/* * Copyright (C) 2019-2020 Collabora, Ltd. * Copyright (C) 2019 Alyssa Rosenzweig * Copyright (C) 2014-2017 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include "drm-uapi/panfrost_drm.h" #include "pan_bo.h" #include "pan_blitter.h" #include "pan_context.h" #include "util/hash_table.h" #include "util/ralloc.h" #include "util/format/u_format.h" #include "util/u_pack_color.h" #include "util/rounding.h" #include "util/u_framebuffer.h" #include "pan_util.h" #include "pan_cmdstream.h" #include "decode.h" #include "panfrost-quirks.h" /* panfrost_bo_access is here to help us keep track of batch accesses to BOs * and build a proper dependency graph such that batches can be pipelined for * better GPU utilization. * * Each accessed BO has a corresponding entry in the ->accessed_bos hash table. * A BO is either being written or read at any time (see last_is_write). * When the last access is a write, the batch writing the BO might have read * dependencies (readers that have not been executed yet and want to read the * previous BO content), and when the last access is a read, all readers might * depend on another batch to push its results to memory. That's what the * readers/writers keep track off. * There can only be one writer at any given time, if a new batch wants to * write to the same BO, a dependency will be added between the new writer and * the old writer (at the batch level), and panfrost_bo_access->writer will be * updated to point to the new writer. */ struct panfrost_bo_access { struct util_dynarray readers; struct panfrost_batch_fence *writer; bool last_is_write; }; static struct panfrost_batch_fence * panfrost_create_batch_fence(struct panfrost_batch *batch) { struct panfrost_batch_fence *fence; fence = rzalloc(NULL, struct panfrost_batch_fence); assert(fence); pipe_reference_init(&fence->reference, 1); fence->batch = batch; return fence; } static void panfrost_free_batch_fence(struct panfrost_batch_fence *fence) { ralloc_free(fence); } void panfrost_batch_fence_unreference(struct panfrost_batch_fence *fence) { if (pipe_reference(&fence->reference, NULL)) panfrost_free_batch_fence(fence); } void panfrost_batch_fence_reference(struct panfrost_batch_fence *fence) { pipe_reference(NULL, &fence->reference); } static void panfrost_batch_add_fbo_bos(struct panfrost_batch *batch); static struct panfrost_batch * panfrost_create_batch(struct panfrost_context *ctx, const struct pipe_framebuffer_state *key) { struct panfrost_batch *batch = rzalloc(ctx, struct panfrost_batch); struct panfrost_device *dev = pan_device(ctx->base.screen); batch->ctx = ctx; batch->bos = _mesa_hash_table_create(batch, _mesa_hash_pointer, _mesa_key_pointer_equal); batch->minx = batch->miny = ~0; batch->maxx = batch->maxy = 0; batch->out_sync = panfrost_create_batch_fence(batch); util_copy_framebuffer_state(&batch->key, key); /* Preallocate the main pool, since every batch has at least one job * structure so it will be used */ panfrost_pool_init(&batch->pool, batch, dev, 0, true); /* Don't preallocate the invisible pool, since not every batch will use * the pre-allocation, particularly if the varyings are larger than the * preallocation and a reallocation is needed after anyway. */ panfrost_pool_init(&batch->invisible_pool, batch, dev, PAN_BO_INVISIBLE, false); panfrost_batch_add_fbo_bos(batch); return batch; } static void panfrost_freeze_batch(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; struct hash_entry *entry; /* Remove the entry in the FBO -> batch hash table if the batch * matches and drop the context reference. This way, next draws/clears * targeting this FBO will trigger the creation of a new batch. */ entry = _mesa_hash_table_search(ctx->batches, &batch->key); if (entry && entry->data == batch) _mesa_hash_table_remove(ctx->batches, entry); if (ctx->batch == batch) ctx->batch = NULL; } #ifdef PAN_BATCH_DEBUG static bool panfrost_batch_is_frozen(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; struct hash_entry *entry; entry = _mesa_hash_table_search(ctx->batches, &batch->key); if (entry && entry->data == batch) return false; if (ctx->batch == batch) return false; return true; } #endif static void panfrost_free_batch(struct panfrost_batch *batch) { if (!batch) return; #ifdef PAN_BATCH_DEBUG assert(panfrost_batch_is_frozen(batch)); #endif hash_table_foreach(batch->bos, entry) panfrost_bo_unreference((struct panfrost_bo *)entry->key); panfrost_pool_cleanup(&batch->pool); panfrost_pool_cleanup(&batch->invisible_pool); util_dynarray_foreach(&batch->dependencies, struct panfrost_batch_fence *, dep) { panfrost_batch_fence_unreference(*dep); } util_dynarray_fini(&batch->dependencies); /* The out_sync fence lifetime is different from the the batch one * since other batches might want to wait on a fence of already * submitted/signaled batch. All we need to do here is make sure the * fence does not point to an invalid batch, which the core will * interpret as 'batch is already submitted'. */ batch->out_sync->batch = NULL; panfrost_batch_fence_unreference(batch->out_sync); util_unreference_framebuffer_state(&batch->key); ralloc_free(batch); } #ifdef PAN_BATCH_DEBUG static bool panfrost_dep_graph_contains_batch(struct panfrost_batch *root, struct panfrost_batch *batch) { if (!root) return false; util_dynarray_foreach(&root->dependencies, struct panfrost_batch_fence *, dep) { if ((*dep)->batch == batch || panfrost_dep_graph_contains_batch((*dep)->batch, batch)) return true; } return false; } #endif static void panfrost_batch_add_dep(struct panfrost_batch *batch, struct panfrost_batch_fence *newdep) { if (batch == newdep->batch) return; /* We might want to turn ->dependencies into a set if the number of * deps turns out to be big enough to make this 'is dep already there' * search inefficient. */ util_dynarray_foreach(&batch->dependencies, struct panfrost_batch_fence *, dep) { if (*dep == newdep) return; } #ifdef PAN_BATCH_DEBUG /* Make sure the dependency graph is acyclic. */ assert(!panfrost_dep_graph_contains_batch(newdep->batch, batch)); #endif panfrost_batch_fence_reference(newdep); util_dynarray_append(&batch->dependencies, struct panfrost_batch_fence *, newdep); /* We now have a batch depending on us, let's make sure new draw/clear * calls targeting the same FBO use a new batch object. */ if (newdep->batch) panfrost_freeze_batch(newdep->batch); } static struct panfrost_batch * panfrost_get_batch(struct panfrost_context *ctx, const struct pipe_framebuffer_state *key) { /* Lookup the job first */ struct hash_entry *entry = _mesa_hash_table_search(ctx->batches, key); if (entry) return entry->data; /* Otherwise, let's create a job */ struct panfrost_batch *batch = panfrost_create_batch(ctx, key); /* Save the created job */ _mesa_hash_table_insert(ctx->batches, &batch->key, batch); return batch; } /* Get the job corresponding to the FBO we're currently rendering into */ struct panfrost_batch * panfrost_get_batch_for_fbo(struct panfrost_context *ctx) { /* If we already began rendering, use that */ if (ctx->batch) { assert(util_framebuffer_state_equal(&ctx->batch->key, &ctx->pipe_framebuffer)); return ctx->batch; } /* If not, look up the job */ struct panfrost_batch *batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer); /* Set this job as the current FBO job. Will be reset when updating the * FB state and when submitting or releasing a job. */ ctx->batch = batch; return batch; } struct panfrost_batch * panfrost_get_fresh_batch_for_fbo(struct panfrost_context *ctx) { struct panfrost_batch *batch; batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer); /* The batch has no draw/clear queued, let's return it directly. * Note that it's perfectly fine to re-use a batch with an * existing clear, we'll just update it with the new clear request. */ if (!batch->scoreboard.first_job) { ctx->batch = batch; return batch; } /* Otherwise, we need to freeze the existing one and instantiate a new * one. */ panfrost_freeze_batch(batch); batch = panfrost_get_batch(ctx, &ctx->pipe_framebuffer); ctx->batch = batch; return batch; } static void panfrost_bo_access_gc_fences(struct panfrost_context *ctx, struct panfrost_bo_access *access, const struct panfrost_bo *bo) { if (access->writer) { panfrost_batch_fence_unreference(access->writer); access->writer = NULL; } struct panfrost_batch_fence **readers_array = util_dynarray_begin(&access->readers); struct panfrost_batch_fence **new_readers = readers_array; util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (!(*reader)) continue; panfrost_batch_fence_unreference(*reader); *reader = NULL; } if (!util_dynarray_resize(&access->readers, struct panfrost_batch_fence *, new_readers - readers_array) && new_readers != readers_array) unreachable("Invalid dynarray access->readers"); } /* Collect signaled fences to keep the kernel-side syncobj-map small. The * idea is to collect those signaled fences at the end of each flush_all * call. This function is likely to collect only fences from previous * batch flushes not the one that have just have just been submitted and * are probably still in flight when we trigger the garbage collection. * Anyway, we need to do this garbage collection at some point if we don't * want the BO access map to keep invalid entries around and retain * syncobjs forever. */ static void panfrost_gc_fences(struct panfrost_context *ctx) { hash_table_foreach(ctx->accessed_bos, entry) { struct panfrost_bo_access *access = entry->data; assert(access); panfrost_bo_access_gc_fences(ctx, access, entry->key); if (!util_dynarray_num_elements(&access->readers, struct panfrost_batch_fence *) && !access->writer) { ralloc_free(access); _mesa_hash_table_remove(ctx->accessed_bos, entry); } } } #ifdef PAN_BATCH_DEBUG static bool panfrost_batch_in_readers(struct panfrost_batch *batch, struct panfrost_bo_access *access) { util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (*reader && (*reader)->batch == batch) return true; } return false; } #endif static void panfrost_batch_update_bo_access(struct panfrost_batch *batch, struct panfrost_bo *bo, bool writes, bool already_accessed) { struct panfrost_context *ctx = batch->ctx; struct panfrost_bo_access *access; bool old_writes = false; struct hash_entry *entry; entry = _mesa_hash_table_search(ctx->accessed_bos, bo); access = entry ? entry->data : NULL; if (access) { old_writes = access->last_is_write; } else { access = rzalloc(ctx, struct panfrost_bo_access); util_dynarray_init(&access->readers, access); _mesa_hash_table_insert(ctx->accessed_bos, bo, access); /* We are the first to access this BO, let's initialize * old_writes to our own access type in that case. */ old_writes = writes; } assert(access); if (writes && !old_writes) { /* Previous access was a read and we want to write this BO. * We first need to add explicit deps between our batch and * the previous readers. */ util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { /* We were already reading the BO, no need to add a dep * on ourself (the acyclic check would complain about * that). */ if (!(*reader) || (*reader)->batch == batch) continue; panfrost_batch_add_dep(batch, *reader); } panfrost_batch_fence_reference(batch->out_sync); if (access->writer) panfrost_batch_fence_unreference(access->writer); /* We now are the new writer. */ access->writer = batch->out_sync; /* Release the previous readers and reset the readers array. */ util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (!*reader) continue; panfrost_batch_fence_unreference(*reader); } util_dynarray_clear(&access->readers); } else if (writes && old_writes) { /* First check if we were the previous writer, in that case * there's nothing to do. Otherwise we need to add a * dependency between the new writer and the old one. */ if (access->writer != batch->out_sync) { if (access->writer) { panfrost_batch_add_dep(batch, access->writer); panfrost_batch_fence_unreference(access->writer); } panfrost_batch_fence_reference(batch->out_sync); access->writer = batch->out_sync; } } else if (!writes && old_writes) { /* First check if we were the previous writer, in that case * we want to keep the access type unchanged, as a write is * more constraining than a read. */ if (access->writer != batch->out_sync) { /* Add a dependency on the previous writer. */ panfrost_batch_add_dep(batch, access->writer); /* The previous access was a write, there's no reason * to have entries in the readers array. */ assert(!util_dynarray_num_elements(&access->readers, struct panfrost_batch_fence *)); /* Add ourselves to the readers array. */ panfrost_batch_fence_reference(batch->out_sync); util_dynarray_append(&access->readers, struct panfrost_batch_fence *, batch->out_sync); } } else { /* We already accessed this BO before, so we should already be * in the reader array. */ #ifdef PAN_BATCH_DEBUG if (already_accessed) { assert(panfrost_batch_in_readers(batch, access)); return; } #endif /* Previous access was a read and we want to read this BO. * Add ourselves to the readers array and add a dependency on * the previous writer if any. */ panfrost_batch_fence_reference(batch->out_sync); util_dynarray_append(&access->readers, struct panfrost_batch_fence *, batch->out_sync); if (access->writer) panfrost_batch_add_dep(batch, access->writer); } access->last_is_write = writes; } void panfrost_batch_add_bo(struct panfrost_batch *batch, struct panfrost_bo *bo, uint32_t flags) { if (!bo) return; struct hash_entry *entry; uint32_t old_flags = 0; entry = _mesa_hash_table_search(batch->bos, bo); if (!entry) { entry = _mesa_hash_table_insert(batch->bos, bo, (void *)(uintptr_t)flags); panfrost_bo_reference(bo); } else { old_flags = (uintptr_t)entry->data; /* All batches have to agree on the shared flag. */ assert((old_flags & PAN_BO_ACCESS_SHARED) == (flags & PAN_BO_ACCESS_SHARED)); } assert(entry); if (old_flags == flags) return; flags |= old_flags; entry->data = (void *)(uintptr_t)flags; /* If this is not a shared BO, we don't really care about dependency * tracking. */ if (!(flags & PAN_BO_ACCESS_SHARED)) return; assert(flags & PAN_BO_ACCESS_RW); panfrost_batch_update_bo_access(batch, bo, flags & PAN_BO_ACCESS_WRITE, old_flags != 0); } static void panfrost_batch_add_resource_bos(struct panfrost_batch *batch, struct panfrost_resource *rsrc, uint32_t flags) { panfrost_batch_add_bo(batch, rsrc->image.data.bo, flags); if (rsrc->image.crc.bo) panfrost_batch_add_bo(batch, rsrc->image.crc.bo, flags); if (rsrc->separate_stencil) panfrost_batch_add_bo(batch, rsrc->separate_stencil->image.data.bo, flags); } /* Adds the BO backing surface to a batch if the surface is non-null */ static void panfrost_batch_add_surface(struct panfrost_batch *batch, struct pipe_surface *surf) { uint32_t flags = PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_WRITE | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT; if (surf) { struct panfrost_resource *rsrc = pan_resource(surf->texture); panfrost_batch_add_resource_bos(batch, rsrc, flags); } } static void panfrost_batch_add_fbo_bos(struct panfrost_batch *batch) { for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) panfrost_batch_add_surface(batch, batch->key.cbufs[i]); panfrost_batch_add_surface(batch, batch->key.zsbuf); } struct panfrost_bo * panfrost_batch_create_bo(struct panfrost_batch *batch, size_t size, uint32_t create_flags, uint32_t access_flags) { struct panfrost_bo *bo; bo = panfrost_bo_create(pan_device(batch->ctx->base.screen), size, create_flags); panfrost_batch_add_bo(batch, bo, access_flags); /* panfrost_batch_add_bo() has retained a reference and * panfrost_bo_create() initialize the refcnt to 1, so let's * unreference the BO here so it gets released when the batch is * destroyed (unless it's retained by someone else in the meantime). */ panfrost_bo_unreference(bo); return bo; } /* Returns the polygon list's GPU address if available, or otherwise allocates * the polygon list. It's perfectly fast to use allocate/free BO directly, * since we'll hit the BO cache and this is one-per-batch anyway. */ static mali_ptr panfrost_batch_get_polygon_list(struct panfrost_batch *batch) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); assert(!pan_is_bifrost(dev)); if (!batch->tiler_ctx.midgard.polygon_list) { bool has_draws = batch->scoreboard.first_tiler != NULL; unsigned size = panfrost_tiler_get_polygon_list_size(dev, batch->key.width, batch->key.height, has_draws); size = util_next_power_of_two(size); /* Create the BO as invisible if we can. In the non-hierarchical tiler case, * we need to write the polygon list manually because there's not WRITE_VALUE * job in the chain (maybe we should add one...). */ bool init_polygon_list = !has_draws && (dev->quirks & MIDGARD_NO_HIER_TILING); batch->tiler_ctx.midgard.polygon_list = panfrost_batch_create_bo(batch, size, init_polygon_list ? 0 : PAN_BO_INVISIBLE, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT); if (init_polygon_list) { assert(batch->tiler_ctx.midgard.polygon_list->ptr.cpu); uint32_t *polygon_list_body = batch->tiler_ctx.midgard.polygon_list->ptr.cpu + MALI_MIDGARD_TILER_MINIMUM_HEADER_SIZE; polygon_list_body[0] = 0xa0000000; /* TODO: Just that? */ } batch->tiler_ctx.midgard.disable = !has_draws; } return batch->tiler_ctx.midgard.polygon_list->ptr.gpu; } struct panfrost_bo * panfrost_batch_get_scratchpad(struct panfrost_batch *batch, unsigned size_per_thread, unsigned thread_tls_alloc, unsigned core_count) { unsigned size = panfrost_get_total_stack_size(size_per_thread, thread_tls_alloc, core_count); if (batch->scratchpad) { assert(batch->scratchpad->size >= size); } else { batch->scratchpad = panfrost_batch_create_bo(batch, size, PAN_BO_INVISIBLE, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER | PAN_BO_ACCESS_FRAGMENT); } return batch->scratchpad; } struct panfrost_bo * panfrost_batch_get_shared_memory(struct panfrost_batch *batch, unsigned size, unsigned workgroup_count) { if (batch->shared_memory) { assert(batch->shared_memory->size >= size); } else { batch->shared_memory = panfrost_batch_create_bo(batch, size, PAN_BO_INVISIBLE, PAN_BO_ACCESS_PRIVATE | PAN_BO_ACCESS_RW | PAN_BO_ACCESS_VERTEX_TILER); } return batch->shared_memory; } mali_ptr panfrost_batch_get_bifrost_tiler(struct panfrost_batch *batch, unsigned vertex_count) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); assert(pan_is_bifrost(dev)); if (!vertex_count) return 0; if (batch->tiler_ctx.bifrost) return batch->tiler_ctx.bifrost; struct panfrost_ptr t = panfrost_pool_alloc_desc(&batch->pool, BIFROST_TILER_HEAP); pan_emit_bifrost_tiler_heap(dev, t.cpu); mali_ptr heap = t.gpu; t = panfrost_pool_alloc_desc(&batch->pool, BIFROST_TILER); pan_emit_bifrost_tiler(dev, batch->key.width, batch->key.height, util_framebuffer_get_num_samples(&batch->key), heap, t.cpu); batch->tiler_ctx.bifrost = t.gpu; return batch->tiler_ctx.bifrost; } static void panfrost_batch_to_fb_info(const struct panfrost_batch *batch, struct pan_fb_info *fb, struct pan_image_view *rts, struct pan_image_view *zs, struct pan_image_view *s, bool reserve) { memset(fb, 0, sizeof(*fb)); memset(rts, 0, sizeof(*rts) * 8); memset(zs, 0, sizeof(*zs)); memset(s, 0, sizeof(*s)); fb->width = batch->key.width; fb->height = batch->key.height; fb->extent.minx = batch->minx; fb->extent.miny = batch->miny; fb->extent.maxx = batch->maxx - 1; fb->extent.maxy = batch->maxy - 1; fb->nr_samples = util_framebuffer_get_num_samples(&batch->key); fb->rt_count = batch->key.nr_cbufs; static const unsigned char id_swz[] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z, PIPE_SWIZZLE_W, }; for (unsigned i = 0; i < fb->rt_count; i++) { struct pipe_surface *surf = batch->key.cbufs[i]; if (!surf) continue; struct panfrost_resource *prsrc = pan_resource(surf->texture); unsigned mask = PIPE_CLEAR_COLOR0 << i; if (batch->clear & mask) { fb->rts[i].clear = true; memcpy(fb->rts[i].clear_value, batch->clear_color[i], sizeof((fb->rts[i].clear_value))); } /* Discard RTs that have no draws or clear. */ if (!reserve && !