/* * Copyright (C) 2021 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "compiler.h" #include "bi_builder.h" /* This optimization pass, intended to run once after code emission but before * copy propagation, analyzes direct word-aligned UBO reads and promotes a * subset to moves from FAU. It is the sole populator of the UBO push data * structure returned back to the command stream. */ static bool bi_is_ubo(bi_instr *ins) { return (bi_opcode_props[ins->op].message == BIFROST_MESSAGE_LOAD) && (ins->seg == BI_SEG_UBO); } static bool bi_is_direct_aligned_ubo(bi_instr *ins) { return bi_is_ubo(ins) && (ins->src[0].type == BI_INDEX_CONSTANT) && (ins->src[1].type == BI_INDEX_CONSTANT) && ((ins->src[0].value & 0x3) == 0); } /* Represents use data for a single UBO */ #define MAX_UBO_WORDS (65536 / 16) struct bi_ubo_block { BITSET_DECLARE(pushed, MAX_UBO_WORDS); uint8_t range[MAX_UBO_WORDS]; }; struct bi_ubo_analysis { /* Per block analysis */ unsigned nr_blocks; struct bi_ubo_block *blocks; }; static struct bi_ubo_analysis bi_analyze_ranges(bi_context *ctx) { struct bi_ubo_analysis res = { .nr_blocks = ctx->nir->info.num_ubos + 1, }; res.blocks = calloc(res.nr_blocks, sizeof(struct bi_ubo_block)); bi_foreach_instr_global(ctx, ins) { if (!bi_is_direct_aligned_ubo(ins)) continue; unsigned ubo = ins->src[1].value; unsigned word = ins->src[0].value / 4; unsigned channels = bi_opcode_props[ins->op].sr_count; assert(ubo < res.nr_blocks); assert(channels > 0 && channels <= 4); if (word >= MAX_UBO_WORDS) continue; /* Must use max if the same base is read with different channel * counts, which is possible with nir_opt_shrink_vectors */ uint8_t *range = res.blocks[ubo].range; range[word] = MAX2(range[word], channels); } return res; } /* Select UBO words to push. A sophisticated implementation would consider the * number of uses and perhaps the control flow to estimate benefit. This is not * sophisticated. Select from the last UBO first to prioritize sysvals. */ static void bi_pick_ubo(struct panfrost_ubo_push *push, struct bi_ubo_analysis *analysis) { for (signed ubo = analysis->nr_blocks - 1; ubo >= 0; --ubo) { struct bi_ubo_block *block = &analysis->blocks[ubo]; for (unsigned r = 0; r < MAX_UBO_WORDS; ++r) { unsigned range = block->range[r]; /* Don't push something we don't access */ if (range == 0) continue; /* Don't push more than possible */ if (push->count > PAN_MAX_PUSH - range) return; for (unsigned offs = 0; offs < range; ++offs) { struct panfrost_ubo_word word = { .ubo = ubo, .offset = (r + offs) * 4 }; push->words[push->count++] = word; } /* Mark it as pushed so we can rewrite */ BITSET_SET(block->pushed, r); } } } void bi_opt_push_ubo(bi_context *ctx) { struct bi_ubo_analysis analysis = bi_analyze_ranges(ctx); bi_pick_ubo(ctx->info.push, &analysis); ctx->ubo_mask = 0; bi_foreach_instr_global_safe(ctx, ins) { if (!bi_is_ubo(ins)) continue; unsigned ubo = ins->src[1].value; unsigned offset = ins->src[0].value; if (!bi_is_direct_aligned_ubo(ins)) { /* The load can't be pushed, so this UBO needs to be * uploaded conventionally */ if (ins->src[1].type == BI_INDEX_CONSTANT) ctx->ubo_mask |= BITSET_BIT(ubo); else ctx->ubo_mask = ~0; continue; } /* Check if we decided to push this */ assert(ubo < analysis.nr_blocks); if (!BITSET_TEST(analysis.blocks[ubo].pushed, offset / 4)) { ctx->ubo_mask |= BITSET_BIT(ubo); continue; } /* Replace the UBO load with moves from FAU */ bi_builder b = bi_init_builder(ctx, bi_after_instr(ins)); unsigned nr = bi_opcode_props[ins->op].sr_count; bi_instr *vec = bi_collect_i32_to(&b, ins->dest[0], nr); bi_foreach_src(vec, w) { /* FAU is grouped in pairs (2 x 4-byte) */ unsigned base = pan_lookup_pushed_ubo(ctx->info.push, ubo, (offset + 4 * w)); unsigned fau_idx = (base >> 1); unsigned fau_hi = (base & 1); vec->src[w] = bi_fau(BIR_FAU_UNIFORM | fau_idx, fau_hi); } bi_remove_instruction(ins); } free(analysis.blocks); } typedef struct { BITSET_DECLARE(row, PAN_MAX_PUSH); } adjacency_row; /* Find the connected component containing `node` with depth-first search */ static void bi_find_component(adjacency_row *adjacency, BITSET_WORD *visited, unsigned *component, unsigned *size, unsigned node) { unsigned