1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
|
/* -*- Mode: C; tab-width: 4 -*- */
/* euler2d --- 2 Dimensional Incompressible Inviscid Fluid Flow */
#if !defined( lint ) && !defined( SABER )
static const char sccsid[] = "@(#)euler2d.c 5.00 2000/11/01 xlockmore";
#endif
/*
* Copyright (c) 2000 by Stephen Montgomery-Smith <stephen@math.missouri.edu>
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation.
*
* This file is provided AS IS with no warranties of any kind. The author
* shall have no liability with respect to the infringement of copyrights,
* trade secrets or any patents by this file or any part thereof. In no
* event will the author be liable for any lost revenue or profits or
* other special, indirect and consequential damages.
*
* Revision History:
* 04-Nov-2000: Added an option eulerpower. This allows for example the
* quasi-geostrophic equation by setting eulerpower to 2.
* 01-Nov-2000: Allocation checks.
* 10-Sep-2000: Added optimizations, and removed subtle_perturb, by stephen.
* 03-Sep-2000: Changed method of solving ode to Adams-Bashforth of order 2.
* Previously used a rather compilcated method of order 4.
* This doubles the speed of the program. Also it seems
* to have improved numerical stability. Done by stephen.
* 27-Aug-2000: Added rotation of region to maximize screen fill by stephen.
* 05-Jun-2000: Adapted from flow.c Copyright (c) 1996 by Tim Auckland
* 18-Jul-1996: Adapted from swarm.c Copyright (c) 1991 by Patrick J. Naughton.
* 31-Aug-1990: Adapted from xswarm by Jeff Butterworth. (butterwo@ncsc.org)
*/
/*
* The mathematical aspects of this program are discussed in the file
* euler2d.tex.
*/
#ifdef STANDALONE
#define MODE_euler2d
#define PROGCLASS "Euler2d"
#define HACK_INIT init_euler2d
#define HACK_DRAW draw_euler2d
#define euler2d_opts xlockmore_opts
#define DEFAULTS "*delay: 1000 \n" \
"*count: 1024 \n" \
"*cycles: 3000 \n" \
"*ncolors: 200 \n"
#define SMOOTH_COLORS
#include "xlockmore.h" /* in xscreensaver distribution */
#else /* STANDALONE */
#include "xlock.h" /* in xlockmore distribution */
#endif /* STANDALONE */
#ifdef MODE_euler2d
#define DEF_EULERTAIL "10"
/* #define USE_POINTED_REGION 1 */
static int tail_len;
static int variable_boundary = 1;
static float power = 1;
static XrmOptionDescRec opts[] =
{
{(char* ) "-eulertail", (char *) ".euler2d.eulertail",
XrmoptionSepArg, (caddr_t) NULL},
{(char* ) "-eulerpower", (char *) ".euler2d.eulerpower",
XrmoptionSepArg, (caddr_t) NULL},
};
static argtype vars[] =
{
{(void *) &tail_len, (char *) "eulertail",
(char *) "EulerTail", (char *) DEF_EULERTAIL, t_Int},
{(void *) &power, (char *) "eulerpower",
(char *) "EulerPower", (char *) "1", t_Float},
};
static OptionStruct desc[] =
{
{(char *) "-eulertail len", (char *) "Length of Euler2d tails"},
{(char *) "-eulerpower power", (char *) "power of interaction law for points for Euler2d"},
};
ModeSpecOpt euler2d_opts =
{sizeof opts / sizeof opts[0], opts,
sizeof vars / sizeof vars[0], vars, desc};
#ifdef USE_MODULES
ModStruct euler2d_description = {
"euler2d", "init_euler2d", "draw_euler2d", "release_euler2d",
"refresh_euler2d", "init_euler2d", (char *) NULL, &euler2d_opts,
1000, 1024, 3000, 1, 64, 1.0, "",
"Simulates 2D incompressible invisid fluid.", 0, NULL
};
#endif
#define balance_rand(v) ((LRAND()/MAXRAND*(v))-((v)/2)) /* random around 0 */
#define positive_rand(v) (LRAND()/MAXRAND*(v)) /* positive random */
#define number_of_vortex_points 20
#define n_bound_p 500
#define deg_p 6
static double delta_t;
typedef struct {
int width;
int height;
int count;
double xshift,yshift,scale;
double radius;
int N;
int Nvortex;
/* x[2i+0] = x coord for nth point
x[2i+1] = y coord for nth point
w[i] = vorticity at nth point
*/
double *x;
double *w;
double *diffx;
double *olddiffx;
double *tempx;
double *tempdiffx;
/* (xs[2i+0],xs[2i+1]) is reflection of (x[2i+0],x[2i+1]) about unit circle
xs[2i+0] = x[2i+0]/nx
xs[2i+1] = x[2i+1]/nx
where
nx = x[2i+0]*x[2i+0] + x[2i+1]*x[2i+1]
x_is_zero[i] = (nx < 1e-10)
*/
double *xs;
short *x_is_zero;
/* (p[2i+0],p[2i+1]) is image of (x[2i+0],x[2i+1]) under polynomial p.
