ARRAY_SIZE(rts)); panfrost_frag_shader_meta_init(ctx, &meta, rts); if (!(dev->quirks & MIDGARD_SFBD)) desc_size += sizeof(*rts) * rt_count; xfer = panfrost_allocate_transient(batch, desc_size); memcpy(xfer.cpu, &meta, sizeof(meta)); memcpy(xfer.cpu + sizeof(meta), rts, sizeof(*rts) * rt_count); shader_ptr = xfer.gpu; } else { shader_ptr = panfrost_upload_transient(batch, &meta, sizeof(meta)); } postfix->shader = shader_ptr; } static void panfrost_mali_viewport_init(struct panfrost_context *ctx, struct mali_viewport *mvp) { const struct pipe_viewport_state *vp = &ctx->pipe_viewport; /* Clip bounds are encoded as floats. The viewport itself is encoded as * (somewhat) asymmetric ints. */ const struct pipe_scissor_state *ss = &ctx->scissor; memset(mvp, 0, sizeof(*mvp)); /* By default, do no viewport clipping, i.e. clip to (-inf, inf) in * each direction. Clipping to the viewport in theory should work, but * in practice causes issues when we're not explicitly trying to * scissor */ *mvp = (struct mali_viewport) { .clip_minx = -INFINITY, .clip_miny = -INFINITY, .clip_maxx = INFINITY, .clip_maxy = INFINITY, }; /* Always scissor to the viewport by default. */ float vp_minx = (int) (vp->translate[0] - fabsf(vp->scale[0])); float vp_maxx = (int) (vp->translate[0] + fabsf(vp->scale[0])); float vp_miny = (int) (vp->translate[1] - fabsf(vp->scale[1])); float vp_maxy = (int) (vp->translate[1] + fabsf(vp->scale[1])); float minz = (vp->translate[2] - fabsf(vp->scale[2])); float maxz = (vp->translate[2] + fabsf(vp->scale[2])); /* Apply the scissor test */ unsigned minx, miny, maxx, maxy; if (ss && ctx->rasterizer && ctx->rasterizer->base.scissor) { minx = MAX2(ss->minx, vp_minx); miny = MAX2(ss->miny, vp_miny); maxx = MIN2(ss->maxx, vp_maxx); maxy = MIN2(ss->maxy, vp_maxy); } else { minx = vp_minx; miny = vp_miny; maxx = vp_maxx; maxy = vp_maxy; } /* Hardware needs the min/max to be strictly ordered, so flip if we * need to. The viewport transformation in the vertex shader will * handle the negatives if we don't */ if (miny > maxy) { unsigned temp = miny; miny = maxy; maxy = temp; } if (minx > maxx) { unsigned temp = minx; minx = maxx; maxx = temp; } if (minz > maxz) { float temp = minz; minz = maxz; maxz = temp; } /* Clamp to the framebuffer size as a last check */ minx = MIN2(ctx->pipe_framebuffer.width, minx); maxx = MIN2(ctx->pipe_framebuffer.width, maxx); miny = MIN2(ctx->pipe_framebuffer.height, miny); maxy = MIN2(ctx->pipe_framebuffer.height, maxy); /* Upload */ mvp->viewport0[0] = minx; mvp->viewport1[0] = MALI_POSITIVE(maxx); mvp->viewport0[1] = miny; mvp->viewport1[1] = MALI_POSITIVE(maxy); mvp->clip_minz = minz; mvp->clip_maxz = maxz; } void panfrost_emit_viewport(struct panfrost_batch *batch, struct mali_vertex_tiler_postfix *tiler_postfix) { struct panfrost_context *ctx = batch->ctx; struct mali_viewport mvp; panfrost_mali_viewport_init(batch->ctx, &mvp); /* Update the job, unless we're doing wallpapering (whose lack of * scissor we can ignore, since if we "miss" a tile of wallpaper, it'll * just... be faster :) */ if (!ctx->wallpaper_batch) panfrost_batch_union_scissor(batch, mvp.viewport0[0], mvp.viewport0[1], mvp.viewport1[0] + 1, mvp.viewport1[1] + 1); tiler_postfix->viewport = panfrost_upload_transient(batch, &mvp, sizeof(mvp)); } static mali_ptr panfrost_map_constant_buffer_gpu(struct panfrost_batch *batch, enum pipe_shader_type st, struct panfrost_constant_buffer *buf, unsigned index) { struct pipe_constant_buffer *cb = &buf->cb[index]; struct panfrost_resource *rsrc = pan_resource(cb->buffer); if (rsrc) { panfrost_batch_add_bo(batch, rsrc->bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | panfrost_bo_access_for_stage(st)); /* Alignment gauranteed by * PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT */ return rsrc->bo->gpu + cb->buffer_offset; } else if (cb->user_buffer) { return panfrost_upload_transient(batch, cb->user_buffer + cb->buffer_offset, cb->buffer_size); } else { unreachable("No constant buffer"); } } struct sysval_uniform { union { float f[4]; int32_t i[4]; uint32_t u[4]; uint64_t du[2]; }; }; static void panfrost_upload_viewport_scale_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; const struct pipe_viewport_state *vp = &ctx->pipe_viewport; uniform->f[0] = vp->scale[0]; uniform->f[1] = vp->scale[1]; uniform->f[2] = vp->scale[2]; } static void panfrost_upload_viewport_offset_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; const struct pipe_viewport_state *vp = &ctx->pipe_viewport; uniform->f[0] = vp->translate[0]; uniform->f[1] = vp->translate[1]; uniform->f[2] = vp->translate[2]; } static void panfrost_upload_txs_sysval(struct panfrost_batch *batch, enum pipe_shader_type st, unsigned int sysvalid, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; unsigned texidx = PAN_SYSVAL_ID_TO_TXS_TEX_IDX(sysvalid); unsigned dim = PAN_SYSVAL_ID_TO_TXS_DIM(sysvalid); bool is_array = PAN_SYSVAL_ID_TO_TXS_IS_ARRAY(sysvalid); struct pipe_sampler_view *tex = &ctx->sampler_views[st][texidx]->base; assert(dim); uniform->i[0] = u_minify(tex->texture->width0, tex->u.tex.first_level); if (dim > 1) uniform->i[1] = u_minify(tex->texture->height0, tex->u.tex.first_level); if (dim > 2) uniform->i[2] = u_minify(tex->texture->depth0, tex->u.tex.first_level); if (is_array) uniform->i[dim] = tex->texture->array_size; } static void panfrost_upload_ssbo_sysval(struct panfrost_batch *batch, enum pipe_shader_type st, unsigned ssbo_id, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; assert(ctx->ssbo_mask[st] & (1 << ssbo_id)); struct pipe_shader_buffer sb = ctx->ssbo[st][ssbo_id]; /* Compute address */ struct panfrost_bo *bo = pan_resource(sb.buffer)->bo; panfrost_batch_add_bo(batch, bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_RW | panfrost_bo_access_for_stage(st)); /* Upload address and size as sysval */ uniform->du[0] = bo->gpu + sb.buffer_offset; uniform->u[2] = sb.buffer_size; } static void panfrost_upload_sampler_sysval(struct panfrost_batch *batch, enum pipe_shader_type st, unsigned samp_idx, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; struct pipe_sampler_state *sampl = &ctx->samplers[st][samp_idx]->base; uniform->f[0] = sampl->min_lod; uniform->f[1] = sampl->max_lod; uniform->f[2] = sampl->lod_bias; /* Even without any errata, Midgard represents "no mipmapping" as * fixing the LOD with the clamps; keep behaviour consistent. c.f. * panfrost_create_sampler_state which also explains our choice of * epsilon value (again to keep behaviour consistent) */ if (sampl->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) uniform->f[1] = uniform->f[0] + (1.0/256.0); } static void panfrost_upload_num_work_groups_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; uniform->u[0] = ctx->compute_grid->grid[0]; uniform->u[1] = ctx->compute_grid->grid[1]; uniform->u[2] = ctx->compute_grid->grid[2]; } static void panfrost_upload_sysvals(struct panfrost_batch *batch, void *buf, struct panfrost_shader_state *ss, enum pipe_shader_type st) { struct sysval_uniform *uniforms = (void *)buf; for (unsigned i = 0; i < ss->sysval_count; ++i) { int sysval = ss->sysval[i]; switch (PAN_SYSVAL_TYPE(sysval)) { case PAN_SYSVAL_VIEWPORT_SCALE: panfrost_upload_viewport_scale_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_VIEWPORT_OFFSET: panfrost_upload_viewport_offset_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_TEXTURE_SIZE: panfrost_upload_txs_sysval(batch, st, PAN_SYSVAL_ID(sysval), &uniforms[i]); break; case PAN_SYSVAL_SSBO: panfrost_upload_ssbo_sysval(batch, st, PAN_SYSVAL_ID(sysval), &uniforms[i]); break; case PAN_SYSVAL_NUM_WORK_GROUPS: panfrost_upload_num_work_groups_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_SAMPLER: panfrost_upload_sampler_sysval(batch, st, PAN_SYSVAL_ID(sysval), &uniforms[i]); break; default: