1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4 -*- */
/* mandelbrot --- animated mandelbrot sets */
#if !defined( lint ) && !defined( SABER )
static const char sccsid[] = "@(#)mandelbrot.c 5.09 2003/06/30 xlockmore";
#endif
#define USE_LOG
/*-
* Copyright (c) 1997 Dan Stromberg <strombrg@nis.acs.uci.edu>
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation.
*
* This file is provided AS IS with no warranties of any kind. The author
* shall have no liability with respect to the infringement of copyrights,
* trade secrets or any patents by this file or any part thereof. In no
* event will the author be liable for any lost revenue or profits or
* other special, indirect and consequential damages.
*
* See A.K. Dewdney's "Computer Recreations", Scientific American
* Magazine" Aug 1985 for more info. Also A.K. Dewdney's "Computer
* Recreations", Scientific American Magazine" Jul 1989, has some neat
* extensions besides z^n + c (n small but >= 2) some of these are:
* z^z + z^n + c <-- pow
* sin(z) + z^n + c <-- sin
* sin(z) + e^z + c
* These were first explored by a colleague of Mandelbrot, Clifford A.
* Pickover. These would make nice additions to add.
*
* Revision History:
* 03-Jul-2003: Added pow and sin options
* 30-Jun-2003: Changed writeable mode to be more consistent with
* xscreensaver's starfish
* 01-Nov-2000: Allocation checks
* 24-Mar-1999: DEM and Binary decomp options added by Tim Auckland
* <tda10.geo@yahoo.com>. Ideas from Peitgen & Saupe's
* "The Science of Fractal Images"
* 17-Nov-1998: Many Changes by Stromberg, including selection of
* interesting subregions, more extreme color ranges,
* reduction of possible powers to smaller/more interesting
* range, elimination of some unused code, slower color cycling,
* longer period of color cycling after the drawing is complete.
* Hopefully the longer color cycling period will make the mode
* reasonable even after CPUs are so fast that the drawing
* interval goes by quickly
* 20-Oct-1997: Written by Dan Stromberg <strombrg@nis.acs.uci.edu>
*/
#ifdef STANDALONE
#define MODE_mandelbrot
#define PROGCLASS "Mandelbrot"
#define HACK_INIT init_mandelbrot
#define HACK_DRAW draw_mandelbrot
#define mandelbrot_opts xlockmore_opts
#define DEFAULTS "*delay: 25000 \n" \
"*count: -8 \n" \
"*cycles: 20000 \n" \
"*ncolors: 200 \n"
#define SMOOTH_COLORS
#define WRITABLE_COLORS
#include "xlockmore.h" /* from the xscreensaver distribution */
#else /* !STANDALONE */
#include "xlock.h" /* from the xlockmore distribution */
#include "color.h"
#endif /* !STANDALONE */
#ifdef MODE_mandelbrot
#define MINPOWER 2
#define DEF_INCREMENT "1.00"
#define DEF_BINARY "False"
#define DEF_DEM "False"
#define DEF_LYAP "False"
#define DEF_ALPHA "False"
#define DEF_INDEX "False"
#define DEF_POW "False"
#define DEF_SIN "False"
#define DEF_CYCLE "True"
/* 4.0 is best for seeing if a point is inside the set, 13 is better if
** you want to get a pretty corona
*/
#define ESCAPE 13.0
#define FLOATRAND(min,max) ((min)+((double) LRAND()/((double) MAXRAND))*((max)-(min)))
typedef enum {
NONE,
LYAPUNOV,
ALPHA,
INDEX,
interior_size,
} interior_t;