mod_dp2 is |p'(z)|^2 when z = (x[2i+0],x[2i+1]).
*/
double *p;
double *mod_dp2;
/* Sometimes in our calculations we get overflow or numbers that are too big.
If that happens with the point x[2*i+0], x[2*i+1], we set dead[i].
*/
short *dead;
XSegment *csegs;
int cnsegs;
XSegment *old_segs;
int *nold_segs;
int c_old_seg;
int boundary_color;
int hide_vortex;
short *lastx;
double p_coef[2*(deg_p-1)];
XSegment *boundary;
} euler2dstruct;
static euler2dstruct *euler2ds = (euler2dstruct *) NULL;
/*
If variable_boundary == 1, then we make a variable boundary.
The way this is done is to map the unit disk under a
polynomial p, where
p(z) = z + c_2 z^2 + ... + c_n z^n
where n = deg_p. sp->p_coef contains the complex numbers
c_2, c_3, ... c_n.
*/
#define add(a1,a2,b1,b2) (a1)+=(b1);(a2)+=(b2)
#define mult(a1,a2,b1,b2) temp=(a1)*(b1)-(a2)*(b2); \
(a2)=(a1)*(b2)+(a2)*(b1);(a1)=temp
static void
calc_p(double *p1, double *p2, double z1, double z2, double p_coef[])
{
int i;
double temp;
*p1=0;
*p2=0;
for(i=deg_p;i>=2;i--)
{
add(*p1,*p2,p_coef[(i-2)*2],p_coef[(i-2)*2+1]);
mult(*p1,*p2,z1,z2);
}
add(*p1,*p2,1,0);
mult(*p1,*p2,z1,z2);
}
/* Calculate |p'(z)|^2 */
static double
calc_mod_dp2(double z1, double z2, double p_coef[])
{
int i;
double temp,mp1,mp2;
mp1=0;
mp2=0;
for(i=deg_p;i>=2;i--)
{
add(mp1,mp2,i*p_coef[(i-2)*2],i*p_coef[(i-2)*2+1]);
mult(mp1,mp2,z1,z2);
}
add(mp1,mp2,1,0);
return mp1*mp1+mp2*mp2;
}
static void
calc_all_p(euler2dstruct *sp)
{
int i,j;
double temp,p1,p2,z1,z2;
for(j=(sp->hide_vortex?sp->Nvortex:0);j<sp->N;j++) if(!sp->dead[j])
{
p1=0;
p2=0;
z1=sp->x[2*j+0];
z2=sp->x[2*j+1];
for(i=deg_p;i>=2;i--)
{
add(p1,p2,sp->p_coef[(i-2)*2],sp->p_coef[(i-2)*2+1]);
mult(p1,p2,z1,z2);
}
add(p1,p2,1,0);
mult(p1,p2,z1,z2);
sp->p[2*j+0] = p1;
sp->p[2*j+1] = p2;
}
}
static void
calc_all_mod_dp2(double *x, euler2dstruct *sp)
{
int i,j;
double temp,mp1,mp2,z1,z2;
for(j=0;j<sp->N;j++) if(!sp->dead[j])
{
mp1=0;
mp2=0;
z1=x[2*j+0];
z2=x[2*j+1];
for(i=deg_p;i>=2;i--)
{
add(mp1,mp2,i*sp->p_coef[(i-2)*2],i*sp->p_coef[(i-2)*2+1]);
mult(mp1,mp2,z1,z2);
}
add(mp1,mp2,1,0);
sp->mod_dp2[j] = mp1*mp1+mp2*mp2;
}
}
static void
