/* * Copyright © 2014-2017 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/u_blitter.h" #include "util/u_prim.h" #include "util/format/u_format.h" #include "util/u_pack_color.h" #include "util/u_prim_restart.h" #include "util/u_upload_mgr.h" #include "indices/u_primconvert.h" #include "v3d_context.h" #include "v3d_resource.h" #include "v3d_cl.h" #include "broadcom/compiler/v3d_compiler.h" #include "broadcom/common/v3d_macros.h" #include "broadcom/cle/v3dx_pack.h" /** * Does the initial bining command list setup for drawing to a given FBO. */ static void v3d_start_draw(struct v3d_context *v3d) { struct v3d_job *job = v3d->job; if (job->needs_flush) return; /* Get space to emit our BCL state, using a branch to jump to a new BO * if necessary. */ v3d_cl_ensure_space_with_branch(&job->bcl, 256 /* XXX */); job->submit.bcl_start = job->bcl.bo->offset; v3d_job_add_bo(job, job->bcl.bo); uint32_t fb_layers = util_framebuffer_get_num_layers(&v3d->framebuffer); /* The PTB will request the tile alloc initial size per tile at start * of tile binning. */ uint32_t tile_alloc_size = MAX2(fb_layers, 1) * job->draw_tiles_x * job->draw_tiles_y * 64; /* The PTB allocates in aligned 4k chunks after the initial setup. */ tile_alloc_size = align(tile_alloc_size, 4096); /* Include the first two chunk allocations that the PTB does so that * we definitely clear the OOM condition before triggering one (the HW * won't trigger OOM during the first allocations). */ tile_alloc_size += 8192; /* For performance, allocate some extra initial memory after the PTB's * minimal allocations, so that we hopefully don't have to block the * GPU on the kernel handling an OOM signal. */ tile_alloc_size += 512 * 1024; job->tile_alloc = v3d_bo_alloc(v3d->screen, tile_alloc_size, "tile_alloc"); uint32_t tsda_per_tile_size = v3d->screen->devinfo.ver >= 40 ? 256 : 64; job->tile_state = v3d_bo_alloc(v3d->screen, MAX2(fb_layers, 1) * job->draw_tiles_y * job->draw_tiles_x * tsda_per_tile_size, "TSDA"); #if V3D_VERSION >= 41 /* This must go before the binning mode configuration. It is * required for layered framebuffers to work. */ if (fb_layers > 0) { cl_emit(&job->bcl, NUMBER_OF_LAYERS, config) { config.number_of_layers = fb_layers; } } #endif #if V3D_VERSION >= 40 cl_emit(&job->bcl, TILE_BINNING_MODE_CFG, config) { config.width_in_pixels = v3d->framebuffer.width; config.height_in_pixels = v3d->framebuffer.height; config.number_of_render_targets = MAX2(v3d->framebuffer.nr_cbufs, 1); config.multisample_mode_4x = job->msaa; config.maximum_bpp_of_all_render_targets = job->internal_bpp; } #else /* V3D_VERSION < 40 */ /* "Binning mode lists start with a Tile Binning Mode Configuration * item (120)" * * Part1 signals the end of binning config setup. */ cl_emit(&job->bcl, TILE_BINNING_MODE_CFG_PART2, config) { config.tile_allocation_memory_address = cl_address(job->tile_alloc, 0); config.tile_allocation_memory_size = job->tile_alloc->size; } cl_emit(&job->bcl, TILE_BINNING_MODE_CFG_PART1, config) { config.tile_state_data_array_base_address = cl_address(job->tile_state, 0); config.width_in_tiles = job->draw_tiles_x; config.height_in_tiles = job->draw_tiles_y; /* Must be >= 1 */ config.number_of_render_targets = MAX2(v3d->framebuffer.nr_cbufs, 1); config.multisample_mode_4x = job->msaa; config.maximum_bpp_of_all_render_targets = job->internal_bpp; } #endif /* V3D_VERSION < 40 */ /* There's definitely nothing in the VCD cache we want. */ cl_emit(&job->bcl, FLUSH_VCD_CACHE, bin); /* Disable any leftover OQ state from another job. */ cl_emit(&job->bcl, OCCLUSION_QUERY_COUNTER, counter); /* "Binning mode lists must have a Start Tile Binning item (6) after * any prefix state data before the binning list proper starts." */ cl_emit(&job->bcl, START_TILE_BINNING, bin); job->needs_flush = true; job->draw_width = v3d->framebuffer.width; job->draw_height = v3d->framebuffer.height; job->num_layers = fb_layers; } static void v3d_predraw_check_stage_inputs(struct pipe_context *pctx, enum pipe_shader_type s) { struct v3d_context *v3d = v3d_context(pctx); /* Flush writes to textures we're sampling. */ for (int i = 0; i < v3d->tex[s].num_textures; i++) { struct pipe_sampler_view *pview = v3d->tex[s].textures[i]; if (!pview) continue; struct v3d_sampler_view *view = v3d_sampler_view(pview); if (view->texture != view->base.texture && view->base.format != PIPE_FORMAT_X32_S8X24_UINT) v3d_update_shadow_texture(pctx, &view->base); v3d_flush_jobs_writing_resource(v3d, view->texture, V3D_FLUSH_DEFAULT, s == PIPE_SHADER_COMPUTE); } /* Flush writes to UBOs. */ foreach_bit(i, v3d->constbuf[s].enabled_mask) { struct pipe_constant_buffer *cb = &v3d->constbuf[s].cb[i]; if (cb->buffer) { v3d_flush_jobs_writing_resource(v3d, cb->buffer, V3D_FLUSH_DEFAULT, s == PIPE_SHADER_COMPUTE); } } /* Flush reads/writes to our SSBOs */ foreach_bit(i, v3d->ssbo[s].enabled_mask) { struct pipe_shader_buffer *sb = &v3d->ssbo[s].sb[i]; if (sb->buffer) { v3d_flush_jobs_reading_resource(v3d, sb->buffer, V3D_FLUSH_NOT_CURRENT_JOB, s == PIPE_SHADER_COMPUTE); } } /* Flush reads/writes to our image views */ foreach_bit(i, v3d->shaderimg[s].enabled_mask) { struct v3d_image_view *view = &v3d->shaderimg[s].si[i]; v3d_flush_jobs_reading_resource(v3d, view->base.resource, V3D_FLUSH_NOT_CURRENT_JOB, s == PIPE_SHADER_COMPUTE); } /* Flush writes to our vertex buffers (i.e. from transform feedback) */ if (s == PIPE_SHADER_VERTEX) { foreach_bit(i, v3d->vertexbuf.enabled_mask) { struct pipe_vertex_buffer *vb = &v3d->vertexbuf.vb[i]; v3d_flush_jobs_writing_resource(v3d, vb->buffer.resource, V3D_FLUSH_DEFAULT, false); } } } static void v3d_predraw_check_outputs(struct pipe_context *pctx) { struct v3d_context *v3d = v3d_context(pctx); /* Flush jobs reading from TF buffers that we are about to write. */ if (v3d_transform_feedback_enabled(v3d)) { struct v3d_streamout_stateobj *so = &v3d->streamout; for (int i = 0; i < so->num_targets; i++) { if (!so->targets[i]) continue; const struct pipe_stream_output_target *target = so->targets[i]; v3d_flush_jobs_reading_resource(v3d, target->buffer, V3D_FLUSH_DEFAULT, false); } } } /** * Checks if the state for the current draw reads a particular resource in * in the given shader stage. */ static bool v3d_state_reads_resource(struct v3d_context *v3d, struct pipe_resource *prsc, enum pipe_shader_type s) { struct v3d_resource *rsc = v3d_resource(prsc); /* Vertex buffers */ if (s == PIPE_SHADER_VERTEX) { foreach_bit(i, v3d->vertexbuf.enabled_mask) { struct