/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Marek Olšák */ #include "r600_cs.h" #include "util/u_memory.h" #include "util/u_upload_mgr.h" #include #include boolean r600_rings_is_buffer_referenced(struct r600_common_context *ctx, struct radeon_winsys_cs_handle *buf, enum radeon_bo_usage usage) { if (ctx->ws->cs_is_buffer_referenced(ctx->rings.gfx.cs, buf, usage)) { return TRUE; } if (ctx->rings.dma.cs && ctx->rings.dma.cs->cdw && ctx->ws->cs_is_buffer_referenced(ctx->rings.dma.cs, buf, usage)) { return TRUE; } return FALSE; } void *r600_buffer_map_sync_with_rings(struct r600_common_context *ctx, struct r600_resource *resource, unsigned usage) { enum radeon_bo_usage rusage = RADEON_USAGE_READWRITE; bool busy = false; if (usage & PIPE_TRANSFER_UNSYNCHRONIZED) { return ctx->ws->buffer_map(resource->cs_buf, NULL, usage); } if (!(usage & PIPE_TRANSFER_WRITE)) { /* have to wait for the last write */ rusage = RADEON_USAGE_WRITE; } if (ctx->rings.gfx.cs->cdw != ctx->initial_gfx_cs_size && ctx->ws->cs_is_buffer_referenced(ctx->rings.gfx.cs, resource->cs_buf, rusage)) { if (usage & PIPE_TRANSFER_DONTBLOCK) { ctx->rings.gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL); return NULL; } else { ctx->rings.gfx.flush(ctx, 0, NULL); busy = true; } } if (ctx->rings.dma.cs && ctx->rings.dma.cs->cdw && ctx->ws->cs_is_buffer_referenced(ctx->rings.dma.cs, resource->cs_buf, rusage)) { if (usage & PIPE_TRANSFER_DONTBLOCK) { ctx->rings.dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL); return NULL; } else { ctx->rings.dma.flush(ctx, 0, NULL); busy = true; } } if (busy || !ctx->ws->buffer_wait(resource->buf, 0, rusage)) { if (usage & PIPE_TRANSFER_DONTBLOCK) { return NULL; } else { /* We will be wait for the GPU. Wait for any offloaded * CS flush to complete to avoid busy-waiting in the winsys. */ ctx->ws->cs_sync_flush(ctx->rings.gfx.cs); if (ctx->rings.dma.cs) ctx->ws->cs_sync_flush(ctx->rings.dma.cs); } } /* Setting the CS to NULL will prevent doing checks we have done already. */ return ctx->ws->buffer_map(resource->cs_buf, NULL, usage); } bool r600_init_resource(struct r600_common_screen *rscreen, struct r600_resource *res, unsigned size, unsigned alignment, bool use_reusable_pool) { struct r600_texture *rtex = (struct r600_texture*)res; struct pb_buffer *old_buf, *new_buf; enum radeon_bo_flag flags = 0; switch (res->b.b.usage) { case PIPE_USAGE_STREAM: flags = RADEON_FLAG_GTT_WC; /* fall through */ case PIPE_USAGE_STAGING: /* Transfers are likely to occur more often with these resources. */ res->domains = RADEON_DOMAIN_GTT; break; case PIPE_USAGE_DYNAMIC: /* Older kernels didn't always flush the HDP cache before * CS execution */ if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor < 40) { res->domains = RADEON_DOMAIN_GTT; flags |= RADEON_FLAG_GTT_WC; break; } flags |= RADEON_FLAG_CPU_ACCESS; /* fall through */ case PIPE_USAGE_DEFAULT: case PIPE_USAGE_IMMUTABLE: default: /* Not listing GTT here improves performance in some apps. */ res->domains = RADEON_DOMAIN_VRAM; flags |= RADEON_FLAG_GTT_WC; break; } if (res->b.b.target == PIPE_BUFFER && res->b.b.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT | PIPE_RESOURCE_FLAG_MAP_COHERENT)) { /* Use GTT for all persistent mappings with older kernels, * because they didn't always flush the HDP cache before CS * execution. * * Write-combined CPU mappings are fine, the kernel ensures all CPU * writes finish before the GPU executes a command stream. */ if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor < 40) res->domains = RADEON_DOMAIN_GTT; else if (res->domains & RADEON_DOMAIN_VRAM) flags |= RADEON_FLAG_CPU_ACCESS; } /* Tiled textures are unmappable. Always put them in VRAM. */ if (res->b.b.target != PIPE_BUFFER && rtex->surface.level[0].mode >= RADEON_SURF_MODE_1D) { res->domains = RADEON_DOMAIN_VRAM; flags &= ~RADEON_FLAG_CPU_ACCESS; flags |= RADEON_FLAG_NO_CPU_ACCESS; } if (rscreen->debug_flags & DBG_NO_WC) flags &= ~RADEON_FLAG_GTT_WC; /* Allocate a new resource. */ new_buf = rscreen->ws->buffer_create(rscreen->ws, size, alignment, use_reusable_pool, res->domains, flags); if (!new_buf) { return false; } /* Replace the pointer such that if res->buf wasn't NULL, it won't be * NULL. This should prevent crashes with