derivs(double *x, euler2dstruct *sp)
{
int i,j;
double u1,u2,x1,x2,xij1,xij2,nxij;
double nx;
if (variable_boundary)
calc_all_mod_dp2(sp->x,sp);
for (j=0;j<sp->Nvortex;j++) if (!sp->dead[j])
{
nx = x[2*j+0]*x[2*j+0] + x[2*j+1]*x[2*j+1];
if (nx < 1e-10)
sp->x_is_zero[j] = 1;
else {
sp->x_is_zero[j] = 0;
sp->xs[2*j+0] = x[2*j+0]/nx;
sp->xs[2*j+1] = x[2*j+1]/nx;
}
}
(void) memset(sp->diffx,0,sizeof(double)*2*sp->N);
for (i=0;i<sp->N;i++) if (!sp->dead[i])
{
x1 = x[2*i+0];
x2 = x[2*i+1];
for (j=0;j<sp->Nvortex;j++) if (!sp->dead[j])
{
/*
Calculate the Biot-Savart kernel, that is, effect of a
vortex point at a = (x[2*j+0],x[2*j+1]) at the point
x = (x1,x2), returning the vector field in (u1,u2).
In the plane, this is given by the formula
u = (x-a)/|x-a|^2 or zero if x=a.
However, in the unit disk we have to subtract from the
above:
(x-as)/|x-as|^2
where as = a/|a|^2 is the reflection of a about the unit circle.
If however power != 1, then
u = (x-a)/|x-a|^(power+1) - |a|^(1-power) (x-as)/|x-as|^(power+1)
*/
xij1 = x1 - x[2*j+0];
xij2 = x2 - x[2*j+1];
nxij = (power==1.0) ? xij1*xij1+xij2*xij2 : pow(xij1*xij1+xij2*xij2,(power+1)/2.0);
if(nxij >= 1e-4) {
u1 = xij2/nxij;
u2 = -xij1/nxij;
}
else
u1 = u2 = 0.0;
if (!sp->x_is_zero[j])
{
xij1 = x1 - sp->xs[2*j+0];
xij2 = x2 - sp->xs[2*j+1];
nxij = (power==1.0) ? xij1*xij1+xij2*xij2 : pow(xij1*xij1+xij2*xij2,(power+1)/2.0);
if (nxij < 1e-5)
{
sp->dead[i] = 1;
u1 = u2 = 0.0;
}
else
{
u1 -= xij2/nxij;
u2 += xij1/nxij;
}
}
if (!sp->dead[i])
{
sp->diffx[2*i+0] += u1*sp->w[j];
sp->diffx[2*i+1] += u2*sp->w[j];
}
}
if (!sp->dead[i] && variable_boundary)
{
if (sp->mod_dp2[i] < 1e-5)
sp->dead[i] = 1;
else
{
sp->diffx[2*i+0] /= sp->mod_dp2[i];
sp->diffx[2*i+1] /= sp->mod_dp2[i];
}
}
}
}
/*
What perturb does is effectively
ret = x + k,
where k should be of order delta_t.
We have the option to do this more subtly by mapping points x
in the unit disk to points y in the plane, where y = f(|x|) x,
with f(t) = -log(1-t)/t.
This might reduce (but does not remove) problems where particles near
the edge of the boundary bounce around.
But it seems to be not that effective, so for now switch it off.