/* incr also would be nice as a parameter. It controls how fast
the order is advanced. Non-integral values are not true orders,
but it's a somewhat interesting function anyway
*/
static float increment;
static Bool binary_p;
static Bool dem_p;
static Bool lyap_p;
static Bool alpha_p;
static Bool index_p;
static Bool pow_p;
static Bool sin_p;
static Bool cycle_p;
static XrmOptionDescRec opts[] =
{
{(char *) "-increment", (char *) ".mandelbrot.increment", XrmoptionSepArg, (caddr_t) NULL},
{(char *) "-binary", (char *) ".mandelbrot.binary", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+binary", (char *) ".mandelbrot.binary", XrmoptionNoArg, (caddr_t) "off"},
{(char *) "-dem", (char *) ".mandelbrot.dem", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+dem", (char *) ".mandelbrot.dem", XrmoptionNoArg, (caddr_t) "off"},
{(char *) "-lyap", (char *) ".mandelbrot.lyap", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+lyap", (char *) ".mandelbrot.lyap", XrmoptionNoArg, (caddr_t) "off"},
{(char *) "-alpha", (char *) ".mandelbrot.alpha", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+alpha", (char *) ".mandelbrot.alpha", XrmoptionNoArg, (caddr_t) "off"},
{(char *) "-index", (char *) ".mandelbrot.index", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+index", (char *) ".mandelbrot.index", XrmoptionNoArg, (caddr_t) "off"},
{(char *) "-pow", (char *) ".mandelbrot.pow", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+pow", (char *) ".mandelbrot.pow", XrmoptionNoArg, (caddr_t) "off"},
{(char *) "-sin", (char *) ".mandelbrot.sin", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+sin", (char *) ".mandelbrot.sin", XrmoptionNoArg, (caddr_t) "off"},
{(char *) "-cycle", (char *) ".mandelbrot.cycle", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+cycle", (char *) ".mandelbrot.cycle", XrmoptionNoArg, (caddr_t) "off"}
};
static argtype vars[] =
{
{(void *) & increment, (char *) "increment", (char *) "Increment", (char *) DEF_INCREMENT, t_Float},
{(void *) & binary_p, (char *) "binary", (char *) "Binary", (char *) DEF_BINARY, t_Bool},
{(void *) & dem_p, (char *) "dem", (char *) "Dem", (char *) DEF_DEM, t_Bool},
{(void *) & lyap_p, (char *) "lyap", (char *) "Lyap", (char *) DEF_LYAP, t_Bool},
{(void *) & alpha_p, (char *) "alpha", (char *) "Alpha", (char *) DEF_ALPHA, t_Bool},
{(void *) & index_p, (char *) "index", (char *) "Index", (char *) DEF_INDEX, t_Bool},
{(void *) & pow_p, (char *) "pow", (char *) "Pow", (char *) DEF_POW, t_Bool},
{(void *) & sin_p, (char *) "sin", (char *) "Sin", (char *) DEF_SIN, t_Bool},
{(void *) & cycle_p, (char *) "cycle", (char *) "Cycle", (char *) DEF_CYCLE, t_Bool}
};
static OptionStruct desc[] =
{
{(char *) "-increment value", (char *) "increasing orders"},
{(char *) "-/+binary", (char *) "turn on/off Binary Decomposition colour modulation"},
{(char *) "-/+dem", (char *) "turn on/off Distance Estimator Method (instead of escape time)"},
{(char *) "-/+lyap", (char *) "render interior with Lyapunov measure"},
{(char *) "-/+alpha", (char *) "render interior with Alpha level sets"},
{(char *) "-/+index", (char *) "render interior with Alpha indexes"},