pipe_vertex_buffer *vb = &v3d->vertexbuf.vb[i]; if (!vb->buffer.resource) continue; struct v3d_resource *vb_rsc = v3d_resource(vb->buffer.resource); if (rsc->bo == vb_rsc->bo) return true; } } /* Constant buffers */ foreach_bit(i, v3d->constbuf[s].enabled_mask) { struct pipe_constant_buffer *cb = &v3d->constbuf[s].cb[i]; if (!cb->buffer) continue; struct v3d_resource *cb_rsc = v3d_resource(cb->buffer); if (rsc->bo == cb_rsc->bo) return true; } /* Shader storage buffers */ foreach_bit(i, v3d->ssbo[s].enabled_mask) { struct pipe_shader_buffer *sb = &v3d->ssbo[s].sb[i]; if (!sb->buffer) continue; struct v3d_resource *sb_rsc = v3d_resource(sb->buffer); if (rsc->bo == sb_rsc->bo) return true; } /* Textures */ for (int i = 0; i < v3d->tex[s].num_textures; i++) { struct pipe_sampler_view *pview = v3d->tex[s].textures[i]; if (!pview) continue; struct v3d_sampler_view *view = v3d_sampler_view(pview); struct v3d_resource *v_rsc = v3d_resource(view->texture); if (rsc->bo == v_rsc->bo) return true; } return false; } static void v3d_emit_wait_for_tf(struct v3d_job *job) { /* XXX: we might be able to skip this in some cases, for now we * always emit it. */ cl_emit(&job->bcl, FLUSH_TRANSFORM_FEEDBACK_DATA, flush); cl_emit(&job->bcl, WAIT_FOR_TRANSFORM_FEEDBACK, wait) { /* XXX: Wait for all outstanding writes... maybe we can do * better in some cases. */ wait.block_count = 255; } /* We have just flushed all our outstanding TF work in this job so make * sure we don't emit TF flushes again for any of it again. */ _mesa_set_clear(job->tf_write_prscs, NULL); } static void v3d_emit_wait_for_tf_if_needed(struct v3d_context *v3d, struct v3d_job *job) { if (!job->tf_enabled) return; set_foreach(job->tf_write_prscs, entry) { struct pipe_resource *prsc = (struct pipe_resource *)entry->key; for (int s = 0; s < PIPE_SHADER_COMPUTE; s++) { /* Fragment shaders can only start executing after all * binning (and thus TF) is complete. * * XXX: For VS/GS/TES, if the binning shader does not * read the resource then we could also avoid emitting * the wait. */ if (s == PIPE_SHADER_FRAGMENT) continue; if (v3d_state_reads_resource(v3d, prsc, s)) { v3d_emit_wait_for_tf(job); return; } } } } struct vpm_config { uint32_t As; uint32_t Vc; uint32_t Gs; uint32_t Gd; uint32_t Gv; uint32_t Ve; uint32_t gs_width; }; #if V3D_VERSION >= 41 static void v3d_emit_gs_state_record(struct v3d_job *job, struct v3d_compiled_shader *gs_bin, struct v3d_cl_reloc gs_bin_uniforms, struct v3d_compiled_shader *gs, struct v3d_cl_reloc gs_render_uniforms) { cl_emit(&job->indirect, GEOMETRY_SHADER_STATE_RECORD, shader) { shader.geometry_bin_mode_shader_code_address = cl_address(v3d_resource(gs_bin->resource)->bo, gs_bin->offset); shader.geometry_bin_mode_shader_4_way_threadable = gs_bin->prog_data.gs->base.threads == 4; shader.geometry_bin_mode_shader_start_in_final_thread_section = gs_bin->prog_data.gs->base.single_seg; shader.geometry_bin_mode_shader_propagate_nans = true; shader.geometry_bin_mode_shader_uniforms_address = gs_bin_uniforms; shader.geometry_render_mode_shader_code_address = cl_address(v3d_resource(gs->resource)->bo, gs->offset); shader.geometry_render_mode_shader_4_way_threadable = gs->prog_data.gs->base.threads == 4; shader.geometry_render_mode_shader_start_in_final_thread_section = gs->prog_data.gs->base.single_seg; shader.geometry_render_mode_shader_propagate_nans = true; shader.geometry_render_mode_shader_uniforms_address = gs_render_uniforms; } } static uint8_t v3d_gs_output_primitive(uint32_t prim_type) { switch (prim_type) { case GL_POINTS: return GEOMETRY_SHADER_POINTS; case GL_LINE_STRIP: return GEOMETRY_SHADER_LINE_STRIP; case GL_TRIANGLE_STRIP: return GEOMETRY_SHADER_TRI_STRIP; default: unreachable("Unsupported primitive type"); } } static void v3d_emit_tes_gs_common_params(struct v3d_job *job, uint8_t gs_out_prim_type, uint8_t gs_num_invocations) { /* This, and v3d_emit_tes_gs_shader_params below, fill in default * values for tessellation fields even though we don't support * tessellation yet because our packing functions (and the simulator) * complain if we don't. */ cl_emit(&job->indirect, TESSELLATION_GEOMETRY_COMMON_PARAMS, shader) { shader.tessellation_type = TESSELLATION_TYPE_TRIANGLE; shader.tessellation_point_mode = false; shader.tessellation_edge_spacing = TESSELLATION_EDGE_SPACING_EVEN; shader.tessellation_clockwise = true; shader.tessellation_invocations = 1; shader.geometry_shader_output_format = v3d_gs_output_primitive(gs_out_prim_type); shader.geometry_shader_instances = gs_num_invocations & 0x1F; } } static uint8_t simd_width_to_gs_pack_mode(uint32_t width) { switch (width) { case 16: return V3D_PACK_MODE_16_WAY; case 8: return V3D_PACK_MODE_8_WAY; case 4: return V3D_PACK_MODE_4_WAY; case 1: return V3D_PACK_MODE_1_WAY; default: unreachable("Invalid SIMD width"); }; } static void v3d_emit_tes_gs_shader_params(struct v3d_job *job, uint32_t gs_simd, uint32_t gs_vpm_output_size, uint32_t gs_max_vpm_input_size_per_batch) { cl_emit(&job->indirect, TESSELLATION_GEOMETRY_SHADER_PARAMS, shader) { shader.tcs_batch_flush_mode = V3D_TCS_FLUSH_MODE_FULLY_PACKED; shader.per_patch_data_column_depth = 1; shader.tcs_output_segment_size_in_sectors = 1; shader.tcs_output_segment_pack_mode = V3D_PACK_MODE_16_WAY; shader.tes_output_segment_size_in_sectors = 1; shader.tes_output_segment_pack_mode = V3D_PACK_MODE_16_WAY; shader.gs_output_segment_size_in_sectors = gs_vpm_output_size; shader.gs_output_segment_pack_mode = simd_width_to_gs_pack_mode(gs_simd); shader.tbg_max_patches_per_tcs_batch = 1; shader.tbg_max_extra_vertex_segs_for_patches_after_first = 0; shader.tbg_min_tcs_output_segments_required_in_play = 1; shader.tbg_min_per_patch_data_segments_required_in_play = 1; shader.tpg_max_patches_per_tes_batch = 1; shader.tpg_max_vertex_segments_per_tes_batch = 0; shader.tpg_max_tcs_output_segments_per_tes_batch = 1; shader.tpg_min_tes_output_segments_required_in_play = 1; shader.gbg_max_tes_output_vertex_segments_per_gs_batch = gs_max_vpm_input_size_per_batch; shader.gbg_min_gs_output_segments_required_in_play = 1; } } static inline uint32_t compute_vpm_size_in_sectors(const struct v3d_device_info *devinfo) { assert(devinfo->vpm_size > 0); const uint32_t sector_size = V3D_CHANNELS * sizeof(uint32_t) * 8; return devinfo->vpm_size / sector_size; } /* Computes various parameters affecting VPM memory configuration for programs * involving geometry shaders to ensure the program fits in memory and honors * requirements described in section "VPM usage" of the programming manual. */ static void compute_vpm_config_gs(struct v3d_device_info *devinfo, struct v3d_vs_prog_data *vs, struct v3d_gs_prog_data *gs, struct vpm_config *vpm_cfg_out) { const uint32_t A = vs->separate_segments ? 