*/
#define SUBTLE_PERTURB 0
static void
perturb(double ret[], double x[], double k[], euler2dstruct *sp)
{
int i;
double x1,x2,k1,k2;
#if SUBTLE_PERTURB
double d1,d2,t1,t2,mag,mag2,mlog1mmag,memmagdmag,xdotk;
for (i=0;i<sp->N;i++) if (!sp->dead[i])
{
x1 = x[2*i+0];
x2 = x[2*i+1];
k1 = k[2*i+0];
k2 = k[2*i+1];
mag2 = x1*x1 + x2*x2;
if (mag2 < 1e-10)
{
ret[2*i+0] = x1+k1;
ret[2*i+1] = x2+k2;
}
else if (mag2 > 1-1e-5)
sp->dead[i] = 1;
else
{
mag = sqrt(mag2);
mlog1mmag = -log(1-mag);
xdotk = x1*k1 + x2*k2;
t1 = (x1 + k1)*mlog1mmag/mag + x1*xdotk*(1.0/(1-mag)-mlog1mmag/mag)/mag/mag;
t2 = (x2 + k2)*mlog1mmag/mag + x2*xdotk*(1.0/(1-mag)-mlog1mmag/mag)/mag/mag;
mag = sqrt(t1*t1+t2*t2);
if (mag > 11.5 /* log(1e5) */)
sp->dead[i] = 1;
else
{
memmagdmag = (mag>1e-5) ? ((1.0-exp(-mag))/mag) : (1-mag/2.0);
ret[2*i+0] = t1*memmagdmag;
ret[2*i+1] = t2*memmagdmag;
}
}
if (!sp->dead[i])
{
d1 = ret[2*i+0]-x1;
d2 = ret[2*i+1]-x2;
if (d1*d1+d2*d2 > 0.1)
sp->dead[i] = 1;
}
}
#else
for (i=0;i<sp->N;i++) if (!sp->dead[i])
{
x1 = x[2*i+0];
x2 = x[2*i+1];
k1 = k[2*i+0];
k2 = k[2*i+1];
if (k1*k1+k2*k2 > 0.1 || x1*x1+x2*x2 > 1-1e-5)
sp->dead[i] = 1;
else
{
ret[2*i+0] = x1+k1;
ret[2*i+1] = x2+k2;
}
}
#endif
}
static void
ode_solve(euler2dstruct *sp)
{
int i;
double *temp;
if (sp->count < 1) {
/* midpoint method */
derivs(sp->x,sp);
(void) memcpy(sp->olddiffx,sp->diffx,sizeof(double)*2*sp->N);
for (i=0;i<sp->N;i++) if (!sp->dead[i]) {
sp->tempdiffx[2*i+0] = 0.5*delta_t*sp->diffx[2*i+0];
sp->tempdiffx[2*i+1] = 0.5*delta_t*sp->diffx[2*i+1];
}
perturb(sp->tempx,sp->x,sp->tempdiffx,sp);
derivs(sp->tempx,sp);
for (i=0;i<sp->N;i++) if (!sp->dead[i]) {
sp->tempdiffx[2*i+0] = delta_t*sp->diffx[2*i+0];
sp->tempdiffx[2*i+1] = delta_t*sp->diffx[2*i+1];
}
perturb(sp->x,sp->x,sp->tempdiffx,sp);
} else {
/* Adams Basforth */
derivs(sp->x,sp);
for (i=0;i<sp->N;i++) if (!sp->dead[i]) {
sp->tempdiffx[2*i+0] = delta_t*(1.5*sp->diffx[2*i+0] - 0.5*sp->olddiffx[2*i+0]);
sp->tempdiffx[2*i+1] = delta_t*(1.5*sp->diffx[2*i+1] - 0.5*sp->olddiffx[2*i+1]);
}
perturb(sp->x,sp->x,sp->tempdiffx,sp);
temp = sp->olddiffx;
sp->olddiffx = sp->diffx;
sp->diffx = temp;
}
}
#define deallocate(p,t) if (p!=NULL) {free(p); p=(t*)NULL; }
#define allocate(p,t,s) if ((p=(t*)malloc(sizeof(t)*s))==NULL)\
{free_euler2d(sp);return;}
static void
free_euler2d(euler2dstruct *sp)
{
deallocate(sp->csegs, XSegment);
deallocate(sp->old_segs, XSegment);
deallocate(sp->nold_segs, int);
deallocate(sp->lastx, short);
deallocate(sp->x, double);
deallocate(sp->diffx, double);