{(char *) "-/+pow", (char *) "turn on/off adding z^z"},
{(char *) "-/+sin", (char *) "turn on/off adding sin(z)"},
{(char *) "-/+cycle", (char *) "turn on/off colour cycling"}
};
ModeSpecOpt mandelbrot_opts =
{sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, desc};
#ifdef USE_MODULES
ModStruct mandelbrot_description =
{"mandelbrot", "init_mandelbrot", "draw_mandelbrot", "release_mandelbrot",
(char *) NULL, "init_mandelbrot", (char *) NULL, &mandelbrot_opts,
25000, -8, 20000, 1, 64, 1.0, "",
"Shows mandelbrot sets", 0, NULL};
#endif
#define ROUND_FLOAT(x,a) ((float) ((int) ((x) / (a) + 0.5)) * (a))
typedef struct {
double real, imag;
} complex;
static void
add(complex * a, complex b)
{
a->real = a->real + b.real;
a->imag = a->imag + b.imag;
}
static void
mult(complex * a, complex b)
{
double tr, ti;
/* a.real*b.real + i*a.real*b.imag + i*a.imag*b.real + i^2*a.imag*b.imag */
tr = a->real * b.real - a->imag * b.imag;
ti = a->real * b.imag + a->imag * b.real;
a->real = tr;
a->imag = ti;
}
static void
cln(complex * a)
{
/* ln(z) = ln ((x^2 + y^2)^(1/2)) + i * invtan(y/x) */
double tr, ti;
tr = sqrt(a->real * a->real + a->imag * a->imag);
ti = (a->real == 0.0 && a->imag == 0.0) ? 0.0 :
atan2(a->imag, a->real);
a->real = tr;
a->imag = ti;
}
static void
complex_exp(complex * a)
{
/* e^z = e^x * (cos(y) + i * sin(y)) */
double tr;
tr = exp(a->real);
a->real = tr * cos(a->imag);
a->imag = tr * sin(a->imag);
}
static complex
complex_pow(complex a, complex b)
{
/* a^z = e^(z * ln(a)) */
complex c, d;
c = a;
d = b;
cln(&c);
mult(&d, c);
complex_exp(&d);
return d;
}
static complex
complex_sin(complex a)
{
/* sin(z) = -i * (e^(i * z) - e^(-i * z)) / 2 */
/* cos(z) = (e^(i * z) - e^(-i * z)) / 2 */
complex c, d, i;
c = a;
d = a;
i.real = 0; i.imag = 1;
/* inefficient but I just want to see the picture */
mult(&c, i);
i.imag = -i.imag;
mult(&d, i);
complex_exp(&c);
complex_exp(&d);
d.real = -d.real;
d.imag = -d.imag;
add(&c, d);
c.real = c.real / 2;
c.imag = c.imag / 2;
mult(&c, i);
return c;
}
/* this is a true power function. */
static void
ipow(complex * a, int n)
{
switch (n) {
case 1:
return;
case 2:
mult(a, *a);
return;
default:
{
complex a2;
int t2;
a2 = *a; /* Not very efficient to use: mult(a, ipow(&a2, n-1)); */
t2 = n / 2;
ipow(&a2, t2);
mult(&a2, a2);
if (t2 * 2 != n) /* if n is odd */
mult(&a2, *a);
*a = a2;
}
}
}
typedef struct {
int counter;
double power;
int column;
Bool backwards;
int ncolors;
unsigned int cur_color;
GC gc;
Colormap cmap;
unsigned long blackpixel, whitepixel, fg, bg;
int direction;
XColor *colors;
complex extreme_ul;
complex extreme_lr;
complex ul;
complex lr;
int screen_width;
int screen_height;
int reptop;
Bool dem, pow, sin, cycle_p, mono_p, no_colors;
Bool binary;
interior_t interior;
ModeInfo *mi;
} mandelstruct;
static mandelstruct *mandels = (mandelstruct *) NULL;
/* do the iterations
* if binary is true, check halfplane of last iteration.
* if demrange is non zero, estimate lower bound of dist(c, M)
*
* DEM - Distance Estimator Method
* Based on Peitgen & Saupe's "The Science of Fractal Images"
*
* ALPHA - level sets of closest return.
* INDEX - index of ALPHA.