1 : 0; const uint32_t Ad = vs->vpm_input_size; const uint32_t Vd = vs->vpm_output_size; const uint32_t vpm_size = compute_vpm_size_in_sectors(devinfo); /* Try to fit program into our VPM memory budget by adjusting * configurable parameters iteratively. We do this in two phases: * the first phase tries to fit the program into the total available * VPM memory. If we suceed at that, then the second phase attempts * to fit the program into half of that budget so we can run bin and * render programs in parallel. */ struct vpm_config vpm_cfg[2]; struct vpm_config *final_vpm_cfg = NULL; uint32_t phase = 0; vpm_cfg[phase].As = 1; vpm_cfg[phase].Gs = 1; vpm_cfg[phase].Gd = gs->vpm_output_size; vpm_cfg[phase].gs_width = gs->simd_width; /* While there is a requirement that Vc >= [Vn / 16], this is * always the case when tessellation is not present because in that * case Vn can only be 6 at most (when input primitive is triangles * with adjacency). * * We always choose Vc=2. We can't go lower than this due to GFXH-1744, * and Broadcom has not found it worth it to increase it beyond this * in general. Increasing Vc also increases VPM memory pressure which * can turn up being detrimental for performance in some scenarios. */ vpm_cfg[phase].Vc = 2; /* Gv is a constraint on the hardware to not exceed the * specified number of vertex segments per GS batch. If adding a * new primitive to a GS batch would result in a range of more * than Gv vertex segments being referenced by the batch, then * the hardware will flush the batch and start a new one. This * means that we can choose any value we want, we just need to * be aware that larger values improve GS batch utilization * at the expense of more VPM memory pressure (which can affect * other performance aspects, such as GS dispatch width). * We start with the largest value, and will reduce it if we * find that total memory pressure is too high. */ vpm_cfg[phase].Gv = 3; do { /* When GS is present in absence of TES, then we need to satisfy * that Ve >= Gv. We go with the smallest value of Ve to avoid * increasing memory pressure. */ vpm_cfg[phase].Ve = vpm_cfg[phase].Gv; uint32_t vpm_sectors = A * vpm_cfg[phase].As * Ad + (vpm_cfg[phase].Vc + vpm_cfg[phase].Ve) * Vd + vpm_cfg[phase].Gs * vpm_cfg[phase].Gd; /* Ideally we want to use no more than half of the available * memory so we can execute a bin and render program in parallel * without stalls. If we achieved that then we are done. */ if (vpm_sectors <= vpm_size / 2) { final_vpm_cfg = &vpm_cfg[phase]; break; } /* At the very least, we should not allocate more than the * total available VPM memory. If we have a configuration that * succeeds at this we save it and continue to see if we can * meet the half-memory-use criteria too. */ if (phase == 0 && vpm_sectors <= vpm_size) { vpm_cfg[1] = vpm_cfg[0]; phase = 1; } /* Try lowering Gv */ if (vpm_cfg[phase].Gv > 0) { vpm_cfg[phase].Gv--; continue; } /* Try lowering GS dispatch width */ if (vpm_cfg[phase].gs_width > 1) { do { vpm_cfg[phase].gs_width >>= 1; vpm_cfg[phase].Gd = align(vpm_cfg[phase].Gd, 2) / 2; } while (vpm_cfg[phase].gs_width == 2); /* Reset Gv to max after dropping dispatch width */ vpm_cfg[phase].Gv = 3; continue; } /* We ran out of options to reduce memory pressure. If we * are at phase 1 we have at least a valid configuration, so we * we use that. */ if (phase == 1) final_vpm_cfg = &vpm_cfg[0]; break; } while (true); if (!final_vpm_cfg) { /* FIXME: maybe return a boolean to indicate failure and use * that to stop the submission for this draw call. */ fprintf(stderr, "Failed to allocate VPM memory.\n"); abort(); } assert(final_vpm_cfg); assert(final_vpm_cfg->Gd <= 16); assert(final_vpm_cfg->Gv < 4); assert(final_vpm_cfg->Ve < 4); assert(final_vpm_cfg->Vc >= 2 && final_vpm_cfg->Vc <= 4); assert(final_vpm_cfg->gs_width == 1 || final_vpm_cfg->gs_width == 4 || final_vpm_cfg->gs_width == 8 || final_vpm_cfg->gs_width == 16); *vpm_cfg_out = *final_vpm_cfg; } #endif static void v3d_emit_gl_shader_state(struct v3d_context *v3d, const struct pipe_draw_info *info) { struct v3d_job *job = v3d->job; /* VC5_DIRTY_VTXSTATE */ struct v3d_vertex_stateobj *vtx = v3d->vtx; /* VC5_DIRTY_VTXBUF */ struct v3d_vertexbuf_stateobj *vertexbuf = &v3d->vertexbuf; /* Upload the uniforms to the indirect CL first */ struct v3d_cl_reloc fs_uniforms = v3d_write_uniforms(v3d, job, v3d->prog.fs, PIPE_SHADER_FRAGMENT); struct v3d_cl_reloc gs_uniforms = { NULL, 0 }; struct v3d_cl_reloc gs_bin_uniforms = { NULL, 0 }; if (v3d->prog.gs) { gs_uniforms = v3d_write_uniforms(v3d, job, v3d->prog.gs, PIPE_SHADER_GEOMETRY); } if (v3d->prog.gs_bin) { gs_bin_uniforms = v3d_write_uniforms(v3d, job, v3d->prog.gs_bin, PIPE_SHADER_GEOMETRY); } struct v3d_cl_reloc vs_uniforms = v3d_write_uniforms(v3d, job, v3d->prog.vs, PIPE_SHADER_VERTEX); struct v3d_cl_reloc cs_uniforms = v3d_write_uniforms(v3d, job, v3d->prog.cs, PIPE_SHADER_VERTEX); /* Update the cache dirty flag based on the shader progs data */ job->tmu_dirty_rcl |= v3d->prog.cs->prog_data.vs->base.tmu_dirty_rcl; job->tmu_dirty_rcl |= v3d->prog.vs->prog_data.vs->base.tmu_dirty_rcl; if (v3d->prog.gs_bin) { job->tmu_dirty_rcl |= v3d->prog.gs_bin->prog_data.gs->base.tmu_dirty_rcl; } if (v3d->prog.gs) { job->tmu_dirty_rcl |= v3d->prog.gs->prog_data.gs->base.tmu_dirty_rcl; } job->tmu_dirty_rcl |= v3d->prog.fs->prog_data.fs->base.tmu_dirty_rcl; /* See GFXH-930 workaround below */ uint32_t num_elements_to_emit = MAX2(vtx->num_elements, 1); uint32_t shader_state_record_length = cl_packet_length(GL_SHADER_STATE_RECORD); #if V3D_VERSION >= 41 if (v3d->prog.gs) { shader_state_record_length += cl_packet_length(GEOMETRY_SHADER_STATE_RECORD) + cl_packet_length(TESSELLATION_GEOMETRY_COMMON_PARAMS) + 2 * cl_packet_length(TESSELLATION_GEOMETRY_SHADER_PARAMS); } #endif uint32_t shader_rec_offset = v3d_cl_ensure_space(&job->indirect, shader_state_record_length + num_elements_to_emit * cl_packet_length(GL_SHADER_STATE_ATTRIBUTE_RECORD), 32); /* XXX perf: We should move most of the SHADER_STATE_RECORD setup to * compile time, so that we mostly just have to OR the VS and FS * records together at draw time. */ struct vpm_config vpm_cfg_bin, vpm_cfg; assert(v3d->screen->devinfo.ver >= 41 || !v3d->prog.gs); if (!v3d->prog.gs) { vpm_cfg_bin.As = 1; vpm_cfg_bin.Ve = 0; vpm_cfg_bin.Vc = v3d->prog.cs->prog_data.vs->vcm_cache_size; vpm_cfg.As = 1; vpm_cfg.Ve = 0; vpm_cfg.Vc = v3d->prog.vs->prog_data.vs->vcm_cache_size; } #if V3D_VERSION >= 41 else { v3d_emit_gs_state_record(v3d->job, v3d->prog.gs_bin, gs_bin_uniforms, v3d->prog.gs, gs_uniforms); struct v3d_gs_prog_data *gs = v3d->prog.gs->prog_data.gs; struct v3d_gs_prog_data *gs_bin = v3d->prog.gs_bin->prog_data.gs; v3d_emit_tes_gs_common_params(v3d->job, gs->out_prim_type, gs->num_invocations); /* Bin Tes/Gs params */ struct v3d_vs_prog_data *vs_bin = v3d->prog.cs->prog_data.vs; compute_vpm_config_gs(&v3d->screen->devinfo, vs_bin, gs_bin, &vpm_cfg_bin); v3d_emit_tes_gs_shader_params(v3d->job, vpm_cfg_bin.gs_width, vpm_cfg_bin.Gd, vpm_cfg_bin.Gv); /* Render Tes/Gs params */ struct v3d_vs_prog_data *vs = v3d->prog.vs->prog_data.vs; compute_vpm_config_gs(&v3d->screen->devinfo, vs, gs, &vpm_cfg); v3d_emit_tes_gs_shader_params(v3d->job, vpm_cfg.gs_width, vpm_cfg.Gd, vpm_cfg.Gv); } #endif cl_emit(&job->indirect, GL_SHADER_STATE_RECORD, shader) { shader.enable_clipping = true; /* VC5_DIRTY_PRIM_MODE | VC5_DIRTY_RASTERIZER */ shader.point_size_in_shaded_vertex_data = (info->mode == PIPE_PRIM_POINTS && v3d->rasterizer->base.point_size_per_vertex); /* Must be set if the shader modifies Z, discards, or modifies * the sample mask. For any of these cases, the fragment * shader needs to write the Z value (even just discards). */ shader.fragment_shader_does_z_writes = v3d->prog.fs->prog_data.fs->writes_z; /* Set if the EZ test must be disabled (due to shader side * effects and the early_z flag not being present in the * shader). */ shader.turn_off_early_z_test = v3d->prog.fs->prog_data.fs->disable_ez; shader.fragment_shader_uses_real_pixel_centre_w_in_addition_to_centroid_w2 = v3d->prog.fs->prog_data.fs->uses_center_w; #if V3D_VERSION >= 41 shader.any_shader_reads_hardware_written_primitive_id = v3d->prog.gs ? v3d->prog.gs->prog_data.gs->uses_pid : false; #endif #if V3D_VERSION >= 40 shader.do_scoreboard_wait_on_first_thread_switch = v3d->prog.fs->prog_data.fs->lock_scoreboard_on_first_thrsw; shader.disable_implicit_point_line_varyings = !v3d->prog.fs->prog_data.fs->uses_implicit_point_line_varyings; #endif shader.number_of_varyings_in_fragment_shader = v3d->prog.fs->prog_data.fs->num_inputs; shader.coordinate_shader_propagate_nans = true; shader.vertex_shader_propagate_nans = true; shader.fragment_shader_propagate_nans = true; shader.coordinate_shader_code_address = cl_address(v3d_resource(v3d->prog.cs->resource)->bo, v3d->prog.cs->offset); shader.vertex_shader_code_address = cl_address(v3d_resource(v3d->prog.vs->resource)->bo, v3d->prog.vs->offset); shader.fragment_shader_code_address = cl_address(v3d_resource(v3d->prog.fs->resource)->bo, v3d->prog.fs->offset); /* XXX: Use combined input/output size flag in the common * case. */ shader.coordinate_shader_has_separate_input_and_output_vpm_blocks = v3d->prog.cs->prog_data.vs->separate_segments; shader.vertex_shader_has_separate_input_and_output_vpm_blocks = v3d->prog.vs->prog_data.vs->separate_segments; shader.coordinate_shader_input_vpm_segment_size = v3d->prog.cs->prog_data.vs->separate_segments ? v3d->prog.cs->prog_data.vs->vpm_input_size : 1; shader.vertex_shader_input_vpm_segment_size = v3d->prog.vs->prog_data.vs->separate_segments ? v3d->prog.vs->prog_data.vs->vpm_input_size : 1; shader.coordinate_shader_output_vpm_segment_size = v3d->prog.cs->prog_data.vs->vpm_output_size; shader.vertex_shader_output_vpm_segment_size = v3d->prog.vs->prog_data.vs->vpm_output_size; shader.coordinate_shader_uniforms_address = cs_uniforms; shader.vertex_shader_uniforms_address = vs_uniforms; shader.fragment_shader_uniforms_address = fs_uniforms; #if V3D_VERSION >= 41 shader.min_coord_shader_input_segments_required_in_play = vpm_cfg_bin.As; shader.min_vertex_shader_input_segments_required_in_play = vpm_cfg.As; shader.min_coord_shader_output_segments_required_in_play_in_addition_to_vcm_cache_size = vpm_cfg_bin.Ve; shader.min_vertex_shader_output_segments_required_in_play_in_addition_to_vcm_cache_size = vpm_cfg.Ve; shader.coordinate_shader_4_way_threadable = v3d->prog.cs->prog_data.vs->base.threads == 4; shader.vertex_shader_4_way_threadable = v3d->prog.vs->prog_data.vs->base.threads == 4; shader.fragment_shader_4_way_threadable = v3d->prog.fs->prog_data.fs->base.threads == 4; shader.coordinate_shader_start_in_final_thread_section = v3d->prog.cs->prog_data.vs->base.single_seg; shader.vertex_shader_start_in_final_thread_section = v3d->prog.vs->prog_data.vs->base.single_seg; shader.fragment_shader_start_in_final_thread_section = v3d->prog.fs->prog_data.fs->base.single_seg; #else shader.coordinate_shader_4_way_threadable = v3d->prog.cs->prog_data.vs->base.threads == 4; shader.coordinate_shader_2_way_threadable = v3d->prog.cs->prog_data.vs->base.threads == 2; shader.vertex_shader_4_way_threadable = v3d->prog.vs->prog_data.vs->base.threads == 4; shader.vertex_shader_2_way_threadable = v3d->prog.vs->prog_data.vs->base.threads == 2; shader.fragment_shader_4_way_threadable = v3d->prog.fs->prog_data.fs->base.threads == 4; shader.fragment_shader_2_way_threadable = v3d->prog.fs->prog_data.fs->base.threads == 2; #endif shader.vertex_id_read_by_coordinate_shader = v3d->prog.cs->prog_data.vs->uses_vid; shader.instance_id_read_by_coordinate_shader = v3d->prog.cs->prog_data.vs->uses_iid; shader.vertex_id_read_by_vertex_shader = v3d->prog.vs->prog_data.vs->uses_vid; shader.instance_id_read_by_vertex_shader = v3d->prog.vs->prog_data.vs->uses_iid; shader.address_of_default_attribute_values = cl_address(v3d_resource(vtx->defaults)->bo, vtx->defaults_offset); } bool cs_loaded_any = false; for (int i = 0; i < vtx->num_elements; i++) { struct pipe_vertex_element *elem = &vtx->pipe[i]; struct pipe_vertex_buffer *vb = &vertexbuf->vb[elem->vertex_buffer_index]; struct v3d_resource *rsc = v3d_resource(vb->buffer.resource); const uint32_t size = cl_packet_length(GL_SHADER_STATE_ATTRIBUTE_RECORD); cl_emit_with_prepacked(&job->indirect, GL_SHADER_STATE_ATTRIBUTE_RECORD, &vtx->attrs[i * size], attr) { attr.stride = vb->stride; attr.address = cl_address(rsc->bo, vb->buffer_offset + elem->src_offset); attr.number_of_values_read_by_coordinate_shader = v3d->prog.cs->prog_data.vs->vattr_sizes[i]; attr.number_of_values_read_by_vertex_shader = v3d->prog.vs->prog_data.vs->vattr_sizes[i]; /* GFXH-930: At least one attribute must be enabled * and read by CS and VS. If we have attributes being * consumed by the VS but not the CS, then set up a * dummy load of the last attribute into the CS's VPM * inputs. (Since CS is just dead-code-elimination * compared to VS, we can't have CS loading but not * VS). */ if (v3d->prog.cs->prog_data.vs->vattr_sizes[i]) cs_loaded_any = true; if (i == vtx->num_elements - 1 && !cs_loaded_any) { attr.number_of_values_read_by_coordinate_shader = 1; } #if V3D_VERSION >= 41 attr.maximum_index = 0xffffff; #endif } STATIC_ASSERT(sizeof(vtx->attrs) >= V3D_MAX_VS_INPUTS / 4 * size); } if (vtx->num_elements == 0) { /* GFXH-930: At least one attribute must be enabled and read * by CS and VS. If we have no attributes being consumed by * the shader, set up a dummy to be loaded into the VPM. */ cl_emit(&job->indirect, GL_SHADER_STATE_ATTRIBUTE_RECORD, attr) { /* Valid address of data whose value will be unused. */ attr.address = cl_address(job->indirect.bo, 0); attr.type = ATTRIBUTE_FLOAT; attr.stride = 0; attr.vec_size = 1; attr.number_of_values_read_by_coordinate_shader = 1; attr.number_of_values_read_by_vertex_shader = 1; } } cl_emit(&job->bcl, VCM_CACHE_SIZE, vcm) { vcm.number_of_16_vertex_batches_for_binning = vpm_cfg_bin.Vc; vcm.number_of_16_vertex_batches_for_rendering = vpm_cfg.Vc; } #if V3D_VERSION >= 41 if (v3d->prog.gs) { cl_emit(&job->bcl, GL_SHADER_STATE_INCLUDING_GS, state) { state.address = cl_address(job->indirect.bo, shader_rec_offset); state.number_of_attribute_arrays = num_elements_to_emit; } } else { cl_emit(&job->bcl, GL_SHADER_STATE, state) { state.address = cl_address(job->indirect.bo, shader_rec_offset); state.number_of_attribute_arrays = num_elements_to_emit; } } #else assert(!v3d->prog.gs); cl_emit(&job->bcl, GL_SHADER_STATE, state) { state.address = cl_address(job->indirect.bo, shader_rec_offset); state.number_of_attribute_arrays = num_elements_to_emit; } #endif v3d_bo_unreference(&cs_uniforms.bo); v3d_bo_unreference(&vs_uniforms.bo); if (gs_uniforms.bo) v3d_bo_unreference(&gs_uniforms.bo); if (gs_bin_uniforms.bo) v3d_bo_unreference(&gs_bin_uniforms.bo); v3d_bo_unreference(&fs_uniforms.bo); } /** * Updates the number of primitives generated from the number of vertices * to draw. This only works when no GS is present, since otherwise the number * of primitives generated cannot be determined in advance and we need to * use the PRIMITIVE_COUNTS_FEEDBACK command instead, however, that requires * a sync wait for the draw to complete, so we only use that when GS is present. */ static void v3d_update_primitives_generated_counter(struct v3d_context *v3d, const struct pipe_draw_info *info) { assert(!v3d->prog.gs); if (!v3d->active_queries) return; uint32_t prims = u_prims_for_vertices(info->mode, info->count); v3d->prims_generated += prims; } static void v3d_update_job_ez(struct v3d_context *v3d, struct v3d_job *job) { switch (v3d->zsa->ez_state) { case VC5_EZ_UNDECIDED: /* If the Z/S state didn't pick a direction but didn't * disable, then go along with the current EZ state. This * allows EZ optimization for Z func == EQUAL or NEVER. */ break; case VC5_EZ_LT_LE: case VC5_EZ_GT_GE: /* If the Z/S state picked a direction, then it needs to match * the current direction if we've decided on one. */ if (job->ez_state == VC5_EZ_UNDECIDED) job->ez_state = v3d->zsa->ez_state; else if (job->ez_state != v3d->zsa->ez_state) job->ez_state = VC5_EZ_DISABLED; break; case VC5_EZ_DISABLED: /* If the current Z/S state disables EZ because of a bad Z * func or stencil operation, then we can't do any more EZ in * this frame. */ job->ez_state = VC5_EZ_DISABLED; break; } /* If the FS affects the Z of the pixels, then it may update against * the chosen EZ direction (though we could use * ARB_conservative_depth's hints to avoid this) */ if (v3d->prog.fs->prog_data.fs->writes_z) { job->ez_state = VC5_EZ_DISABLED; } if (job->first_ez_state == VC5_EZ_UNDECIDED && (job->ez_state != VC5_EZ_DISABLED || job->draw_calls_queued == 0)) job->first_ez_state = job->ez_state; } static uint32_t v3d_hw_prim_type(enum pipe_prim_type prim_type) { switch (prim_type) { case PIPE_PRIM_POINTS: case PIPE_PRIM_LINES: case PIPE_PRIM_LINE_LOOP: case PIPE_PRIM_LINE_STRIP: case PIPE_PRIM_TRIANGLES: case PIPE_PRIM_TRIANGLE_STRIP: case PIPE_PRIM_TRIANGLE_FAN: return prim_type; case PIPE_PRIM_LINES_ADJACENCY: case PIPE_PRIM_LINE_STRIP_ADJACENCY: case PIPE_PRIM_TRIANGLES_ADJACENCY: case PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY: return 8 + (prim_type - PIPE_PRIM_LINES_ADJACENCY); default: unreachable("Unsupported primitive type"); } } static bool v3d_check_compiled_shaders(struct v3d_context *v3d) { static bool warned[5] = { 0 }; uint32_t failed_stage = MESA_SHADER_NONE; if (!v3d->prog.vs->resource || !v3d->prog.cs->resource) { failed_stage = MESA_SHADER_VERTEX; } else if ((v3d->prog.gs_bin && !v3d->prog.gs_bin->resource) || (v3d->prog.gs && !v3d->prog.gs->resource)) { failed_stage = MESA_SHADER_GEOMETRY; } else if (v3d->prog.fs && !v3d->prog.fs->resource) { failed_stage = MESA_SHADER_FRAGMENT; } if (likely(failed_stage == MESA_SHADER_NONE)) return true; if (!warned[failed_stage]) { fprintf(stderr, "%s shader failed to compile. Expect corruption.\n", _mesa_shader_stage_to_string(failed_stage)); warned[failed_stage] = true; } return false; } static void v3d_draw_vbo(struct pipe_context *pctx, const struct pipe_draw_info *info) { struct v3d_context *v3d = v3d_context(pctx); if (!info->count_from_stream_output && !info->indirect && !info->primitive_restart && !u_trim_pipe_prim(info->mode, (unsigned*)&info->count)) return; /* Fall back for weird desktop GL primitive restart values. */ if (info->primitive_restart && info->index_size) { uint32_t mask = ~0; switch (info->index_size) { case 2: mask = 0xffff; break; case 1: mask = 0xff; break; } if (info->restart_index != mask) { util_draw_vbo_without_prim_restart(pctx, info); return; } } if (info->mode >= PIPE_PRIM_QUADS && info->mode <= PIPE_PRIM_POLYGON) { util_primconvert_save_rasterizer_state(v3d->primconvert, &v3d->rasterizer->base); util_primconvert_draw_vbo(v3d->primconvert, info); perf_debug("Fallback conversion for %d %s vertices\n", info->count, u_prim_name(info->mode)); return; } /* Before setting up the draw, flush anything writing to the resources * that we read from or reading from resources we write to. */ for (int s = 0; s < PIPE_SHADER_COMPUTE; s++) v3d_predraw_check_stage_inputs(pctx, s); if (info->indirect) { v3d_flush_jobs_writing_resource(v3d, info->indirect->buffer, V3D_FLUSH_DEFAULT, false); } v3d_predraw_check_outputs(pctx); /* If transform feedback is active and we are switching primitive type * we need to submit the job before drawing and update the vertex count * written to TF based on the primitive type since we will need to * know the exact vertex count if the application decides to call * glDrawTransformFeedback() later. */ if (v3d->streamout.num_targets > 0 && u_base_prim_type(info->mode) != u_base_prim_type(v3d->prim_mode)) { v3d_update_primitive_counters(v3d); } struct v3d_job *job = v3d_get_job_for_fbo(v3d); /* If vertex texturing depends on the output of rendering, we need to * ensure that that rendering is complete before we run a coordinate * shader that depends on it. * * Given that doing that is unusual, for now we just block the binner * on the last submitted render, rather than tracking the last * rendering to each texture's BO. */ if (v3d->tex[PIPE_SHADER_VERTEX].num_textures || info->indirect) { perf_debug("Blocking binner on last render " "due to vertex texturing or indirect drawing.\n"); job->submit.in_sync_bcl = v3d->out_sync; } /* We also need to ensure that compute is complete when render depends * on resources written by it. */ if (v3d->sync_on_last_compute_job) { job->submit.in_sync_bcl = v3d->out_sync; v3d->sync_on_last_compute_job = false; } /* Mark SSBOs and images as being written. We don't actually know * which ones are read vs written, so just assume the worst. */ for (int s = 0; s < PIPE_SHADER_COMPUTE; s++) { foreach_bit(i, v3d->ssbo[s].enabled_mask) { v3d_job_add_write_resource(job, v3d->ssbo[s].sb[i].buffer); job->tmu_dirty_rcl = true; } foreach_bit(i, v3d->shaderimg[s].enabled_mask) { v3d_job_add_write_resource(job, v3d->shaderimg[s].si[i].base.resource); job->tmu_dirty_rcl = true; } } /* Get space to emit our draw call into the BCL, using a branch to * jump to a new BO if necessary. */ v3d_cl_ensure_space_with_branch(&job->bcl, 256 /* XXX */); if (v3d->prim_mode != info->mode) { v3d->prim_mode = info->mode; v3d->dirty |= VC5_DIRTY_PRIM_MODE; } v3d_start_draw(v3d); v3d_update_compiled_shaders(v3d, info->mode); if (!v3d_check_compiled_shaders(v3d)) return; v3d_update_job_ez(v3d, job); /* If this job was writing to transform feedback buffers before this * draw and we are reading from them here, then we need to wait for TF * to complete before we emit this draw. * * Notice this check needs to happen before we emit state for the * current draw call, where we update job->tf_enabled, so we can ensure * that we only check TF writes for prior draws. */ v3d_emit_wait_for_tf_if_needed(v3d, job); #if V3D_VERSION >= 41 v3d41_emit_state(pctx); #else v3d33_emit_state(pctx); #endif if (v3d->dirty & (VC5_DIRTY_VTXBUF | VC5_DIRTY_VTXSTATE | VC5_DIRTY_PRIM_MODE | VC5_DIRTY_RASTERIZER | VC5_DIRTY_COMPILED_CS | VC5_DIRTY_COMPILED_VS | VC5_DIRTY_COMPILED_GS_BIN | VC5_DIRTY_COMPILED_GS | VC5_DIRTY_COMPILED_FS | v3d->prog.cs->uniform_dirty_bits | v3d->prog.vs->uniform_dirty_bits | (v3d->prog.gs_bin ? v3d->prog.gs_bin->uniform_dirty_bits : 0) | (v3d->prog.gs ? v3d->prog.gs->uniform_dirty_bits : 0) | v3d->prog.fs->uniform_dirty_bits)) { v3d_emit_gl_shader_state(v3d, info); } v3d->dirty = 0; /* The Base Vertex/Base Instance packet sets those values to nonzero * for the next draw call only. */ if (info->index_bias || info->start_instance) { cl_emit(&job->bcl, BASE_VERTEX_BASE_INSTANCE, base) { base.base_instance = info->start_instance; base.base_vertex = info->index_bias; } } uint32_t prim_tf_enable = 0; #if V3D_VERSION < 40 /* V3D 3.x: The HW only processes transform feedback on primitives * with the flag set. */ if (v3d->streamout.num_targets) prim_tf_enable = (V3D_PRIM_POINTS_TF - V3D_PRIM_POINTS); #endif if (!v3d->prog.gs) v3d_update_primitives_generated_counter(v3d, info); uint32_t hw_prim_type = v3d_hw_prim_type(info->mode); if (info->index_size) { uint32_t index_size = info->index_size; uint32_t offset = info->start * index_size; struct pipe_resource *prsc; if (info->has_user_indices) { prsc = NULL; u_upload_data(v3d->uploader, 0, info->count * info->index_size, 4, info->index.user, &offset, &prsc); } else { prsc = info->index.resource; } struct v3d_resource *rsc = v3d_resource(prsc); #if V3D_VERSION >= 40 cl_emit(&job->bcl, INDEX_BUFFER_SETUP, ib) { ib.address = cl_address(rsc->bo, 0); ib.size = rsc->bo->size; } #endif if (info->indirect) { cl_emit(&job->bcl, INDIRECT_INDEXED_INSTANCED_PRIM_LIST, prim) { prim.index_type = ffs(info->index_size) - 1; #if V3D_VERSION < 40 prim.address_of_indices_list = cl_address(rsc->bo, offset); #endif /* V3D_VERSION < 40 */ prim.mode = hw_prim_type | prim_tf_enable; prim.enable_primitive_restarts = info->primitive_restart; prim.number_of_draw_indirect_indexed_records = info->indirect->draw_count; prim.stride_in_multiples_of_4_bytes = info->indirect->stride >> 2; prim.address = cl_address(v3d_resource(info->indirect->buffer)->bo, info->indirect->offset); } } else if (info->instance_count > 1) { cl_emit(&job->bcl, INDEXED_INSTANCED_PRIM_LIST, prim) { prim.index_type = ffs(info->index_size) - 1; #if V3D_VERSION >= 40 prim.index_offset = offset; #else /* V3D_VERSION < 40 */ prim.maximum_index = (1u << 31) - 1; /* XXX */ prim.address_of_indices_list = cl_address(rsc->bo, offset); #endif /* V3D_VERSION < 40 */ prim.mode = hw_prim_type | prim_tf_enable; prim.enable_primitive_restarts = info->primitive_restart; prim.number_of_instances = info->instance_count; prim.instance_length = info->count; } } else { cl_emit(&job->bcl, INDEXED_PRIM_LIST, prim) { prim.index_type = ffs(info->index_size) - 1; prim.length = info->count; #if V3D_VERSION >= 40 prim.index_offset = offset; #else /* V3D_VERSION < 40 */ prim.maximum_index = (1u << 31) - 1; /* XXX */ prim.address_of_indices_list = cl_address(rsc->bo, offset); #endif /* V3D_VERSION < 40 */ prim.mode = hw_prim_type | prim_tf_enable; prim.enable_primitive_restarts = info->primitive_restart; } } if (info->has_user_indices) pipe_resource_reference(&prsc, NULL); } else { if (info->indirect) { cl_emit(&job->bcl, INDIRECT_VERTEX_ARRAY_INSTANCED_PRIMS, prim) { prim.mode = hw_prim_type | prim_tf_enable; prim.number_of_draw_indirect_array_records = info->indirect->draw_count; prim.stride_in_multiples_of_4_bytes = info->indirect->stride >> 2; prim.address = cl_address(v3d_resource(info->indirect->buffer)->bo, info->indirect->offset); } } else if (info->instance_count > 1) { struct pipe_stream_output_target *so = info->count_from_stream_output; uint32_t vert_count = so ? v3d_stream_output_target_get_vertex_count(so) : info->count; cl_emit(&job->bcl, VERTEX_ARRAY_INSTANCED_PRIMS, prim) { prim.mode = hw_prim_type | prim_tf_enable; prim.index_of_first_vertex = info->start; prim.number_of_instances = info->instance_count; prim.instance_length = vert_count; } } else { struct pipe_stream_output_target *so = info->count_from_stream_output; uint32_t vert_count = so ? v3d_stream_output_target_get_vertex_count(so) : info->count; cl_emit(&job->bcl, VERTEX_ARRAY_PRIMS, prim) { prim.mode = hw_prim_type | prim_tf_enable; prim.length = vert_count; prim.index_of_first_vertex = info->start; } } } /* A flush is required in between a TF draw and any following TF specs * packet, or the GPU may hang. Just flush each time for now. */ if (v3d->streamout.num_targets) cl_emit(&job->bcl, TRANSFORM_FEEDBACK_FLUSH_AND_COUNT, flush); job->draw_calls_queued++; if (v3d->streamout.num_targets) job->tf_draw_calls_queued++; /* Increment the TF offsets by how many verts we wrote. XXX: This * needs some clamping to the buffer size. */ for (int i = 0; i < v3d->streamout.num_targets; i++) v3d->streamout.offsets[i] += info->count; if (v3d->zsa && job->zsbuf && v3d->zsa->base.depth.enabled) { struct v3d_resource *rsc = v3d_resource(job->zsbuf->texture); v3d_job_add_bo(job, rsc->bo); job->load |= PIPE_CLEAR_DEPTH & ~job->clear; if (v3d->zsa->base.depth.writemask) job->store |= PIPE_CLEAR_DEPTH; rsc->initialized_buffers = PIPE_CLEAR_DEPTH; } if (v3d->zsa && job->zsbuf && v3d->zsa->base.stencil[0].enabled) { struct v3d_resource *rsc = v3d_resource(job->zsbuf->texture); if (rsc->separate_stencil) rsc = rsc->separate_stencil; v3d_job_add_bo(job, rsc->bo); job->load |= PIPE_CLEAR_STENCIL & ~job->clear; if (v3d->zsa->base.stencil[0].writemask || v3d->zsa->base.stencil[1].writemask) { job->store |= PIPE_CLEAR_STENCIL; } rsc->initialized_buffers |= PIPE_CLEAR_STENCIL; } for (int i = 0; i < V3D_MAX_DRAW_BUFFERS; i++) { uint32_t bit = PIPE_CLEAR_COLOR0 << i; int blend_rt = v3d->blend->base.independent_blend_enable ? i : 0; if (job->store & bit || !job->cbufs[i]) continue; struct v3d_resource *rsc = v3d_resource(job->cbufs[i]->texture); job->load |= bit & ~job->clear; if (v3d->blend->base.rt[blend_rt].colormask) job->store |= bit; v3d_job_add_bo(job, rsc->bo); } if (job->referenced_size > 768 * 1024 * 1024) { perf_debug("Flushing job with %dkb to try to free up memory\n", job->referenced_size / 1024); v3d_flush(pctx); } if (V3D_DEBUG & V3D_DEBUG_ALWAYS_FLUSH) v3d_flush(pctx); } #if V3D_VERSION >= 41 #define V3D_CSD_CFG012_WG_COUNT_SHIFT 16 #define V3D_CSD_CFG012_WG_OFFSET_SHIFT 0 /* Allow this dispatch to start while the last one is still running. */ #define V3D_CSD_CFG3_OVERLAP_WITH_PREV (1 << 26) /* Maximum supergroup ID. 6 bits. */ #define V3D_CSD_CFG3_MAX_SG_ID_SHIFT 20 /* Batches per supergroup minus 1. 8 bits. */ #define V3D_CSD_CFG3_BATCHES_PER_SG_M1_SHIFT 12 /* Workgroups per supergroup, 0 means 16 */ #define V3D_CSD_CFG3_WGS_PER_SG_SHIFT 8 #define V3D_CSD_CFG3_WG_SIZE_SHIFT 0 #define V3D_CSD_CFG5_PROPAGATE_NANS (1 << 2) #define V3D_CSD_CFG5_SINGLE_SEG (1 << 1) #define V3D_CSD_CFG5_THREADING (1 << 0) static void v3d_launch_grid(struct pipe_context *pctx, const struct pipe_grid_info *info) { struct v3d_context *v3d = v3d_context(pctx); struct v3d_screen *screen = v3d->screen; v3d_predraw_check_stage_inputs(pctx, PIPE_SHADER_COMPUTE); v3d_update_compiled_cs(v3d); if (!v3d->prog.compute->resource) { static bool warned = false; if (!warned) { fprintf(stderr, "Compute shader failed to compile. " "Expect corruption.\n"); warned = true; } return; } /* Some of the units of scale: * * - Batches of 16 work items (shader invocations) that will be queued * to the run on a QPU at once. * * - Workgroups composed of work items based on the shader's layout * declaration. * * - Supergroups of 1-16 workgroups. There can only be 16 supergroups * running at a time on the core, so we want to keep them large to * keep the QPUs busy, but a whole supergroup will sync at a barrier * so we want to keep them small if one is present. */ struct drm_v3d_submit_csd submit = { 0 }; struct v3d_job *job = v3d_job_create(v3d); /* Set up the actual number of workgroups, synchronously mapping the * indirect buffer if necessary to get the dimensions. */ if (info->indirect) { struct pipe_transfer *transfer; uint32_t *map = pipe_buffer_map_range(pctx, info->indirect, info->indirect_offset, 3 * sizeof(uint32_t), PIPE_TRANSFER_READ, &transfer); memcpy(v3d->compute_num_workgroups, map, 3 * sizeof(uint32_t)); pipe_buffer_unmap(pctx, transfer); if (v3d->compute_num_workgroups[0] == 0 || v3d->compute_num_workgroups[1] == 0 || v3d->compute_num_workgroups[2] == 0) { /* Nothing to dispatch, so skip the draw (CSD can't * handle 0 workgroups). */ return; } } else { v3d->compute_num_workgroups[0] = info->grid[0]; v3d->compute_num_workgroups[1] = info->grid[1]; v3d->compute_num_workgroups[2] = info->grid[2]; } for (int i = 0; i < 3; i++) { submit.cfg[i] |= (v3d->compute_num_workgroups[i] << V3D_CSD_CFG012_WG_COUNT_SHIFT); } perf_debug("CSD only using single WG per SG currently, " "should increase that when possible."); int wgs_per_sg = 1; int wg_size = info->block[0] * info->block[1] * info->block[2]; submit.cfg[3] |= wgs_per_sg << V3D_CSD_CFG3_WGS_PER_SG_SHIFT; submit.cfg[3] |= ((DIV_ROUND_UP(wgs_per_sg * wg_size, 16) - 1) << V3D_CSD_CFG3_BATCHES_PER_SG_M1_SHIFT); submit.cfg[3] |= (wg_size & 0xff) << V3D_CSD_CFG3_WG_SIZE_SHIFT; int batches_per_wg = DIV_ROUND_UP(wg_size, 16); /* Number of batches the dispatch will invoke (minus 1). */ submit.cfg[4] = batches_per_wg * (v3d->compute_num_workgroups[0] * v3d->compute_num_workgroups[1] * v3d->compute_num_workgroups[2]) - 1; /* Make sure we didn't accidentally underflow. */ assert(submit.cfg[4] != ~0); v3d_job_add_bo(job, v3d_resource(v3d->prog.compute->resource)->bo); submit.cfg[5] = (v3d_resource(v3d->prog.compute->resource)->bo->offset + v3d->prog.compute->offset); submit.cfg[5] |= V3D_CSD_CFG5_PROPAGATE_NANS; if (v3d->prog.compute->prog_data.base->single_seg) submit.cfg[5] |= V3D_CSD_CFG5_SINGLE_SEG; if (v3d->prog.compute->prog_data.base->threads == 4) submit.cfg[5] |= V3D_CSD_CFG5_THREADING; if (v3d->prog.compute->prog_data.compute->shared_size) { v3d->compute_shared_memory = v3d_bo_alloc(v3d->screen, v3d->prog.compute->prog_data.compute->shared_size * wgs_per_sg, "shared_vars"); } struct v3d_cl_reloc uniforms = v3d_write_uniforms(v3d, job, v3d->prog.compute, PIPE_SHADER_COMPUTE); v3d_job_add_bo(job, uniforms.bo); submit.cfg[6] = uniforms.bo->offset + uniforms.offset; /* Pull some job state that was stored in a SUBMIT_CL struct out to * our SUBMIT_CSD struct */ submit.bo_handles = job->submit.bo_handles; submit.bo_handle_count = job->submit.bo_handle_count; /* Serialize this in the rest of our command stream. */ submit.in_sync = v3d->out_sync; submit.out_sync = v3d->out_sync; if (!