deallocate(sp->w, double);
deallocate(sp->olddiffx, double);
deallocate(sp->tempdiffx, double);
deallocate(sp->tempx, double);
deallocate(sp->dead, short);
deallocate(sp->boundary, XSegment);
deallocate(sp->xs, double);
deallocate(sp->x_is_zero, short);
deallocate(sp->p, double);
deallocate(sp->mod_dp2, double);
}
void
init_euler2d(ModeInfo * mi)
{
#define nr_rotates 18 /* how many rotations to try to fill as much of screen as possible - must be even number */
euler2dstruct *sp;
int i,k,n,np;
double r,theta,x,y,w;
double mag,xscale,yscale,p1,p2;
double low[nr_rotates],high[nr_rotates],pp1,pp2,pn1,pn2,angle1,angle2,tempangle,dist,scale,bestscale,temp;
int besti = 0;
if (power<0.5) power = 0.5;
if (power>3.0) power = 3.0;
variable_boundary &= power == 1.0;
delta_t = 0.001;
if (power>1.0) delta_t *= pow(0.1,(double) power-1);
if (euler2ds == NULL) {
if ((euler2ds = (euler2dstruct *) calloc(MI_NUM_SCREENS(mi),
sizeof (euler2dstruct))) == NULL)
return;
}
sp = &euler2ds[MI_SCREEN(mi)];
sp->boundary_color = NRAND(MI_NPIXELS(mi));
sp->hide_vortex = NRAND(4) != 0;
sp->count = 0;
sp->width = MI_WIDTH(mi);
sp->height = MI_HEIGHT(mi);
sp->N = MI_COUNT(mi)+number_of_vortex_points;
sp->Nvortex = number_of_vortex_points;
if (tail_len < 1) { /* minimum tail */
tail_len = 1;
}
if (tail_len > MI_CYCLES(mi)) { /* maximum tail */
tail_len = MI_CYCLES(mi);
}
/* Clear the background. */
MI_CLEARWINDOW(mi);
free_euler2d(sp);
/* Allocate memory. */
if (sp->csegs == NULL) {
allocate(sp->csegs, XSegment, sp->N);
allocate(sp->old_segs, XSegment, sp->N * tail_len);
allocate(sp->nold_segs, int, tail_len);
allocate(sp->lastx, short, sp->N * 2);
allocate(sp->x, double, sp->N * 2);
allocate(sp->diffx, double, sp->N * 2);
allocate(sp->w, double, sp->Nvortex);
allocate(sp->olddiffx, double, sp->N * 2);
allocate(sp->tempdiffx, double, sp->N * 2);
allocate(sp->tempx, double, sp->N * 2);
allocate(sp->dead, short, sp->N);
allocate(sp->boundary, XSegment, n_bound_p);
allocate(sp->xs, double, sp->Nvortex * 2);
allocate(sp->x_is_zero, short, sp->Nvortex);
allocate(sp->p, double, sp->N * 2);
allocate(sp->mod_dp2, double, sp->N);
}
for (i=0;i<tail_len;i++) {
sp->nold_segs[i] = 0;
}
sp->c_old_seg = 0;
(void) memset(sp->dead,0,sp->N*sizeof(short));
if (variable_boundary)
{
/* Initialize polynomial p */
/*
The polynomial p(z) = z + c_2 z^2 + ... c_n z^n needs to be
a bijection of the unit disk onto its image. This is achieved
by insisting that sum_{k=2}^n k |c_k| <= 1. Actually we set
the inequality to be equality (to get more interesting shapes).