neighbour; BITSET_SET(visited, node); component[(*size)++] = node; BITSET_FOREACH_SET(neighbour, adjacency[node].row, PAN_MAX_PUSH) { if (!BITSET_TEST(visited, neighbour)) { bi_find_component(adjacency, visited, component, size, neighbour); } } } static bool bi_is_uniform(bi_index idx) { return (idx.type == BI_INDEX_FAU) && (idx.value & BIR_FAU_UNIFORM); } /* Get the index of a uniform in 32-bit words from the start of FAU-RAM */ static unsigned bi_uniform_word(bi_index idx) { assert(bi_is_uniform(idx)); assert(idx.offset <= 1); return ((idx.value & ~BIR_FAU_UNIFORM) << 1) | idx.offset; } /* * Create an undirected graph where nodes are 32-bit uniform indices and edges * represent that two nodes are used in the same instruction. * * The graph is constructed as an adjacency matrix stored in adjacency. */ static void bi_create_fau_interference_graph(bi_context *ctx, adjacency_row *adjacency) { bi_foreach_instr_global(ctx, I) { unsigned nodes[BI_MAX_SRCS] = {}; unsigned node_count = 0; /* Set nodes[] to 32-bit uniforms accessed */ bi_foreach_src(I, s) { if (bi_is_uniform(I->src[s])) { unsigned word = bi_uniform_word(I->src[s]); if (word >= ctx->info.push_offset) nodes[node_count++] = word; } } /* Create clique connecting nodes[] */ for (unsigned i = 0; i < node_count; ++i) { for (unsigned j = 0; j < node_count; ++j) { if (i == j) continue; unsigned x = nodes[i], y = nodes[j]; assert(MAX2(x, y) < ctx->info.push->count); /* Add undirected edge between the nodes */ BITSET_SET(adjacency[x].row, y); BITSET_SET(adjacency[y].row, x); } } } } /* * Optimization pass to reorder uniforms. The goal is to reduce the number of * moves we emit when lowering FAU. The pass groups uniforms used by the same * instruction. * * The pass works by creating a graph of pushed uniforms, where edges denote the * "both 32-bit uniforms required by the same instruction" relationship. We * perform depth-first search on this graph to find the connected components, * where each connected component is a cluster of uniforms that are used * together. We then select pairs of uniforms from each connected component. * The remaining unpaired uniforms (from components of odd sizes) are paired * together arbitrarily. * * After a new ordering is selected, pushed uniforms in the program and the * panfrost_ubo_push data structure must be remapped to use the new ordering. */ void bi_opt_reorder_push(bi_context *ctx) { adjacency_row adjacency[PAN_MAX_PUSH] = { 0 }; BITSET_DECLARE(visited, PAN_MAX_PUSH) = { 0 }; unsigned ordering[PAN_MAX_PUSH] = { 0 }; unsigned unpaired[PAN_MAX_PUSH] = { 0 }; unsigned pushed = 0, unpaired_count = 0; struct panfrost_ubo_push *push = ctx->info.push; unsigned push_offset = ctx->info.push_offset; bi_create_fau_interference_graph(ctx, adjacency); for (unsigned i = push_offset; i < push->count; ++i) { if (BITSET_TEST(visited, i)) continue; unsigned component[PAN_MAX_PUSH] = { 0 }; unsigned size = 0; bi_find_component(adjacency, visited, component, &size, i); /* If there is an odd number of uses, at least one use must be * unpaired. Arbitrarily take the last one. */ if (size % 2) unpaired[unpaired_count++] = component[--size]; /* The rest of uses are paired */ assert((size % 2) == 0); /* Push the paired uses */ memcpy(ordering + pushed, component, sizeof(unsigned) * size); pushed += size; } /* Push unpaired nodes at the end */ memcpy(ordering + pushed, unpaired, sizeof(unsigned) * unpaired_count); pushed += unpaired_count; /* Ordering is a permutation. Invert it for O(1) lookup. */ unsigned old_to_new[PAN_MAX_PUSH] = { 0 }; for (unsigned i = 0; i < push_offset; ++i) { old_to_new[i] = i; } for (unsigned i = 0; i < pushed; ++i) { assert(ordering[i] >= push_offset); old_to_new[ordering[i]] = push_offset + i; } /* Use new ordering throughout the program */ bi_foreach_instr_global(ctx, I) { bi_foreach_src(I, s) { if (bi_is_uniform(I->src[s])) { unsigned node = bi_uniform_word(I->src[s]); unsigned new_node = old_to_new[node]; I->src[s].value = BIR_FAU_UNIFORM | (new_node >> 1); I->src[s].offset = new_node & 1; } } } /* Use new ordering for push */ struct panfrost_ubo_push old = *push; for (unsigned i = 0; i < pushed; ++i) push->words[push_offset + i] = old.words[ordering[i]]; push->count = push_offset + pushed; }