multiple contexts using * the same buffer where one of the contexts invalidates it while * the others are using it. */ old_buf = res->buf; res->cs_buf = rscreen->ws->buffer_get_cs_handle(new_buf); /* should be atomic */ res->buf = new_buf; /* should be atomic */ if (rscreen->info.r600_virtual_address) res->gpu_address = rscreen->ws->buffer_get_virtual_address(res->cs_buf); else res->gpu_address = 0; pb_reference(&old_buf, NULL); util_range_set_empty(&res->valid_buffer_range); res->TC_L2_dirty = false; if (rscreen->debug_flags & DBG_VM && res->b.b.target == PIPE_BUFFER) { fprintf(stderr, "VM start=0x%"PRIX64" end=0x%"PRIX64" | Buffer %u bytes\n", res->gpu_address, res->gpu_address + res->buf->size, res->buf->size); } return true; } static void r600_buffer_destroy(struct pipe_screen *screen, struct pipe_resource *buf) { struct r600_resource *rbuffer = r600_resource(buf); util_range_destroy(&rbuffer->valid_buffer_range); pb_reference(&rbuffer->buf, NULL); FREE(rbuffer); } static void *r600_buffer_get_transfer(struct pipe_context *ctx, struct pipe_resource *resource, unsigned level, unsigned usage, const struct pipe_box *box, struct pipe_transfer **ptransfer, void *data, struct r600_resource *staging, unsigned offset) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; struct r600_transfer *transfer = util_slab_alloc(&rctx->pool_transfers); transfer->transfer.resource = resource; transfer->transfer.level = level; transfer->transfer.usage = usage; transfer->transfer.box = *box; transfer->transfer.stride = 0; transfer->transfer.layer_stride = 0; transfer->offset = offset; transfer->staging = staging; *ptransfer = &transfer->transfer; return data; } static bool r600_can_dma_copy_buffer(struct r600_common_context *rctx, unsigned dstx, unsigned srcx, unsigned size) { bool dword_aligned = !(dstx % 4) && !(srcx % 4) && !(size % 4); return rctx->screen->has_cp_dma || (dword_aligned && (rctx->rings.dma.cs || rctx->screen->has_streamout)); } static void *r600_buffer_transfer_map(struct pipe_context *ctx, struct pipe_resource *resource, unsigned level, unsigned usage, const struct pipe_box *box, struct pipe_transfer **ptransfer) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; struct r600_common_screen *rscreen = (struct r600_common_screen*)ctx->screen; struct r600_resource *rbuffer = r600_resource(resource); uint8_t *data; assert(box->x + box->width <= resource->width0); /* See if the buffer range being mapped has never been initialized, * in which case it can be mapped unsynchronized. */ if (!(usage & PIPE_TRANSFER_UNSYNCHRONIZED) && usage & PIPE_TRANSFER_WRITE && !util_ranges_intersect(&rbuffer->valid_buffer_range, box->x, box->x + box->width)) { usage |= PIPE_TRANSFER_UNSYNCHRONIZED; } /* If discarding the entire range, discard the whole resource instead. */ if (usage & PIPE_TRANSFER_DISCARD_RANGE && box->x == 0 && box->width == resource->width0) { usage |= PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE; } if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE && !(usage & PIPE_TRANSFER_UNSYNCHRONIZED)) { assert(usage & PIPE_TRANSFER_WRITE); /* Check if mapping this buffer would cause waiting for the GPU. */ if (r600_rings_is_buffer_referenced(rctx, rbuffer->cs_buf, RADEON_USAGE_READWRITE) || !rctx->ws->buffer_wait(rbuffer->buf, 0, RADEON_USAGE_READWRITE)) { rctx->invalidate_buffer(&rctx->b, &rbuffer->b.b); } /* At this point, the buffer is always idle. */ usage |= PIPE_TRANSFER_UNSYNCHRONIZED; } else if ((usage & PIPE_TRANSFER_DISCARD_RANGE) && !(usage & PIPE_TRANSFER_UNSYNCHRONIZED) && !(rscreen->debug_flags & DBG_NO_DISCARD_RANGE) && r600_can_dma_copy_buffer(rctx, box->x, 0, box->width)) { assert(usage & PIPE_TRANSFER_WRITE); /* Check if mapping this buffer would cause waiting for the GPU. */ if (r600_rings_is_buffer_referenced(rctx, rbuffer->cs_buf, RADEON_USAGE_READWRITE) || !rctx->ws->buffer_wait(rbuffer->buf, 0, RADEON_USAGE_READWRITE)) { /* Do a wait-free write-only transfer using a temporary buffer. */ unsigned offset; struct r600_resource *staging = NULL; u_upload_alloc(rctx->uploader, 0, box->width + (box->x % R600_MAP_BUFFER_ALIGNMENT), &offset, (struct pipe_resource**)&staging, (void**)&data); if (staging) { data += box->x % R600_MAP_BUFFER_ALIGNMENT; return r600_buffer_get_transfer(ctx, resource, level, usage, box, ptransfer, data, staging, offset); } } else { /* At this point, the buffer is always idle (we checked it above). */ usage |= PIPE_TRANSFER_UNSYNCHRONIZED; } } /* Using a staging buffer in GTT for larger reads is much faster. */ else if ((usage & PIPE_TRANSFER_READ) && !