*/
mag = 0;
for(k=2;k<=deg_p;k++)
{
r = positive_rand(1.0/k);
theta = balance_rand(2*M_PI);
sp->p_coef[2*(k-2)+0]=r*cos(theta);
sp->p_coef[2*(k-2)+1]=r*sin(theta);
mag += k*r;
}
if (mag > 0.0001) for(k=2;k<=deg_p;k++)
{
sp->p_coef[2*(k-2)+0] /= mag;
sp->p_coef[2*(k-2)+1] /= mag;
}
#ifdef USE_POINTED_REGION
/* Five symmetric buldges */
for(k=2;k<=deg_p;k++){
sp->p_coef[2*(k-2)+0]=0;
sp->p_coef[2*(k-2)+1]=0;
}
sp->p_coef[2*(6-2)+0] = 1.0/6.0;
#endif
/* Here we figure out the best rotation of the domain so that it fills as
much of the screen as possible. The number of angles we look at is determined
by nr_rotates (we look every 180/nr_rotates degrees).
While we figure out the best angle to rotate, we also figure out the correct scaling factors.
*/
for(k=0;k<nr_rotates;k++) {
low[k] = 1e5;
high[k] = -1e5;
}
for(k=0;k<n_bound_p;k++) {
calc_p(&p1,&p2,cos((double)k/(n_bound_p)*2*M_PI),sin((double)k/(n_bound_p)*2*M_PI),sp->p_coef);
calc_p(&pp1,&pp2,cos((double)(k-1)/(n_bound_p)*2*M_PI),sin((double)(k-1)/(n_bound_p)*2*M_PI),sp->p_coef);
calc_p(&pn1,&pn2,cos((double)(k+1)/(n_bound_p)*2*M_PI),sin((double)(k+1)/(n_bound_p)*2*M_PI),sp->p_coef);
angle1 = nr_rotates/M_PI*atan2(p2-pp2,p1-pp1)-nr_rotates/2;
angle2 = nr_rotates/M_PI*atan2(pn2-p2,pn1-p1)-nr_rotates/2;
while (angle1<0) angle1+=nr_rotates*2;
while (angle2<0) angle2+=nr_rotates*2;
if (angle1>nr_rotates*1.75 && angle2<nr_rotates*0.25) angle2+=nr_rotates*2;
if (angle1<nr_rotates*0.25 && angle2>nr_rotates*1.75) angle1+=nr_rotates*2;
if (angle2<angle1) {
tempangle=angle1;
angle1=angle2;
angle2=tempangle;
}
for(i=(int)floor(angle1);i<(int)ceil(angle2);i++) {
dist = cos((double)i*M_PI/nr_rotates)*p1 + sin((double)i*M_PI/nr_rotates)*p2;
if (i%(nr_rotates*2)<nr_rotates) {
if (dist>high[i%nr_rotates]) high[i%nr_rotates] = dist;
if (dist<low[i%nr_rotates]) low[i%nr_rotates] = dist;
}
else {
if (-dist>high[i%nr_rotates]) high[i%nr_rotates] = -dist;
if (-dist<low[i%nr_rotates]) low[i%nr_rotates] = -dist;
}
}
}
bestscale = 0;
for (i=0;i<nr_rotates;i++) {
xscale = (sp->width-5.0)/(high[i]-low[i]);
yscale = (sp->height-5.0)/(high[(i+nr_rotates/2)%nr_rotates]-low[(i+nr_rotates/2)%nr_rotates]);
scale = (xscale>yscale) ? yscale : xscale;
if (scale>bestscale) {
bestscale = scale;
besti = i;
}
}
/* Here we do the rotation. The way we do this is to replace the
polynomial p(z) by a^{-1} p(a z) where a = exp(i best_angle).