((batch->clear | batch->draws) & mask)) fb->rts[i].discard = true; rts[i].format = surf->format; rts[i].dim = MALI_TEXTURE_DIMENSION_2D; rts[i].last_level = rts[i].first_level = surf->u.tex.level; rts[i].first_layer = surf->u.tex.first_layer; rts[i].last_layer = surf->u.tex.last_layer; rts[i].image = &prsrc->image; rts[i].nr_samples = surf->nr_samples ? : MAX2(surf->texture->nr_samples, 1); memcpy(rts[i].swizzle, id_swz, sizeof(rts[i].swizzle)); fb->rts[i].state = &prsrc->state; fb->rts[i].view = &rts[i]; /* Preload if the RT is read or updated */ if (!(batch->clear & mask) && ((batch->read & mask) || ((batch->draws & mask) && fb->rts[i].state->slices[fb->rts[i].view->first_level].data_valid))) fb->rts[i].preload = true; } const struct pan_image_view *s_view = NULL, *z_view = NULL; const struct pan_image_state *s_state = NULL, *z_state = NULL; if (batch->key.zsbuf) { struct pipe_surface *surf = batch->key.zsbuf; struct panfrost_resource *prsrc = pan_resource(surf->texture); zs->format = surf->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT ? PIPE_FORMAT_Z32_FLOAT : surf->format; zs->dim = MALI_TEXTURE_DIMENSION_2D; zs->last_level = zs->first_level = surf->u.tex.level; zs->first_layer = surf->u.tex.first_layer; zs->last_layer = surf->u.tex.last_layer; zs->image = &prsrc->image; zs->nr_samples = surf->nr_samples ? : MAX2(surf->texture->nr_samples, 1); memcpy(zs->swizzle, id_swz, sizeof(zs->swizzle)); fb->zs.view.zs = zs; fb->zs.state.zs = &prsrc->state; z_view = zs; z_state = &prsrc->state; if (util_format_is_depth_and_stencil(zs->format)) { s_view = zs; s_state = &prsrc->state; } if (prsrc->separate_stencil) { s->format = PIPE_FORMAT_S8_UINT; s->dim = MALI_TEXTURE_DIMENSION_2D; s->last_level = s->first_level = surf->u.tex.level; s->first_layer = surf->u.tex.first_layer; s->last_layer = surf->u.tex.last_layer; s->image = &prsrc->separate_stencil->image; s->nr_samples = surf->nr_samples ? : MAX2(surf->texture->nr_samples, 1); memcpy(s->swizzle, id_swz, sizeof(s->swizzle)); fb->zs.view.s = s; fb->zs.state.s = &prsrc->separate_stencil->state; s_view = s; s_state = &prsrc->separate_stencil->state; } } if (batch->clear & PIPE_CLEAR_DEPTH) { fb->zs.clear.z = true; fb->zs.clear_value.depth = batch->clear_depth; } if (batch->clear & PIPE_CLEAR_STENCIL) { fb->zs.clear.s = true; fb->zs.clear_value.stencil = batch->clear_stencil; } /* Discard if Z/S are not updated */ if (!reserve && !((batch->draws | batch->clear) & PIPE_CLEAR_DEPTH)) fb->zs.discard.z = true; if (!reserve && !((batch->draws | batch->clear) & PIPE_CLEAR_STENCIL)) fb->zs.discard.s = true; if (!fb->zs.clear.z && ((batch->read & PIPE_CLEAR_DEPTH) || ((batch->draws & PIPE_CLEAR_DEPTH) && z_state->slices[z_view->first_level].data_valid))) fb->zs.preload.z = true; if (!fb->zs.clear.s && ((batch->read & PIPE_CLEAR_STENCIL) || ((batch->draws & PIPE_CLEAR_STENCIL) && s_state->slices[s_view->first_level].data_valid))) fb->zs.preload.s = true; /* Preserve both component if we have a combined ZS view and * one component needs to be preserved. */ if (s_view == z_view && fb->zs.discard.z != fb->zs.discard.s) { bool valid = z_state->slices[z_view->first_level].data_valid; fb->zs.discard.z = false; fb->zs.discard.s = false; fb->zs.preload.z = !fb->zs.clear.z && valid; fb->zs.preload.s = !fb->zs.clear.s && valid; } } mali_ptr panfrost_batch_reserve_framebuffer(struct panfrost_batch *batch) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); if (batch->framebuffer.gpu) return batch->framebuffer.gpu; /* If we haven't, reserve space for a framebuffer descriptor */ struct pan_image_view rts[8]; struct pan_image_view zs; struct pan_image_view s; struct pan_fb_info fb; panfrost_batch_to_fb_info(batch, &fb, rts, &zs, &s, true); unsigned zs_crc_count = pan_fbd_has_zs_crc_ext(dev, &fb) ? 1 : 0; unsigned rt_count = MAX2(fb.rt_count, 1); batch->framebuffer = (dev->quirks & MIDGARD_SFBD) ? panfrost_pool_alloc_desc(&batch->pool, SINGLE_TARGET_FRAMEBUFFER) : panfrost_pool_alloc_desc_aggregate(&batch->pool, PAN_DESC(MULTI_TARGET_FRAMEBUFFER), PAN_DESC_ARRAY(zs_crc_count, ZS_CRC_EXTENSION), PAN_DESC_ARRAY(rt_count, RENDER_TARGET)); /* Add the MFBD tag now, other tags will be added when emitting the * FB desc. */ if (!