* Based on Peitgen & Richter's "The Beauty of Fractals" (Fig 33,34)
*
* LYAPUNOV - lyapunov exponent estimate
* Based on an idea by Jan Thor
*
*/
static int
reps(complex c, double p, int r, Bool binary, interior_t interior, double demrange, Bool zpow, Bool zsin)
{
int rep;
int escaped = 0;
complex t;
int escape = (int) ((demrange == 0) ? ESCAPE :
ESCAPE*ESCAPE*ESCAPE*ESCAPE); /* 2 more iterations */
complex t1;
complex dt;
double L = 0.0;
double l2;
double dl2 = 1.0;
double alpha2 = ESCAPE;
int index = 0;
#if defined(USE_LOG)
double log_top = log((double) r);
#endif
t = c;
dt.real = 1; dt.imag = 0;
for (rep = 0; rep < r; rep++) {
t1 = t;
ipow(&t, (int) p);
add(&t, c);
if (zpow)
add(&t, complex_pow(t1, t1));
if (zsin)
add(&t, complex_sin(t1));
l2 = t.real * t.real + t.imag * t.imag;
if (l2 <= alpha2) {
alpha2 = l2;
index = rep;
}
if (l2 >= escape) {
escaped = 1;
break;
} else if (interior == LYAPUNOV) {
/* Crude estimate of Lyapunov exponent. The stronger the
attractor, the more negative the exponent will be. */
/* n=N
L = lim 1/N * Sum log(abs(dx(n+1)/dx(n)))/ln(2)
N->inf n=1
*/
L += log(sqrt(l2));
}
if (demrange){
/* compute dt/dc
* p-1
* dt = p * t * dt + 1
* k+1 k k
*/
/* Note this is incorrect for zpow or zsin, but a correct
implementation is too slow to be useful. */
dt.real *= p; dt.imag *= p;
if(p > 2) ipow(&t1, (int) (p - 1));
mult(&dt, t1);
dt.real += 1;
dl2 = dt.real * dt.real + dt.imag * dt.imag;
if (dl2 >= 1e300) {
escaped = 2;
break;
}
}
}
if (escaped) {
if(demrange) {
double mt = sqrt(t1.real * t1.real + t1.imag * t1.imag);
/* distance estimate */
double dist = 0.5 * mt * log(mt) / sqrt(dl2);
/* scale for viewing. Allow black when showing interior. */
rep = (int) (((interior > NONE)?0:1) + 10*r*dist/demrange);
if(rep > r-1) rep = r-1; /* chop into color range */
}
if(binary && t.imag > 0)
rep = (r + rep / 2) % r; /* binary decomp */
#ifdef USE_LOG
if ( rep > 0 )
rep = (int) (r * log((double) rep)/log_top); /* Log Scale */
#endif
return rep;
} else if (interior == LYAPUNOV) {
return -(int)(L/M_LN2) % r;
} else if (interior == INDEX) {
return 1 + index;
} else if (interior == ALPHA) {
return (int) (r * sqrt(alpha2));
} else
return r;
}
static void
Select(/* input variables first */
complex *extreme_ul, complex *extreme_lr,
int width, int height, int power, int top,
Bool zpow, Bool zsin,
/* output variables follow */
complex *selected_ul,complex *selected_lr)
{
double precision;
double s2;
int inside;
int uninteresting;
int found;
int tries;
found = 0;
while (!found) {
/* select a precision - be careful with this */
precision = pow(2.0,FLOATRAND(-9.0,-18.0));
/* (void) printf("precision is %f\n",precision); */
for (tries=0;tries<10000&&!found;tries++) {
/* it eventually turned out that this inner loop doesn't always
** terminate - so we just try 10000 times, and if we don't get
** anything interesting, we pick a new precision
*/
complex temp;
int sample_step = 4;
int row,column;
inside = 0;
uninteresting = 0;
/* pick a random point in the allowable range */
temp.real = FLOATRAND(extreme_ul->real,extreme_lr->real);