*/
p1 = 1;
p2 = 0;
for(k=2;k<=deg_p;k++)
{
mult(p1,p2,cos((double)besti*M_PI/nr_rotates),sin((double)besti*M_PI/nr_rotates));
mult(sp->p_coef[2*(k-2)+0],sp->p_coef[2*(k-2)+1],p1,p2);
}
sp->scale = bestscale;
sp->xshift = -(low[besti]+high[besti])/2.0*sp->scale+sp->width/2;
if (besti<nr_rotates/2)
sp->yshift = -(low[besti+nr_rotates/2]+high[besti+nr_rotates/2])/2.0*sp->scale+sp->height/2;
else
sp->yshift = (low[besti-nr_rotates/2]+high[besti-nr_rotates/2])/2.0*sp->scale+sp->height/2;
/* Initialize boundary */
for(k=0;k<n_bound_p;k++)
{
calc_p(&p1,&p2,cos((double)k/(n_bound_p)*2*M_PI),sin((double)k/(n_bound_p)*2*M_PI),sp->p_coef);
sp->boundary[k].x1 = (short)(p1*sp->scale+sp->xshift);
sp->boundary[k].y1 = (short)(p2*sp->scale+sp->yshift);
}
for(k=1;k<n_bound_p;k++)
{
sp->boundary[k].x2 = sp->boundary[k-1].x1;
sp->boundary[k].y2 = sp->boundary[k-1].y1;
}
sp->boundary[0].x2 = sp->boundary[n_bound_p-1].x1;
sp->boundary[0].y2 = sp->boundary[n_bound_p-1].y1;
}
else
{
if (sp->width>sp->height)
sp->radius = sp->height/2.0-5.0;
else
sp->radius = sp->width/2.0-5.0;
}
/* Initialize point positions */
for (i=sp->Nvortex;i<sp->N;i++) {
do {
r = sqrt(positive_rand(1.0));
theta = balance_rand(2*M_PI);
sp->x[2*i+0]=r*cos(theta);
sp->x[2*i+1]=r*sin(theta);
/* This is to make sure the initial distribution of points is uniform */
} while (variable_boundary &&
calc_mod_dp2(sp->x[2*i+0],sp->x[2*i+1],sp->p_coef)
< positive_rand(4));
}
n = NRAND(4)+2;
/* number of vortex points with negative vorticity */
if (n%2) {
np = NRAND(n+1);
}
else {
/* if n is even make sure that np==n/2 is twice as likely
as the other possibilities. */
np = NRAND(n+2);
if (np==n+1) np=n/2;
}
for(k=0;k<n;k++)
{
r = sqrt(positive_rand(0.77));
theta = balance_rand(2*M_PI);
x=r*cos(theta);
y=r*sin(theta);
r = 0.02+positive_rand(0.1);
w = (2*(k<np)-1)*2.0/sp->Nvortex;
for (i=sp->Nvortex*k/n;i<sp->Nvortex*(k+1)/n;i++) {
theta = balance_rand(2*M_PI);
sp->x[2*i+0]=x + r*cos(theta);
sp->x[2*i+1]=y + r*sin(theta);
sp->w[i]=w;
}
}
}
void
draw_euler2d(ModeInfo * mi)
{
Display *display = MI_DISPLAY(mi);
Window window = MI_WINDOW(mi);
GC gc = MI_GC(mi);
int b, col, n_non_vortex_segs;
euler2dstruct *sp;
MI_IS_DRAWN(mi) = True;
if (euler2ds == NULL)
return;
sp = &euler2ds[MI_SCREEN(mi)];
if (sp->csegs == NULL)
return;
ode_solve(sp);
if (variable_boundary)
calc_all_p(sp);
sp->cnsegs = 0;
for(b=sp->Nvortex;b<sp->N;b++) if(!sp->dead[b])
{
sp->csegs[sp->cnsegs].x1 = sp->lastx[2*b+0];
sp->csegs[sp->cnsegs].y1 = sp->lastx[2*b+1];
if (variable_boundary)
{
sp->csegs[sp->cnsegs].x2 = (short)(sp->p[2*b+0]*sp->scale+sp->xshift);
sp->csegs[sp->cnsegs].y2 = (short)(sp->p[2*b+1]*sp->scale+sp->yshift);
}
else
{