(dev->quirks & MIDGARD_SFBD)) batch->framebuffer.gpu |= MALI_FBD_TAG_IS_MFBD; return batch->framebuffer.gpu; } mali_ptr panfrost_batch_reserve_tls(struct panfrost_batch *batch, bool compute) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); /* If we haven't, reserve space for the thread storage descriptor */ if (batch->tls.gpu) return batch->tls.gpu; if (pan_is_bifrost(dev) || compute) { batch->tls = panfrost_pool_alloc_desc(&batch->pool, LOCAL_STORAGE); } else { /* On Midgard, the FB descriptor contains a thread storage * descriptor, and tiler jobs need more than thread storage * info. Let's point to the FB desc in that case. */ panfrost_batch_reserve_framebuffer(batch); batch->tls = batch->framebuffer; } return batch->tls.gpu; } static void panfrost_batch_draw_wallpaper(struct panfrost_batch *batch, struct pan_fb_info *fb) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); pan_preload_fb(&batch->pool, &batch->scoreboard, fb, batch->tls.gpu, pan_is_bifrost(dev) ? batch->tiler_ctx.bifrost : 0); } static void panfrost_batch_record_bo(struct hash_entry *entry, unsigned *bo_handles, unsigned idx) { struct panfrost_bo *bo = (struct panfrost_bo *)entry->key; uint32_t flags = (uintptr_t)entry->data; assert(bo->gem_handle > 0); bo_handles[idx] = bo->gem_handle; /* Update the BO access flags so that panfrost_bo_wait() knows * about all pending accesses. * We only keep the READ/WRITE info since this is all the BO * wait logic cares about. * We also preserve existing flags as this batch might not * be the first one to access the BO. */ bo->gpu_access |= flags & (PAN_BO_ACCESS_RW); } static int panfrost_batch_submit_ioctl(struct panfrost_batch *batch, mali_ptr first_job_desc, uint32_t reqs, uint32_t in_sync, uint32_t out_sync) { struct panfrost_context *ctx = batch->ctx; struct pipe_context *gallium = (struct pipe_context *) ctx; struct panfrost_device *dev = pan_device(gallium->screen); struct drm_panfrost_submit submit = {0,}; uint32_t *bo_handles; int ret; /* If we trace, we always need a syncobj, so make one of our own if we * weren't given one to use. Remember that we did so, so we can free it * after we're done but preventing double-frees if we were given a * syncobj */ if (!out_sync && dev->debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) out_sync = ctx->syncobj; submit.out_sync = out_sync; submit.jc = first_job_desc; submit.requirements = reqs; if (in_sync) { submit.in_syncs = (u64)(uintptr_t)(&in_sync); submit.in_sync_count = 1; } bo_handles = calloc(panfrost_pool_num_bos(&batch->pool) + panfrost_pool_num_bos(&batch->invisible_pool) + batch->bos->entries + 2, sizeof(*bo_handles)); assert(bo_handles); hash_table_foreach(batch->bos, entry) panfrost_batch_record_bo(entry, bo_handles, submit.bo_handle_count++); panfrost_pool_get_bo_handles(&batch->pool, bo_handles + submit.bo_handle_count); submit.bo_handle_count += panfrost_pool_num_bos(&batch->pool); panfrost_pool_get_bo_handles(&batch->invisible_pool, bo_handles + submit.bo_handle_count); submit.bo_handle_count += panfrost_pool_num_bos(&batch->invisible_pool); /* Add the tiler heap to the list of accessed BOs if the batch has at * least one tiler job. Tiler heap is written by tiler jobs and read * by fragment jobs (the polygon list is coming from this heap). */ if (batch->scoreboard.first_tiler) bo_handles[submit.bo_handle_count++] = dev->tiler_heap->gem_handle; /* Always used on Bifrost, occassionally used on Midgard */ bo_handles[submit.bo_handle_count++] = dev->sample_positions->gem_handle; submit.bo_handles = (u64) (uintptr_t) bo_handles; if (ctx->is_noop) ret = 0; else ret = drmIoctl(dev->fd, DRM_IOCTL_PANFROST_SUBMIT, &submit); free(bo_handles); if (ret) { if (dev->debug & PAN_DBG_MSGS) fprintf(stderr, "Error submitting: %m\n"); return errno; } /* Trace the job if we're doing that */ if (dev->debug & (PAN_DBG_TRACE | PAN_DBG_SYNC)) { /* Wait so we can get errors reported back */ drmSyncobjWait(dev->fd, &out_sync, 1, INT64_MAX, 0, NULL); /* Trace gets priority over sync */ bool minimal = !(dev->debug & PAN_DBG_TRACE); pandecode_jc(submit.jc, pan_is_bifrost(dev), dev->gpu_id, minimal); } return 0; } /* Submit both vertex/tiler and fragment jobs for a batch, possibly with an * outsync corresponding to the later of the two (since there will be an * implicit dep between them) */ static int panfrost_batch_submit_jobs(struct panfrost_batch *batch, const struct pan_fb_info *fb, uint32_t in_sync, uint32_t out_sync) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); bool has_draws = batch->scoreboard.first_job; bool has_tiler = batch->scoreboard.first_tiler; bool has_frag = has_tiler || batch->clear; int ret = 0; /* Take the submit lock to make sure no tiler jobs from other context * are inserted between our tiler and fragment jobs, failing to do that * might result in tiler heap corruption. */ if (has_tiler) pthread_mutex_lock(&dev->submit_lock); if (has_draws) { ret = panfrost_batch_submit_ioctl(batch, batch->scoreboard.first_job, 0, in_sync, has_frag ? 