(V3D_DEBUG & V3D_DEBUG_NORAST)) { int ret = v3d_ioctl(screen->fd, DRM_IOCTL_V3D_SUBMIT_CSD, &submit); static bool warned = false; if (ret && !warned) { fprintf(stderr, "CSD submit call returned %s. " "Expect corruption.\n", strerror(errno)); warned = true; } } v3d_job_free(v3d, job); /* Mark SSBOs as being written.. we don't actually know which ones are * read vs written, so just assume the worst */ foreach_bit(i, v3d->ssbo[PIPE_SHADER_COMPUTE].enabled_mask) { struct v3d_resource *rsc = v3d_resource( v3d->ssbo[PIPE_SHADER_COMPUTE].sb[i].buffer); rsc->writes++; rsc->compute_written = true; } foreach_bit(i, v3d->shaderimg[PIPE_SHADER_COMPUTE].enabled_mask) { struct v3d_resource *rsc = v3d_resource( v3d->shaderimg[PIPE_SHADER_COMPUTE].si[i].base.resource); rsc->writes++; rsc->compute_written = true; } v3d_bo_unreference(&uniforms.bo); v3d_bo_unreference(&v3d->compute_shared_memory); } #endif /** * Implements gallium's clear() hook (glClear()) by drawing a pair of triangles. */ static void v3d_draw_clear(struct v3d_context *v3d, unsigned buffers, const union pipe_color_union *color, double depth, unsigned stencil) { static const union pipe_color_union dummy_color = {}; /* The blitter util dereferences the color regardless, even though the * gallium clear API may not pass one in when only Z/S are cleared. */ if (!color) color = &dummy_color; v3d_blitter_save(v3d); util_blitter_clear(v3d->blitter, v3d->framebuffer.width, v3d->framebuffer.height, util_framebuffer_get_num_layers(&v3d->framebuffer), buffers, color, depth, stencil, util_framebuffer_get_num_samples(&v3d->framebuffer) > 1); } /** * Attempts to perform the GL clear by using the TLB's fast clear at the start * of the frame. */ static unsigned v3d_tlb_clear(struct v3d_job *job, unsigned buffers, const union pipe_color_union *color, double depth, unsigned stencil) { struct v3d_context *v3d = job->v3d; if (job->draw_calls_queued) { /* If anything in the CL has drawn using the buffer, then the * TLB clear we're trying to add now would happen before that * drawing. */ buffers &= ~(job->load | job->store); } /* GFXH-1461: If we were to emit a load of just depth or just stencil, * then the clear for the other may get lost. We need to decide now * if it would be possible to need to emit a load of just one after * we've set up our TLB clears. */ if (buffers & PIPE_CLEAR_DEPTHSTENCIL && (buffers & PIPE_CLEAR_DEPTHSTENCIL) != PIPE_CLEAR_DEPTHSTENCIL && job->zsbuf && util_format_is_depth_and_stencil(job->zsbuf->texture->format)) { buffers &= ~PIPE_CLEAR_DEPTHSTENCIL; } for (int i = 0; i < V3D_MAX_DRAW_BUFFERS; i++) { uint32_t bit = PIPE_CLEAR_COLOR0 << i; if (!(buffers & bit)) continue; struct pipe_surface *psurf = v3d->framebuffer.cbufs[i]; struct v3d_surface *surf = v3d_surface(psurf); struct v3d_resource *rsc = v3d_resource(psurf->texture); union util_color uc; uint32_t internal_size = 4 << surf->internal_bpp; static union pipe_color_union swapped_color; if (v3d->swap_color_rb & (1 << i)) { swapped_color.f[0] = color->f[2]; swapped_color.f[1] = color->f[1]; swapped_color.f[2] = color->f[0]; swapped_color.f[3] = color->f[3]; color = &swapped_color; } switch (surf->internal_type) { case V3D_INTERNAL_TYPE_8: util_pack_color(color->f, PIPE_FORMAT_R8G8B8A8_UNORM, &uc); memcpy(job->clear_color[i], uc.ui, internal_size); break; case V3D_INTERNAL_TYPE_8I: case V3D_INTERNAL_TYPE_8UI: job->clear_color[i][0] = ((color->ui[0] & 0xff) | (color->ui[1] & 0xff) << 8 | (color->ui[2] & 0xff) << 16 | (color->ui[3] & 0xff) << 24); break; case V3D_INTERNAL_TYPE_16F: util_pack_color(color->f, PIPE_FORMAT_R16G16B16A16_FLOAT, &uc); memcpy(job->clear_color[i], uc.ui, internal_size); break; case V3D_INTERNAL_TYPE_16I: case V3D_INTERNAL_TYPE_16UI: job->clear_color[i][0] = ((color->ui[0] & 0xffff) | color->ui[1] << 16); job->clear_color[i][1] = ((color->ui[2] & 0xffff) | color->ui[3] << 16); break; case V3D_INTERNAL_TYPE_32F: case V3D_INTERNAL_TYPE_32I: case V3D_INTERNAL_TYPE_32UI: memcpy(job->clear_color[i], color->ui, internal_size); break; } rsc->initialized_buffers |= bit; } unsigned zsclear = buffers & PIPE_CLEAR_DEPTHSTENCIL; if (zsclear) { struct v3d_resource *rsc = v3d_resource(v3d->framebuffer.zsbuf->texture); if (zsclear & PIPE_CLEAR_DEPTH) job->clear_z = depth; if (zsclear & PIPE_CLEAR_STENCIL) job->clear_s = stencil; rsc->initialized_buffers |= zsclear; } job->draw_min_x = 0; job->draw_min_y = 0; job->draw_max_x = v3d->framebuffer.width; job->draw_max_y = v3d->framebuffer.height; job->clear |= buffers; job->store |= buffers; v3d_start_draw(v3d); return buffers; } static void v3d_clear(struct pipe_context *pctx, unsigned buffers, const struct pipe_scissor_state *scissor_state, const union pipe_color_union *color, double depth, unsigned stencil) { struct v3d_context *v3d = v3d_context(pctx); struct v3d_job *job = v3d_get_job_for_fbo(v3d); buffers &= ~v3d_tlb_clear(job, buffers, color, depth, stencil); if (buffers) v3d_draw_clear(v3d, buffers, color, depth, stencil); } static void v3d_clear_render_target(struct pipe_context *pctx, struct pipe_surface *ps, const union pipe_color_union *color, unsigned x, unsigned y, unsigned w, unsigned h, bool render_condition_enabled) { fprintf(stderr, "unimpl: clear RT\n"); } static void v3d_clear_depth_stencil(struct pipe_context *pctx, struct pipe_surface *ps, unsigned buffers, double depth, unsigned stencil, unsigned x, unsigned y, unsigned w, unsigned h, bool render_condition_enabled) { fprintf(stderr, "unimpl: clear DS\n"); } void v3dX(draw_init)(struct pipe_context *pctx) { pctx->draw_vbo = v3d_draw_vbo; pctx->clear = v3d_clear; pctx->clear_render_target = v3d_clear_render_target; pctx->clear_depth_stencil = v3d_clear_depth_stencil; #if V3D_VERSION >= 41 if (v3d_context(pctx)->screen->has_csd) pctx->launch_grid = v3d_launch_grid; #endif }