sp->csegs[sp->cnsegs].x2 = (short)(sp->x[2*b+0]*sp->radius+sp->width/2);
sp->csegs[sp->cnsegs].y2 = (short)(sp->x[2*b+1]*sp->radius+sp->height/2);
}
sp->lastx[2*b+0] = sp->csegs[sp->cnsegs].x2;
sp->lastx[2*b+1] = sp->csegs[sp->cnsegs].y2;
sp->cnsegs++;
}
n_non_vortex_segs = sp->cnsegs;
if (!sp->hide_vortex) for(b=0;b<sp->Nvortex;b++) if(!sp->dead[b])
{
sp->csegs[sp->cnsegs].x1 = sp->lastx[2*b+0];
sp->csegs[sp->cnsegs].y1 = sp->lastx[2*b+1];
if (variable_boundary)
{
sp->csegs[sp->cnsegs].x2 = (short)(sp->p[2*b+0]*sp->scale+sp->xshift);
sp->csegs[sp->cnsegs].y2 = (short)(sp->p[2*b+1]*sp->scale+sp->yshift);
}
else
{
sp->csegs[sp->cnsegs].x2 = (short)(sp->x[2*b+0]*sp->radius+sp->width/2);
sp->csegs[sp->cnsegs].y2 = (short)(sp->x[2*b+1]*sp->radius+sp->height/2);
}
sp->lastx[2*b+0] = sp->csegs[sp->cnsegs].x2;
sp->lastx[2*b+1] = sp->csegs[sp->cnsegs].y2;
sp->cnsegs++;
}
if (sp->count) {
XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
XDrawSegments(display, window, gc, sp->old_segs+sp->c_old_seg*sp->N, sp->nold_segs[sp->c_old_seg]);
if (MI_NPIXELS(mi) > 2){ /* render colour */
for (col = 0; col < MI_NPIXELS(mi); col++) {
int start = col*n_non_vortex_segs/MI_NPIXELS(mi);
int end = (col+1)*n_non_vortex_segs/MI_NPIXELS(mi);
XSetForeground(display, gc, MI_PIXEL(mi, col));
XDrawSegments(display, window, gc,sp->csegs+start, end-start);
}
if (!sp->hide_vortex) {
XSetForeground(display, gc, MI_WHITE_PIXEL(mi));
XDrawSegments(display, window, gc,sp->csegs+n_non_vortex_segs, sp->cnsegs-n_non_vortex_segs);
}
} else { /* render mono */
XSetForeground(display, gc, MI_WHITE_PIXEL(mi));
XDrawSegments(display, window, gc,
sp->csegs, sp->cnsegs);
}
if (MI_NPIXELS(mi) > 2) /* render colour */
XSetForeground(display, gc, MI_PIXEL(mi, sp->boundary_color));
else
XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_WHITE_PIXEL(mi));
if (variable_boundary)
XDrawSegments(display, window, gc,
sp->boundary, n_bound_p);
else
XDrawArc(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
sp->width/2 - (int) sp->radius - 1, sp->height/2 - (int) sp->radius -1,
(int) (2*sp->radius) + 2, (int) (2* sp->radius) + 2, 0, 64*360);
/* Copy to erase-list */
(void) memcpy(sp->old_segs+sp->c_old_seg*sp->N, sp->csegs, sp->cnsegs*sizeof(XSegment));
sp->nold_segs[sp->c_old_seg] = sp->cnsegs;
sp->c_old_seg++;
if (sp->c_old_seg >= tail_len)
sp->c_old_seg = 0;
}
if (++sp->count > MI_CYCLES(mi)) /* pick a new flow */
init_euler2d(mi);
}
void
release_euler2d(ModeInfo * mi)
{
if (euler2ds != NULL) {
int screen;
for (screen = 0; screen < MI_NUM_SCREENS(mi); screen++)
free_euler2d(&euler2ds[screen]);
free(euler2ds);
euler2ds = (euler2dstruct *) NULL;
}
}
void
refresh_euler2d(ModeInfo * mi)
{
MI_CLEARWINDOW(mi);
}
#endif /* MODE_euler2d */
|