assert(0); } } } static const void * panfrost_map_constant_buffer_cpu(struct panfrost_constant_buffer *buf, unsigned index) { struct pipe_constant_buffer *cb = &buf->cb[index]; struct panfrost_resource *rsrc = pan_resource(cb->buffer); if (rsrc) return rsrc->bo->cpu; else if (cb->user_buffer) return cb->user_buffer; else unreachable("No constant buffer"); } void panfrost_emit_const_buf(struct panfrost_batch *batch, enum pipe_shader_type stage, struct mali_vertex_tiler_postfix *postfix) { struct panfrost_context *ctx = batch->ctx; struct panfrost_shader_variants *all = ctx->shader[stage]; if (!all) return; struct panfrost_constant_buffer *buf = &ctx->constant_buffer[stage]; struct panfrost_shader_state *ss = &all->variants[all->active_variant]; /* Uniforms are implicitly UBO #0 */ bool has_uniforms = buf->enabled_mask & (1 << 0); /* Allocate room for the sysval and the uniforms */ size_t sys_size = sizeof(float) * 4 * ss->sysval_count; size_t uniform_size = has_uniforms ? (buf->cb[0].buffer_size) : 0; size_t size = sys_size + uniform_size; struct panfrost_transfer transfer = panfrost_allocate_transient(batch, size); /* Upload sysvals requested by the shader */ panfrost_upload_sysvals(batch, transfer.cpu, ss, stage); /* Upload uniforms */ if (has_uniforms && uniform_size) { const void *cpu = panfrost_map_constant_buffer_cpu(buf, 0); memcpy(transfer.cpu + sys_size, cpu, uniform_size); } /* Next up, attach UBOs. UBO #0 is the uniforms we just * uploaded */ unsigned ubo_count = panfrost_ubo_count(ctx, stage); assert(ubo_count >= 1); size_t sz = sizeof(uint64_t) * ubo_count; uint64_t ubos[PAN_MAX_CONST_BUFFERS]; int uniform_count = ss->uniform_count; /* Upload uniforms as a UBO */ ubos[0] = MALI_MAKE_UBO(2 + uniform_count, transfer.gpu); /* The rest are honest-to-goodness UBOs */ for (unsigned ubo = 1; ubo < ubo_count; ++ubo) { size_t usz = buf->cb[ubo].buffer_size; bool enabled = buf->enabled_mask & (1 << ubo); bool empty = usz == 0; if (!enabled || empty) { /* Stub out disabled UBOs to catch accesses */ ubos[ubo] = MALI_MAKE_UBO(0, 0xDEAD0000); continue; } mali_ptr gpu = panfrost_map_constant_buffer_gpu(batch, stage, buf, ubo); unsigned bytes_per_field = 16; unsigned aligned = ALIGN_POT(usz, bytes_per_field); ubos[ubo] = MALI_MAKE_UBO(aligned / bytes_per_field, gpu); } mali_ptr ubufs = panfrost_upload_transient(batch, ubos, sz); postfix->uniforms = transfer.gpu; postfix->uniform_buffers = ubufs; buf->dirty_mask = 0; } void panfrost_emit_shared_memory(struct panfrost_batch *batch, const struct pipe_grid_info *info, struct midgard_payload_vertex_tiler *vtp) { struct panfrost_context *ctx = batch->ctx; struct panfrost_shader_variants *all = ctx->shader[PIPE_SHADER_COMPUTE]; struct panfrost_shader_state *ss = &all->variants[all->active_variant]; unsigned single_size = util_next_power_of_two(MAX2(ss->shared_size, 128)); unsigned shared_size = single_size * info->grid[0] * info->grid[1] * info->grid[2] * 4; struct panfrost_bo *bo = panfrost_batch_get_shared_memory(batch, shared_size, 1); struct mali_shared_memory shared = { .shared_memory = bo->gpu, .shared_workgroup_count = util_logbase2_ceil(info->grid[0]) + util_logbase2_ceil(info->grid[1]) + util_logbase2_ceil(info->grid[2]), .shared_unk1 = 0x2, .shared_shift = util_logbase2(single_size) - 1 }; vtp->postfix.shared_memory = panfrost_upload_transient(batch, &shared, sizeof(shared)); } static mali_ptr panfrost_get_tex_desc(struct panfrost_batch *batch, enum pipe_shader_type st, struct panfrost_sampler_view *view) { if (!view) return (mali_ptr) 0; struct pipe_sampler_view *pview = &view->base; struct panfrost_resource *rsrc = pan_resource(pview->texture); /* Add the BO to the job so it's retained until the job is done. */ panfrost_batch_add_bo(batch, rsrc->bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | panfrost_bo_access_for_stage(st)); panfrost_batch_add_bo(batch, view->midgard_bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | panfrost_bo_access_for_stage(st)); return