0 : out_sync); assert(!ret); } if (has_frag) { /* Whether we program the fragment job for draws or not depends * on whether there is any *tiler* activity (so fragment * shaders). If there are draws but entirely RASTERIZER_DISCARD * (say, for transform feedback), we want a fragment job that * *only* clears, since otherwise the tiler structures will be * uninitialized leading to faults (or state leaks) */ mali_ptr fragjob = panfrost_emit_fragment_job(batch, fb); ret = panfrost_batch_submit_ioctl(batch, fragjob, PANFROST_JD_REQ_FS, 0, out_sync); assert(!ret); } if (has_tiler) pthread_mutex_unlock(&dev->submit_lock); return ret; } static void panfrost_batch_submit(struct panfrost_batch *batch, uint32_t in_sync, uint32_t out_sync) { assert(batch); struct panfrost_device *dev = pan_device(batch->ctx->base.screen); /* Submit the dependencies first. Don't pass along the out_sync since * they are guaranteed to terminate sooner */ util_dynarray_foreach(&batch->dependencies, struct panfrost_batch_fence *, dep) { if ((*dep)->batch) panfrost_batch_submit((*dep)->batch, 0, 0); } int ret; /* Nothing to do! */ if (!batch->scoreboard.first_job && !batch->clear) goto out; if (batch->scoreboard.first_tiler || batch->clear) panfrost_batch_reserve_framebuffer(batch); struct pan_fb_info fb; struct pan_image_view rts[8], zs, s; panfrost_batch_to_fb_info(batch, &fb, rts, &zs, &s, false); panfrost_batch_reserve_tls(batch, false); panfrost_batch_draw_wallpaper(batch, &fb); if (!pan_is_bifrost(dev)) { mali_ptr polygon_list = panfrost_batch_get_polygon_list(batch); panfrost_scoreboard_initialize_tiler(&batch->pool, &batch->scoreboard, polygon_list); } /* Now that all draws are in, we can finally prepare the * FBD for the batch */ panfrost_emit_tls(batch); panfrost_emit_tile_map(batch, &fb); if (batch->framebuffer.gpu) panfrost_emit_fbd(batch, &fb); ret = panfrost_batch_submit_jobs(batch, &fb, in_sync, out_sync); if (ret && dev->debug & PAN_DBG_MSGS) fprintf(stderr, "panfrost_batch_submit failed: %d\n", ret); /* We must reset the damage info of our render targets here even * though a damage reset normally happens when the DRI layer swaps * buffers. That's because there can be implicit flushes the GL * app is not aware of, and those might impact the damage region: if * part of the damaged portion is drawn during those implicit flushes, * you have to reload those areas before next draws are pushed, and * since the driver can't easily know what's been modified by the draws * it flushed, the easiest solution is to reload everything. */ for (unsigned i = 0; i < batch->key.nr_cbufs; i++) { if (!batch->key.cbufs[i]) continue; panfrost_resource_set_damage_region(batch->ctx->base.screen, batch->key.cbufs[i]->texture, 0, NULL); } out: panfrost_freeze_batch(batch); panfrost_free_batch(batch); } /* Submit all batches, applying the out_sync to the currently bound batch */ void panfrost_flush_all_batches(struct panfrost_context *ctx) { struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx); panfrost_batch_submit(batch, ctx->syncobj, ctx->syncobj); hash_table_foreach(ctx->batches, hentry) { struct panfrost_batch *batch = hentry->data; assert(batch); panfrost_batch_submit(batch, ctx->syncobj, ctx->syncobj); } assert(!ctx->batches->entries); /* Collect batch fences before returning */ panfrost_gc_fences(ctx); } bool panfrost_pending_batches_access_bo(struct panfrost_context *ctx, const struct panfrost_bo *bo) { struct panfrost_bo_access *access; struct hash_entry *hentry; hentry = _mesa_hash_table_search(ctx->accessed_bos, bo); access = hentry ? hentry->data : NULL; if (!access) return false; if (access->writer && access->writer->batch) return true; util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (*reader && (*reader)->batch) return true; } return false; } /* We always flush writers. We might also need to flush readers */ void panfrost_flush_batches_accessing_bo(struct panfrost_context *ctx, struct panfrost_bo *bo, bool flush_readers) { struct panfrost_bo_access *access; struct hash_entry *hentry; hentry = _mesa_hash_table_search(ctx->accessed_bos, bo); access = hentry ? hentry->data : NULL; if (!access) return; if (access->writer && access->writer->batch) panfrost_batch_submit(access->writer->batch, ctx->syncobj, ctx->syncobj); if (!flush_readers) return; util_dynarray_foreach(&access->readers, struct panfrost_batch_fence *, reader) { if (*reader && (*reader)->batch) panfrost_batch_submit((*reader)->batch, ctx->syncobj, ctx->syncobj); } } void panfrost_batch_set_requirements(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; if (ctx->depth_stencil && ctx->depth_stencil->base.depth_writemask) batch->draws |= PIPE_CLEAR_DEPTH; if (ctx->depth_stencil && ctx->depth_stencil->base.stencil[0].enabled) batch->draws |= PIPE_CLEAR_STENCIL; } void panfrost_batch_adjust_stack_size(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; for (unsigned i = 0; i < PIPE_SHADER_TYPES; ++i) { struct panfrost_shader_state *ss; ss = panfrost_get_shader_state(ctx, i); if (!ss) continue; batch->stack_size = MAX2(batch->stack_size, ss->info.tls_size); } } /* Helper to smear a 32-bit color across 128-bit components */ static void pan_pack_color_32(uint32_t *packed, uint32_t v) { for (unsigned i = 0; i < 4; ++i) packed[i] = v; } static void pan_pack_color_64(uint32_t *packed, uint32_t lo, uint32_t hi) { for (unsigned i = 0; i < 4; i += 2) { packed[i + 0] = lo; packed[i + 1] = hi; } } static void pan_pack_color(uint32_t *packed, const union pipe_color_union *color, enum pipe_format format) { /* Alpha magicked to 1.0 if there is no alpha */ bool has_alpha = util_format_has_alpha(format); float clear_alpha = has_alpha ? color->f[3] : 1.0f; /* Packed color depends on the framebuffer format */ const struct util_format_description *desc = util_format_description(format); if (util_format_is_rgba8_variant(desc) && desc->colorspace != UTIL_FORMAT_COLORSPACE_SRGB) { pan_pack_color_32(packed, ((uint32_t) float_to_ubyte(clear_alpha) << 24) | ((uint32_t) float_to_ubyte(color->f[2]) << 16) | ((uint32_t) float_to_ubyte(color->f[1]) << 8) | ((uint32_t) float_to_ubyte(color->f[0]) << 0)); } else if (format == PIPE_FORMAT_B5G6R5_UNORM) { /* First, we convert the components to R5, G6, B5 separately */ unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0); unsigned g6 = _mesa_roundevenf(SATURATE(color->f[1]) * 63.0); unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0); /* Then we pack into a sparse u32. TODO: Why these shifts? */ pan_pack_color_32(packed, (b5 << 25) | (g6 << 14) | (r5 << 5)); } else if (format == PIPE_FORMAT_B4G4R4A4_UNORM) { /* Convert to 4-bits */ unsigned r4 = _mesa_roundevenf(SATURATE(color->f[0]) * 15.0); unsigned g4 = _mesa_roundevenf(SATURATE(color->f[1]) * 15.0); unsigned b4 = _mesa_roundevenf(SATURATE(color->f[2]) * 15.0); unsigned a4 = _mesa_roundevenf(SATURATE(clear_alpha) * 15.0); /* Pack on *byte* intervals */ pan_pack_color_32(packed, (a4 << 28) | (b4 << 20) | (g4 << 12) | (r4 << 4)); } else if (format == PIPE_FORMAT_B5G5R5A1_UNORM) { /* Scale as expected but shift oddly */ unsigned r5 = _mesa_roundevenf(SATURATE(color->f[0]) * 31.0); unsigned g5 = _mesa_roundevenf(SATURATE(color->f[1]) * 31.0); unsigned b5 = _mesa_roundevenf(SATURATE(color->f[2]) * 31.0); unsigned a1 = _mesa_roundevenf(SATURATE(clear_alpha) * 1.0); pan_pack_color_32(packed, (a1 << 31) | (b5 << 25) | (g5 << 15) | (r5 << 5)); } else { /* Otherwise, it's generic subject to replication */ union util_color out = { 0 }; unsigned size = util_format_get_blocksize(format); util_pack_color(color->f, format, &out); if (size == 1) { unsigned b = out.ui[0]; unsigned s = b | (b << 8); pan_pack_color_32(packed, s | (s << 16)); } else if (size == 2) pan_pack_color_32(packed, out.ui[0] | (out.ui[0] << 16)); else if (size == 3 || size == 4) pan_pack_color_32(packed, out.ui[0]); else if (size == 6 || size == 8) pan_pack_color_64(packed, out.ui[0], out.ui[1]); else if (size == 12 || size == 16) memcpy(packed, out.ui, 16); else unreachable("Unknown generic format size packing clear colour"); } } void panfrost_batch_clear(struct panfrost_batch *batch, unsigned buffers, const union pipe_color_union *color, double depth, unsigned stencil) { struct panfrost_context *ctx = batch->ctx; if (buffers & PIPE_CLEAR_COLOR) { for (unsigned i = 0; i < PIPE_MAX_COLOR_BUFS; ++i) { if (!(buffers & (PIPE_CLEAR_COLOR0 << i))) continue; enum pipe_format format = ctx->pipe_framebuffer.cbufs[i]->format; pan_pack_color(batch->clear_color[i], color, format); } } if (buffers & PIPE_CLEAR_DEPTH) { batch->clear_depth = depth; } if (buffers & PIPE_CLEAR_STENCIL) { batch->clear_stencil = stencil; } batch->clear |= buffers; /* Clearing affects the entire framebuffer (by definition -- this is * the Gallium clear callback, which clears the whole framebuffer. If * the scissor test were enabled from the GL side, the gallium frontend * would emit a quad instead and we wouldn't go down this code path) */ panfrost_batch_union_scissor(batch, 0, 0, ctx->pipe_framebuffer.width, ctx->pipe_framebuffer.height); } static bool panfrost_batch_compare(const void *a, const void *b) { return util_framebuffer_state_equal(a, b); } static uint32_t panfrost_batch_hash(const void *key) { return _mesa_hash_data(key, sizeof(struct pipe_framebuffer_state)); } /* Given a new bounding rectangle (scissor), let the job cover the union of the * new and old bounding rectangles */ void panfrost_batch_union_scissor(struct panfrost_batch *batch, unsigned minx, unsigned miny, unsigned maxx, unsigned maxy) { batch->minx = MIN2(batch->minx, minx); batch->miny = MIN2(batch->miny, miny); batch->maxx = MAX2(batch->maxx, maxx); batch->maxy = MAX2(batch->maxy, maxy); } void panfrost_batch_intersection_scissor(struct panfrost_batch *batch, unsigned minx, unsigned miny, unsigned maxx, unsigned maxy) { batch->minx = MAX2(batch->minx, minx); batch->miny = MAX2(batch->miny, miny); batch->maxx = MIN2(batch->maxx, maxx); batch->maxy = MIN2(batch->maxy, maxy); } void panfrost_batch_init(struct panfrost_context *ctx) { ctx->batches = _mesa_hash_table_create(ctx, panfrost_batch_hash, panfrost_batch_compare); ctx->accessed_bos = _mesa_hash_table_create(ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); }