temp.imag = FLOATRAND(extreme_ul->imag,extreme_lr->imag);
/* find upper left and lower right points */
selected_ul->real = temp.real - precision * width / 2;
selected_lr->real = temp.real + precision * width / 2;
selected_ul->imag = temp.imag - precision * height / 2;
selected_lr->imag = temp.imag + precision * height / 2;
/* sample the results we'd get from this choice, accept or reject
** accordingly
*/
for (row=0; row<sample_step; row++) {
for (column=0; column<sample_step; column++) {
int r;
temp.imag = selected_ul->imag +
(selected_ul->imag - selected_lr->imag) *
(((double)row)/sample_step);
temp.real = selected_ul->real +
(selected_ul->real - selected_lr->real) *
(((double)column)/sample_step);
r = reps(temp,(double) power,top,0,0,0.0, zpow, zsin);
/* Here, we just want to see if the point is in the set,
** not if we can make something pretty
*/
if (r == top) {
inside++;
}
if (r < 2) {
uninteresting++;
}
}
}
s2 = sample_step*sample_step;
/* more than 10 percent, but less than 60 percent inside the set */
if (inside >= ceil(s2/10.0) && inside <= s2*6.0/10.0 &&
uninteresting <= s2/10.0) {
/* this one looks interesting */
found = 1;
}
/* else
*** this does not look like a real good combination, so back
*** up to the top of the loop to try another possibility
*/
}
}
}
static void
free_mandelbrot(Display *display, mandelstruct *mp)
{
ModeInfo *mi = mp->mi;
if (MI_IS_INSTALL(mi) && MI_NPIXELS(mi) > 2) {
MI_WHITE_PIXEL(mi) = mp->whitepixel;
MI_BLACK_PIXEL(mi) = mp->blackpixel;
#ifndef STANDALONE
MI_FG_PIXEL(mi) = mp->fg;
MI_BG_PIXEL(mi) = mp->bg;
#endif
if (mp->colors != NULL) {
if (mp->ncolors && !mp->no_colors)
free_colors(display, mp->cmap, mp->colors,
mp->ncolors);
free(mp->colors);
mp->colors = (XColor *) NULL;
}
if (mp->cmap != None) {
XFreeColormap(display, mp->cmap);
mp->cmap = None;
}
}
if (mp->gc != None) {
XFreeGC(display, mp->gc);
mp->gc = None;
}
}
#ifndef STANDALONE
extern char *background;
extern char *foreground;
#endif
void
init_mandelbrot(ModeInfo * mi)
{
Display *display = MI_DISPLAY(mi);
Window window = MI_WINDOW(mi);
mandelstruct *mp;
if (mandels == NULL) {
if ((mandels = (mandelstruct *) calloc(MI_NUM_SCREENS(mi),
sizeof (mandelstruct))) == NULL)
return;
}
mp = &mandels[MI_SCREEN(mi)];
mp->mi = mi;
mp->screen_width = MI_WIDTH(mi);
mp->screen_height = MI_HEIGHT(mi);
mp->backwards = (Bool) (LRAND() & 1);
if (mp->backwards)
mp->column = mp->screen_width - 1;
else
mp->column = 0;
mp->power = NRAND(3) + MINPOWER;
mp->counter = 0;
MI_CLEARWINDOW(mi);
if (MI_IS_FULLRANDOM(mi)) {
mp->binary = (Bool) (LRAND() & 1);
mp->dem = (Bool) (LRAND() & 1);
mp->interior = NRAND(interior_size);
#if 0
/* too slow */
mp->pow = (NRAND(5) == 0);
mp->sin = (NRAND(5) == 0);
#endif
} else {
mp->binary = binary_p;
mp->dem = dem_p;
if (index_p) {
mp->interior = INDEX;
} else if(alpha_p) {
mp->interior = ALPHA;
} else if(lyap_p) {
mp->interior = LYAPUNOV;
} else {
mp->interior = NONE;
}
mp->pow = pow_p;
mp->sin = sin_p;
}
mp->reptop = 300;
/* these could be tuned a little closer, but the selection