view->midgard_bo->gpu; } void panfrost_emit_texture_descriptors(struct panfrost_batch *batch, enum pipe_shader_type stage, struct mali_vertex_tiler_postfix *postfix) { struct panfrost_context *ctx = batch->ctx; struct panfrost_device *device = pan_device(ctx->base.screen); if (!ctx->sampler_view_count[stage]) return; if (device->quirks & IS_BIFROST) { struct bifrost_texture_descriptor *descriptors; descriptors = malloc(sizeof(struct bifrost_texture_descriptor) * ctx->sampler_view_count[stage]); for (int i = 0; i < ctx->sampler_view_count[stage]; ++i) { struct panfrost_sampler_view *view = ctx->sampler_views[stage][i]; struct pipe_sampler_view *pview = &view->base; struct panfrost_resource *rsrc = pan_resource(pview->texture); /* Add the BOs to the job so they are retained until the job is done. */ panfrost_batch_add_bo(batch, rsrc->bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | panfrost_bo_access_for_stage(stage)); panfrost_batch_add_bo(batch, view->bifrost_bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | panfrost_bo_access_for_stage(stage)); memcpy(&descriptors[i], view->bifrost_descriptor, sizeof(*view->bifrost_descriptor)); } postfix->textures = panfrost_upload_transient(batch, descriptors, sizeof(struct bifrost_texture_descriptor) * ctx->sampler_view_count[stage]); } else { uint64_t trampolines[PIPE_MAX_SHADER_SAMPLER_VIEWS]; for (int i = 0; i < ctx->sampler_view_count[stage]; ++i) trampolines[i] = panfrost_get_tex_desc(batch, stage, ctx->sampler_views[stage][i]); postfix->textures = panfrost_upload_transient(batch, trampolines, sizeof(uint64_t) * ctx->sampler_view_count[stage]); } } void panfrost_emit_sampler_descriptors(struct panfrost_batch *batch, enum pipe_shader_type stage, struct mali_vertex_tiler_postfix *postfix) { struct panfrost_context *ctx = batch->ctx; struct panfrost_device *device = pan_device(ctx->base.screen); if (!ctx->sampler_count[stage]) return; if (device->quirks & IS_BIFROST) { size_t desc_size = sizeof(struct bifrost_sampler_descriptor); size_t transfer_size = desc_size * ctx->sampler_count[stage]; struct panfrost_transfer transfer = panfrost_allocate_transient(batch, transfer_size); struct bifrost_sampler_descriptor *desc = (struct bifrost_sampler_descriptor *)transfer.cpu; for (int i = 0; i < ctx->sampler_count[stage]; ++i) desc[i] = ctx->samplers[stage][i]->bifrost_hw; postfix->sampler_descriptor = transfer.gpu; } else { size_t desc_size = sizeof(struct mali_sampler_descriptor); size_t transfer_size = desc_size * ctx->sampler_count[stage]; struct panfrost_transfer transfer = panfrost_allocate_transient(batch, transfer_size); struct mali_sampler_descriptor *desc = (struct mali_sampler_descriptor *)transfer.cpu; for (int i = 0; i < ctx->sampler_count[stage]; ++i) desc[i] = ctx->samplers[stage][i]->midgard_hw; postfix->sampler_descriptor = transfer.gpu; } } void panfrost_emit_vertex_attr_meta(struct panfrost_batch *batch, struct mali_vertex_tiler_postfix *vertex_postfix) { struct panfrost_context *ctx = batch->ctx; if (!ctx->vertex) return; struct panfrost_vertex_state *so = ctx->vertex; panfrost_vertex_state_upd_attr_offs(ctx, vertex_postfix); vertex_postfix->attribute_meta = panfrost_upload_transient(batch, so->hw, sizeof(*so->hw) * PAN_MAX_ATTRIBUTE); } void panfrost_emit_vertex_data(struct panfrost_batch *batch, struct mali_vertex_tiler_postfix *vertex_postfix) { struct panfrost_context *ctx = batch->ctx; struct panfrost_vertex_state *so = ctx->vertex; /* Staged mali_attr, and index into them. i =/= k, depending on the * vertex buffer mask and instancing. Twice as much room is allocated, * for a worst case of NPOT_DIVIDEs which take up extra slot */ union mali_attr attrs[PIPE_MAX_ATTRIBS * 2]; unsigned k = 0; for (unsigned i = 0; i < so->num_elements; ++i) { /* We map a mali_attr to be 1:1 with the mali_attr_meta, which * means duplicating some vertex buffers (who cares? aside from * maybe some caching implications but I somehow doubt that * matters) */ struct pipe_vertex_element *elem = &so->pipe[i]; unsigned vbi = elem->vertex_buffer_index; /* The exception to 1:1 mapping is that we can have multiple * entries (NPOT divisors), so we fixup anyways */ so->hw[i].index = k; if (!