(usage & PIPE_TRANSFER_WRITE) && rbuffer->domains == RADEON_DOMAIN_VRAM && r600_can_dma_copy_buffer(rctx, 0, box->x, box->width)) { struct r600_resource *staging; staging = (struct r600_resource*) pipe_buffer_create( ctx->screen, PIPE_BIND_TRANSFER_READ, PIPE_USAGE_STAGING, box->width + (box->x % R600_MAP_BUFFER_ALIGNMENT)); if (staging) { /* Copy the VRAM buffer to the staging buffer. */ rctx->dma_copy(ctx, &staging->b.b, 0, box->x % R600_MAP_BUFFER_ALIGNMENT, 0, 0, resource, level, box); data = r600_buffer_map_sync_with_rings(rctx, staging, PIPE_TRANSFER_READ); data += box->x % R600_MAP_BUFFER_ALIGNMENT; return r600_buffer_get_transfer(ctx, resource, level, usage, box, ptransfer, data, staging, 0); } } data = r600_buffer_map_sync_with_rings(rctx, rbuffer, usage); if (!data) { return NULL; } data += box->x; return r600_buffer_get_transfer(ctx, resource, level, usage, box, ptransfer, data, NULL, 0); } static void r600_buffer_transfer_unmap(struct pipe_context *ctx, struct pipe_transfer *transfer) { struct r600_common_context *rctx = (struct r600_common_context*)ctx; struct r600_transfer *rtransfer = (struct r600_transfer*)transfer; struct r600_resource *rbuffer = r600_resource(transfer->resource); if (rtransfer->staging) { if (rtransfer->transfer.usage & PIPE_TRANSFER_WRITE) { struct pipe_resource *dst, *src; unsigned soffset, doffset, size; struct pipe_box box; dst = transfer->resource; src = &rtransfer->staging->b.b; size = transfer->box.width; doffset = transfer->box.x; soffset = rtransfer->offset + transfer->box.x % R600_MAP_BUFFER_ALIGNMENT; u_box_1d(soffset, size, &box); /* Copy the staging buffer into the original one. */ rctx->dma_copy(ctx, dst, 0, doffset, 0, 0, src, 0, &box); } pipe_resource_reference((struct pipe_resource**)&rtransfer->staging, NULL); } if (transfer->usage & PIPE_TRANSFER_WRITE) { util_range_add(&rbuffer->valid_buffer_range, transfer->box.x, transfer->box.x + transfer->box.width); } util_slab_free(&rctx->pool_transfers, transfer); } static const struct u_resource_vtbl r600_buffer_vtbl = { NULL, /* get_handle */ r600_buffer_destroy, /* resource_destroy */ r600_buffer_transfer_map, /* transfer_map */ NULL, /* transfer_flush_region */ r600_buffer_transfer_unmap, /* transfer_unmap */ NULL /* transfer_inline_write */ }; static struct r600_resource * r600_alloc_buffer_struct(struct pipe_screen *screen, const struct pipe_resource *templ) { struct r600_resource *rbuffer; rbuffer = MALLOC_STRUCT(r600_resource); rbuffer->b.b = *templ; pipe_reference_init(&rbuffer->b.b.reference, 1); rbuffer->b.b.screen = screen; rbuffer->b.vtbl = &r600_buffer_vtbl; rbuffer->buf = NULL; rbuffer->TC_L2_dirty = false; util_range_init(&rbuffer->valid_buffer_range); return rbuffer; } struct pipe_resource *r600_buffer_create(struct pipe_screen *screen, const struct pipe_resource *templ, unsigned alignment) { struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; struct r600_resource *rbuffer = r600_alloc_buffer_struct(screen, templ); if (!r600_init_resource(rscreen, rbuffer, templ->width0, alignment, TRUE)) { FREE(rbuffer); return NULL; } return &rbuffer->b.b; } struct pipe_resource * r600_buffer_from_user_memory(struct pipe_screen *screen, const struct pipe_resource *templ, void *user_memory) { struct r600_common_screen *rscreen = (struct r600_common_screen*)screen; struct radeon_winsys *ws = rscreen->ws; struct r600_resource *rbuffer = r600_alloc_buffer_struct(screen, templ); rbuffer->domains = RADEON_DOMAIN_GTT; util_range_add(&rbuffer->valid_buffer_range, 0, templ->width0); /* Convert a user pointer to a buffer. */ rbuffer->buf = ws->buffer_from_ptr(ws, user_memory, templ->width0); if (!rbuffer->buf) { FREE(rbuffer); return NULL; } rbuffer->cs_buf = ws->buffer_get_cs_handle(rbuffer->buf); if (rscreen->info.r600_virtual_address) rbuffer->gpu_address = ws->buffer_get_virtual_address(rbuffer->cs_buf); else rbuffer->gpu_address = 0; return &rbuffer->b.b; }