** process throws out the chaf anyway, it just takes slightly
** longer
*/
mp->extreme_ul.real = -3.0;
mp->extreme_ul.imag = -3.0;
mp->extreme_lr.real = 3.0;
mp->extreme_lr.imag = 3.0;
if (!mp->gc) {
if (MI_IS_INSTALL(mi) && MI_NPIXELS(mi) > 2) {
XColor color;
#ifndef STANDALONE
mp->fg = MI_FG_PIXEL(mi);
mp->bg = MI_BG_PIXEL(mi);
#endif
mp->blackpixel = MI_BLACK_PIXEL(mi);
mp->whitepixel = MI_WHITE_PIXEL(mi);
if ((mp->cmap = XCreateColormap(display, window,
MI_VISUAL(mi), AllocNone)) == None) {
free_mandelbrot(display, mp);
return;
}
XSetWindowColormap(display, window, mp->cmap);
(void) XParseColor(display, mp->cmap, "black", &color);
(void) XAllocColor(display, mp->cmap, &color);
MI_BLACK_PIXEL(mi) = color.pixel;
(void) XParseColor(display, mp->cmap, "white", &color);
(void) XAllocColor(display, mp->cmap, &color);
MI_WHITE_PIXEL(mi) = color.pixel;
#ifndef STANDALONE
(void) XParseColor(display, mp->cmap, background, &color);
(void) XAllocColor(display, mp->cmap, &color);
MI_BG_PIXEL(mi) = color.pixel;
(void) XParseColor(display, mp->cmap, foreground, &color);
(void) XAllocColor(display, mp->cmap, &color);
MI_FG_PIXEL(mi) = color.pixel;
#endif
mp->colors = (XColor *) NULL;
mp->ncolors = 0;
}
if ((mp->gc = XCreateGC(display, MI_WINDOW(mi),
(unsigned long) 0, (XGCValues *) NULL)) == None) {
free_mandelbrot(display, mp);
return;
}
}
MI_CLEARWINDOW(mi);
/* Set up colour map */
mp->direction = (LRAND() & 1) ? 1 : -1;
if (MI_IS_INSTALL(mi) && MI_NPIXELS(mi) > 2) {
if (mp->colors != NULL) {
if (mp->ncolors && !mp->no_colors)
free_colors(display, mp->cmap, mp->colors, mp->ncolors);
free(mp->colors);
mp->colors = (XColor *) NULL;
}
mp->ncolors = MI_NCOLORS(mi);
if (mp->ncolors < 2)
mp->ncolors = 2;
if (mp->ncolors <= 2)
mp->mono_p = True;
else
mp->mono_p = False;
if (mp->mono_p)
mp->colors = (XColor *) NULL;
else
if ((mp->colors = (XColor *) malloc(sizeof (*mp->colors) *
(mp->ncolors + 1))) == NULL) {
free_mandelbrot(display, mp);
return;
}
mp->cycle_p = has_writable_cells(mi);
if (mp->cycle_p) {
if (MI_IS_FULLRANDOM(mi)) {
if (!NRAND(8))
mp->cycle_p = False;
else
mp->cycle_p = True;
} else {
mp->cycle_p = cycle_p;
}
}
if (!mp->mono_p) {
if (!(LRAND() % 10))
make_random_colormap(
#if STANDALONE
display, MI_WINDOW(mi),
#else
mi,
#endif
mp->cmap, mp->colors, &mp->ncolors,
True, True, &mp->cycle_p);
else if (!(LRAND() % 2))
make_uniform_colormap(
#if STANDALONE
display, MI_WINDOW(mi),
#else
mi,
#endif
mp->cmap, mp->colors, &mp->ncolors,
True, &mp->cycle_p);
else
make_smooth_colormap(
#if STANDALONE
display, MI_WINDOW(mi),
#else
mi,
#endif
mp->cmap, mp->colors, &mp->ncolors,
True, &mp->cycle_p);
}
XInstallColormap(display, mp->cmap);
if (mp->ncolors < 2) {
mp->ncolors = 2;
mp->no_colors = True;
} else
mp->no_colors = False;
if (mp->ncolors <= 2)
mp->mono_p = True;
if (mp->mono_p)
mp->cycle_p = False;
}
if (MI_IS_INSTALL(mi) && MI_NPIXELS(mi) > 2) {
if (mp->mono_p) {
mp->cur_color = MI_BLACK_PIXEL(mi);
}
}
Select(&mp->extreme_ul,&mp->extreme_lr,
mp->screen_width,mp->screen_height,
(int) mp->power,mp->reptop, mp->pow, mp->sin,
&mp->ul,&mp->lr);
}
void