(ctx->vb_mask & (1 << vbi))) continue; struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi]; struct panfrost_resource *rsrc; rsrc = pan_resource(buf->buffer.resource); if (!rsrc) continue; /* Align to 64 bytes by masking off the lower bits. This * will be adjusted back when we fixup the src_offset in * mali_attr_meta */ mali_ptr raw_addr = rsrc->bo->gpu + buf->buffer_offset; mali_ptr addr = raw_addr & ~63; unsigned chopped_addr = raw_addr - addr; /* Add a dependency of the batch on the vertex buffer */ panfrost_batch_add_bo(batch, rsrc->bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ | PAN_BO_ACCESS_VERTEX_TILER); /* Set common fields */ attrs[k].elements = addr; attrs[k].stride = buf->stride; /* Since we advanced the base pointer, we shrink the buffer * size */ attrs[k].size = rsrc->base.width0 - buf->buffer_offset; /* We need to add the extra size we masked off (for * correctness) so the data doesn't get clamped away */ attrs[k].size += chopped_addr; /* For non-instancing make sure we initialize */ attrs[k].shift = attrs[k].extra_flags = 0; /* Instancing uses a dramatically different code path than * linear, so dispatch for the actual emission now that the * common code is finished */ unsigned divisor = elem->instance_divisor; if (divisor && ctx->instance_count == 1) { /* Silly corner case where there's a divisor(=1) but * there's no legitimate instancing. So we want *every* * attribute to be the same. So set stride to zero so * we don't go anywhere. */ attrs[k].size = attrs[k].stride + chopped_addr; attrs[k].stride = 0; attrs[k++].elements |= MALI_ATTR_LINEAR; } else if (ctx->instance_count <= 1) { /* Normal, non-instanced attributes */ attrs[k++].elements |= MALI_ATTR_LINEAR; } else { unsigned instance_shift = vertex_postfix->instance_shift; unsigned instance_odd = vertex_postfix->instance_odd; k += panfrost_vertex_instanced(ctx->padded_count, instance_shift, instance_odd, divisor, &attrs[k]); } } /* Add special gl_VertexID/gl_InstanceID buffers */ panfrost_vertex_id(ctx->padded_count, &attrs[k]); so->hw[PAN_VERTEX_ID].index = k++; panfrost_instance_id(ctx->padded_count, &attrs[k]); so->hw[PAN_INSTANCE_ID].index = k++; /* Upload whatever we emitted and go */ vertex_postfix->attributes = panfrost_upload_transient(batch, attrs, k * sizeof(*attrs)); } static mali_ptr panfrost_emit_varyings(struct panfrost_batch *batch, union mali_attr *slot, unsigned stride, unsigned count) { /* Fill out the descriptor */ slot->stride = stride; slot->size = stride * count; slot->shift = slot->extra_flags = 0; struct panfrost_transfer transfer = panfrost_allocate_transient(batch, slot->size); slot->elements = transfer.gpu | MALI_ATTR_LINEAR; return transfer.gpu; } static void panfrost_emit_streamout(struct panfrost_batch *batch, union mali_attr *slot, unsigned stride, unsigned offset, unsigned count, struct pipe_stream_output_target *target) { /* Fill out the descriptor */ slot->stride = stride * 4; slot->shift = slot->extra_flags = 0; unsigned max_size = target->buffer_size; unsigned expected_size = slot->stride * count; slot->size = MIN2(max_size, expected_size); /* Grab the BO and bind it to the batch */ struct panfrost_bo *bo = pan_resource(target->buffer)->bo; /* Varyings are WRITE from the perspective of the VERTEX but READ from * the perspective of the TILER and FRAGMENT. */ panfrost_batch_add_bo(batch, bo, PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT); mali_ptr addr = bo->gpu + target->buffer_offset + (offset * slot->stride); slot->elements = addr; } /* Given a shader and buffer indices, link varying metadata together */ static bool is_special_varying(gl_varying_slot loc) { switch (loc) { case VARYING_SLOT_POS: case VARYING_SLOT_PSIZ: case VARYING_SLOT_PNTC: case VARYING_SLOT_FACE: return true; default: return false; } } static void panfrost_emit_varying_meta(void *outptr, struct panfrost_shader_state *ss, signed general, signed gl_Position, signed gl_PointSize, signed gl_PointCoord, signed gl_FrontFacing) { struct mali_attr_meta *out = (struct mali_attr_meta *) outptr; for (unsigned i = 0; i < ss->varying_count; ++i) { gl_varying_slot location = ss->varyings_loc[i]; int index = -1; switch (location) { case VARYING_SLOT_POS: index = gl_Position; break; case VARYING_SLOT_PSIZ: index = gl_PointSize; break; case VARYING_SLOT_PNTC: index = gl_PointCoord; break; case VARYING_SLOT_FACE: index = gl_FrontFacing; break; default: index = general; break; } assert(index >= 0); out[i].index = index; } } static bool has_point_coord(unsigned mask, gl_varying_slot loc) { if ((loc >= VARYING_SLOT_TEX0) && (loc <= VARYING_SLOT_TEX7)) return (mask & (1 << (loc - VARYING_SLOT_TEX0))); else if (loc == VARYING_SLOT_PNTC) return (mask & (1 << 8)); else return false; } /* Helpers for manipulating stream out information so we can pack varyings * accordingly. Compute the src_offset for a given captured varying */ static struct pipe_stream_output * pan_get_so(struct pipe_stream_output_info *info, gl_varying_slot loc) { for (unsigned i = 0; i < info->num_outputs; ++i) { if (info->output[i].register_index == loc) return &info->output[i]; } unreachable("Varying not captured"); } /* TODO: Integers */ static enum mali_format pan_xfb_format(unsigned nr_components) { switch (nr_components) { case 1: return MALI_R32F; case 2: return MALI_RG32F; case 3: return MALI_RGB32F; case 4: return MALI_RGBA32F; default: unreachable("Invalid format"); } } void panfrost_emit_varying_descriptor(struct panfrost_batch *batch, unsigned vertex_count, struct mali_vertex_tiler_postfix *vertex_postfix, struct mali_vertex_tiler_postfix *tiler_postfix, union midgard_primitive_size *primitive_size) { /* Load the shaders */ struct panfrost_context *ctx = batch->ctx; struct panfrost_shader_state *vs, *fs; unsigned int num_gen_varyings = 0; size_t vs_size, fs_size; /* Allocate the varying descriptor */ vs = panfrost_get_shader_state(ctx, PIPE_SHADER_VERTEX); fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT); vs_size = sizeof(struct mali_attr_meta) * vs->varying_count; fs_size = sizeof(struct mali_attr_meta) * fs->varying_count; struct panfrost_transfer trans = panfrost_allocate_transient(batch, vs_size + fs_size); struct pipe_stream_output_info *so = &vs->stream_output; /* Check if this varying is linked by us. This is the case for * general-purpose, non-captured varyings. If it is, link it. If it's * not, use the provided stream out information to determine the * offset, since it was already linked for us. */ for (unsigned i = 0; i < vs->varying_count; i++) { gl_varying_slot loc = vs->varyings_loc[i]; bool special = is_special_varying(loc); bool captured = ((vs->so_mask & (1ll << loc)) ? true : false); if (captured) { struct pipe_stream_output *o = pan_get_so(so, loc); unsigned dst_offset = o->dst_offset * 4; /* dwords */ vs->varyings[i].src_offset = dst_offset; } else if (!special) { vs->varyings[i].src_offset = 16 * (num_gen_varyings++); } } /* Conversely, we need to set src_offset for the captured varyings. * Here, the layout is defined by the stream out info, not us */ /* Link up with fragment varyings */ bool reads_point_coord = fs->reads_point_coord; for (unsigned i = 0; i < fs->varying_count; i++) { gl_varying_slot loc = fs->varyings_loc[i]; unsigned src_offset; signed vs_idx = -1; /* Link up */ for (unsigned j = 0; j < vs->varying_count; ++j) { if (vs->varyings_loc[j] == loc) { vs_idx = j; break; } } /* Either assign or reuse */ if (vs_idx >= 0) src_offset = vs->varyings[vs_idx].src_offset; else src_offset = 16 * (num_gen_varyings++); fs->varyings[i].src_offset = src_offset; if (has_point_coord(fs->point_sprite_mask, loc)) reads_point_coord = true; } memcpy(trans.cpu, vs->varyings, vs_size); memcpy(trans.cpu + vs_size, fs->varyings, fs_size); union mali_attr varyings[PIPE_MAX_ATTRIBS] = {0}; /* Figure out how many streamout buffers could be bound */ unsigned so_count = ctx->streamout.num_targets; for (unsigned i = 0; i < vs->varying_count; i++) { gl_varying_slot loc = vs->varyings_loc[i]; bool captured = ((vs->so_mask & (1ll << loc)) ? true : false); if (!captured) continue; struct pipe_stream_output *o = pan_get_so(so, loc); so_count = MAX2(so_count, o->output_buffer + 1); } signed idx = so_count; signed general = idx++; signed gl_Position = idx++; signed gl_PointSize = vs->writes_point_size ? (idx++) : -1; signed gl_PointCoord = reads_point_coord ? (idx++) : -1; signed gl_FrontFacing = fs->reads_face ? (idx++) : -1; signed gl_FragCoord = fs->reads_frag_coord ? (idx++) : -1; /* Emit the stream out buffers */ unsigned out_count = u_stream_outputs_for_vertices(ctx->active_prim, ctx->vertex_count); for (unsigned i = 0; i < so_count; ++i) { if (i < ctx->streamout.num_targets) { panfrost_emit_streamout(batch, &varyings[i], so->stride[i], ctx->streamout.offsets[i], out_count, ctx->streamout.targets[i]); } else { /* Emit a dummy buffer */ panfrost_emit_varyings(batch, &varyings[i], so->stride[i] * 4, out_count); /* Clear the attribute type */ varyings[i].elements &= ~0xF; } } panfrost_emit_varyings(batch, &varyings[general], num_gen_varyings * 16, vertex_count); mali_ptr varyings_p; /* fp32 vec4 gl_Position */ varyings_p = panfrost_emit_varyings(batch, &varyings[gl_Position], sizeof(float) * 4, vertex_count); tiler_postfix->position_varying = varyings_p; if (panfrost_writes_point_size(ctx)) { varyings_p = panfrost_emit_varyings(batch, &varyings[gl_PointSize], 2, vertex_count); primitive_size->pointer = varyings_p; } if (reads_point_coord) varyings[gl_PointCoord].elements = MALI_VARYING_POINT_COORD; if (fs->reads_face) varyings[gl_FrontFacing].elements = MALI_VARYING_FRONT_FACING; if (fs->reads_frag_coord) varyings[gl_FragCoord].elements = MALI_VARYING_FRAG_COORD; struct panfrost_device *device = pan_device(ctx->base.screen); assert(!(device->quirks & IS_BIFROST) || !(reads_point_coord || fs->reads_face || fs->reads_frag_coord)); /* Let's go ahead and link varying meta to the buffer in question, now * that that information is available. VARYING_SLOT_POS is mapped to * gl_FragCoord for fragment shaders but gl_Positionf or vertex shaders * */ panfrost_emit_varying_meta(trans.cpu, vs, general, gl_Position, gl_PointSize, gl_PointCoord, gl_FrontFacing); panfrost_emit_varying_meta(trans.cpu + vs_size, fs, general, gl_FragCoord, gl_PointSize, gl_PointCoord, gl_FrontFacing); /* Replace streamout */ struct mali_attr_meta *ovs = (struct mali_attr_meta *)trans.cpu; struct mali_attr_meta *ofs = ovs + vs->varying_count; for (unsigned i = 0; i < vs->varying_count; i++) { gl_varying_slot loc = vs->varyings_loc[i]; bool captured = ((vs->so_mask & (1ll << loc)) ? true : false); if (!captured) continue; struct pipe_stream_output *o = pan_get_so(so, loc); ovs[i].index = o->output_buffer; /* Set the type appropriately. TODO: Integer varyings XXX */ assert(o->stream == 0); ovs[i].format = pan_xfb_format(o->num_components); ovs[i].swizzle = panfrost_get_default_swizzle(o->num_components); /* Link to the fragment */ signed fs_idx = -1; /* Link up */ for (unsigned j = 0; j < fs->varying_count; ++j) { if (fs->varyings_loc[j] == loc) { fs_idx = j; break; } } if (fs_idx >= 0) { ofs[fs_idx].index = ovs[i].index; ofs[fs_idx].format = ovs[i].format; ofs[fs_idx].swizzle = ovs[i].swizzle; } } /* Replace point sprite */ for (unsigned i = 0; i < fs->varying_count; i++) { /* If we have a point sprite replacement, handle that here. We * have to translate location first. TODO: Flip y in shader. * We're already keying ... just time crunch .. */ if (has_point_coord(fs->point_sprite_mask, fs->varyings_loc[i])) { ofs[i].index = gl_PointCoord; /* Swizzle out the z/w to 0/1 */ ofs[i].format = MALI_RG16F; ofs[i].swizzle = panfrost_get_default_swizzle(2); } } /* Fix up unaligned addresses */ for (unsigned i = 0; i < so_count; ++i) { if (varyings[i].elements < MALI_RECORD_SPECIAL) continue; unsigned align = (varyings[i].elements & 63); /* While we're at it, the SO buffers are linear */ if (!align) { varyings[i].elements |= MALI_ATTR_LINEAR; continue; } /* We need to adjust alignment */ varyings[i].elements &= ~63; varyings[i].elements |= MALI_ATTR_LINEAR; varyings[i].size += align; for (unsigned v = 0; v < vs->varying_count; ++v) { if (ovs[v].index != i) continue; ovs[v].src_offset = vs->varyings[v].src_offset + align; } for (unsigned f = 0; f < fs->varying_count; ++f) { if (ofs[f].index != i) continue; ofs[f].src_offset = fs->varyings[f].src_offset + align; } } varyings_p = panfrost_upload_transient(batch, varyings, idx * sizeof(*varyings)); vertex_postfix->varyings = varyings_p; tiler_postfix->varyings = varyings_p; vertex_postfix->varying_meta = trans.gpu; tiler_postfix->varying_meta = trans.gpu + vs_size; } void panfrost_emit_vertex_tiler_jobs(struct panfrost_batch *batch, struct mali_vertex_tiler_prefix *vertex_prefix, struct mali_vertex_tiler_postfix *vertex_postfix, struct mali_vertex_tiler_prefix *tiler_prefix, struct mali_vertex_tiler_postfix *tiler_postfix, union midgard_primitive_size *primitive_size) { struct panfrost_context *ctx = batch->ctx; struct panfrost_device *device = pan_device(ctx->base.screen); bool wallpapering = ctx->wallpaper_batch && batch->tiler_dep; struct bifrost_payload_vertex bifrost_vertex = {0,}; struct bifrost_payload_tiler bifrost_tiler = {0,}; struct midgard_payload_vertex_tiler midgard_vertex = {0,}; struct midgard_payload_vertex_tiler midgard_tiler = {0,}; void *vp, *tp; size_t vp_size, tp_size; if (device->quirks & IS_BIFROST) { bifrost_vertex.prefix = *vertex_prefix; bifrost_vertex.postfix = *vertex_postfix; vp = &bifrost_vertex; vp_size = sizeof(bifrost_vertex); bifrost_tiler.prefix = *tiler_prefix; bifrost_tiler.tiler.primitive_size = *primitive_size; bifrost_tiler.tiler.tiler_meta = panfrost_batch_get_tiler_meta(batch, ~0); bifrost_tiler.postfix = *tiler_postfix; tp = &bifrost_tiler; tp_size = sizeof(bifrost_tiler); } else { midgard_vertex.prefix = *vertex_prefix; midgard_vertex.postfix = *vertex_postfix; vp = &midgard_vertex; vp_size = sizeof(midgard_vertex); midgard_tiler.prefix = *tiler_prefix; midgard_tiler.postfix = *tiler_postfix; midgard_tiler.primitive_size = *primitive_size; tp = &midgard_tiler; tp_size = sizeof(midgard_tiler); } if (wallpapering) { /* Inject in reverse order, with "predicted" job indices. * THIS IS A HACK XXX */ panfrost_new_job(batch, JOB_TYPE_TILER, false, batch->job_index + 2, tp, tp_size, true); panfrost_new_job(batch, JOB_TYPE_VERTEX, false, 0, vp, vp_size, true); return; } /* If rasterizer discard is enable, only submit the vertex */ bool rasterizer_discard = ctx->rasterizer && ctx->rasterizer->base.rasterizer_discard; unsigned vertex = panfrost_new_job(batch, JOB_TYPE_VERTEX, false, 0, vp, vp_size, false); if (rasterizer_discard) return; panfrost_new_job(batch, JOB_TYPE_TILER, false, vertex, tp, tp_size, false); } /* TODO: stop hardcoding this */ mali_ptr panfrost_emit_sample_locations(struct panfrost_batch *batch) { uint16_t locations[] = { 128, 128, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 0, 256, 128, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; return panfrost_upload_transient(batch, locations, 96 * sizeof(uint16_t)); }