draw_mandelbrot(ModeInfo * mi)
{
Display *display = MI_DISPLAY(mi);
Window window = MI_WINDOW(mi);
int h;
complex c;
double demrange;
mandelstruct *mp;
if (mandels == NULL)
return;
mp = &mandels[MI_SCREEN(mi)];
MI_IS_DRAWN(mi) = True;
if (MI_IS_INSTALL(mi) && MI_NPIXELS(mi) > 2) {
if (mp->mono_p) {
XSetForeground(display, mp->gc, mp->cur_color);
} else {
mp->cur_color = (mp->cur_color + 1) % mp->ncolors;
XSetForeground(display, mp->gc, mp->colors[mp->cur_color].pixel);
}
} else {
if (MI_NPIXELS(mi) > 2)
XSetForeground(display, mp->gc, MI_PIXEL(mi, mp->cur_color));
else if (mp->cur_color)
XSetForeground(display, mp->gc, MI_BLACK_PIXEL(mi));
else
XSetForeground(display, mp->gc, MI_WHITE_PIXEL(mi));
if (++mp->cur_color >= (unsigned int) MI_NPIXELS(mi))
mp->cur_color = 0;
}
/* Rotate colours */
if (mp->cycle_p) {
rotate_colors(display, mp->cmap, mp->colors, mp->ncolors,
mp->direction);
if (!(LRAND() % 1000))
mp->direction = -mp->direction;
}
/* so we iterate columns beyond the width of the physical screen, so that
** we just wait around and show what we've done
*/
if ((!mp->backwards && (mp->column >= 3 * mp->screen_width)) ||
(mp->backwards && (mp->column < -2 * mp->screen_width))) {
/* reset to left edge of screen, bump power */
mp->backwards = (Bool) (LRAND() & 1);
if (mp->backwards)
mp->column = mp->screen_width - 1;
else
mp->column = 0;
mp->power = NRAND(3) + MINPOWER;
/* select a new region! */
Select(&mp->extreme_ul,&mp->extreme_lr,
mp->screen_width,mp->screen_height,
(int) mp->power,mp->reptop, mp->pow, mp->sin,
&mp->ul,&mp->lr);
} else if (mp->column >= mp->screen_width || mp->column < 0) {
/* delay a while */
if (mp->backwards)
mp->column--;
else
mp->column++;
mp->counter++;
return;
}
/* demrange is used to give some idea of scale */
demrange = mp->dem ? fabs(mp->ul.real - mp->lr.real) / 2 : 0;
for (h = 0; h < mp->screen_height; h++) {
unsigned int color;
int result;
/* c.real = 1.3 - (double) mp->column / mp->screen_width * 3.4; */
/* c.imag = -1.6 + (double) h / mp->screen_height * 3.2; */
c.real = mp->ul.real +
(mp->ul.real-mp->lr.real)*(((double)(mp->column))/mp->screen_width);
c.imag = mp->ul.imag +
(mp->ul.imag - mp->lr.imag)*(((double) h) / mp->screen_height);
result = reps(c, mp->power, mp->reptop, mp->binary, mp->interior, demrange, mp->pow, mp->sin);
if (result < 0 || result >= mp->reptop)
XSetForeground(display, mp->gc, MI_BLACK_PIXEL(mi));
else {
color=(unsigned int) ((MI_NPIXELS(mi) * (float)result) / mp->reptop);
XSetForeground(display, mp->gc, MI_PIXEL(mi, color));
}
/* we no longer have vertical symmetry - so we compute all points
** and don't draw with redundancy
*/
XDrawPoint(display, window, mp->gc, mp->column, h);
}
if (mp->backwards)
mp->column--;
else
mp->column++;
mp->counter++;
if (mp->counter > MI_CYCLES(mi)) {
init_mandelbrot(mi);
}
}
void
release_mandelbrot(ModeInfo * mi)
{
if (mandels != NULL) {
int screen;
for (screen = 0; screen < MI_NUM_SCREENS(mi); screen++)
free_mandelbrot(MI_DISPLAY(mi), &mandels[screen]);
free(mandels);
mandels = (mandelstruct *) NULL;
}
}
#endif /* MODE_mandelbrot */
|