1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file brw_vec4_tcs.cpp
*
* Tessellaton control shader specific code derived from the vec4_visitor class.
*/
#include "brw_nir.h"
#include "brw_vec4_tcs.h"
#include "brw_fs.h"
#include "dev/intel_debug.h"
namespace brw {
vec4_tcs_visitor::vec4_tcs_visitor(const struct brw_compiler *compiler,
void *log_data,
const struct brw_tcs_prog_key *key,
struct brw_tcs_prog_data *prog_data,
const nir_shader *nir,
void *mem_ctx,
int shader_time_index,
bool debug_enabled)
: vec4_visitor(compiler, log_data, &key->base.tex, &prog_data->base,
nir, mem_ctx, false, shader_time_index, debug_enabled),
key(key)
{
}
void
vec4_tcs_visitor::setup_payload()
{
int reg = 0;
/* The payload always contains important data in r0, which contains
* the URB handles that are passed on to the URB write at the end
* of the thread.
*/
reg++;
/* r1.0 - r4.7 may contain the input control point URB handles,
* which we use to pull vertex data.
*/
reg += 4;
/* Push constants may start at r5.0 */
reg = setup_uniforms(reg);
this->first_non_payload_grf = reg;
}
void
vec4_tcs_visitor::emit_prolog()
{
invocation_id = src_reg(this, glsl_type::uint_type);
emit(TCS_OPCODE_GET_INSTANCE_ID, dst_reg(invocation_id));
/* HS threads are dispatched with the dispatch mask set to 0xFF.
* If there are an odd number of output vertices, then the final
* HS instance dispatched will only have its bottom half doing real
* work, and so we need to disable the upper half:
*/
if (nir->info.tess.tcs_vertices_out % 2) {
emit(CMP(dst_null_d(), invocation_id,
brw_imm_ud(nir->info.tess.tcs_vertices_out),
BRW_CONDITIONAL_L));
/* Matching ENDIF is in emit_thread_end() */
emit(IF(BRW_PREDICATE_NORMAL));
}
}
void
vec4_tcs_visitor::emit_thread_end()
{
vec4_instruction *inst;
current_annotation = "thread end";
if (nir->info.tess.tcs_vertices_out % 2) {
emit(BRW_OPCODE_ENDIF);
}
if (devinfo->ver == 7) {
struct brw_tcs_prog_data *tcs_prog_data =
(struct brw_tcs_prog_data *) prog_data;
current_annotation = "release input vertices";
/* Synchronize all threads, so we know that no one is still
* using the input URB handles.
*/
if (tcs_prog_data->instances > 1) {
dst_reg header = dst_reg(this, glsl_type::uvec4_type);
emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header);
emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header));
}
/* Make thread 0 (invocations <1, 0>) release pairs of ICP handles.
* We want to compare the bottom half of invocation_id with 0, but
* use that truth value for the top half as well. Unfortunately,
* we don't have stride in the vec4 world, nor UV immediates in
* align16, so we need an opcode to get invocation_id<0,4,0>.
*/
set_condmod(BRW_CONDITIONAL_Z,
emit(TCS_OPCODE_SRC0_010_IS_ZERO, dst_null_d(),
invocation_id));
emit(IF(BRW_PREDICATE_NORMAL));
for (unsigned i = 0; i < key->input_vertices; i += 2) {
/* If we have an odd number of input vertices, the last will be
* unpaired. We don't want to use an interleaved URB write in
* that case.
*/
const bool is_unpaired = i == key->input_vertices - 1;
dst_reg header(this, glsl_type::uvec4_type);
emit(TCS_OPCODE_RELEASE_INPUT, header, brw_imm_ud(i),
brw_imm_ud(is_unpaired));
}
emit(BRW_OPCODE_ENDIF);
}
if (INTEL_DEBUG(DEBUG_SHADER_TIME))
emit_shader_time_end();
inst = emit(TCS_OPCODE_THREAD_END);
inst->base_mrf = 14;
inst->mlen = 2;
}
void
vec4_tcs_visitor::emit_input_urb_read(const dst_reg &dst,
const src_reg &vertex_index,
unsigned base_offset,
unsigned first_component,
const src_reg &indirect_offset)
{
vec4_instruction *inst;
dst_reg temp(this, glsl_type::ivec4_type);
temp.type = dst.type;
/* Set up the message header to reference the proper parts of the URB */
dst_reg header = dst_reg(this, glsl_type::uvec4_type);
inst = emit(TCS_OPCODE_SET_INPUT_URB_OFFSETS, header, vertex_index,
indirect_offset);
inst->force_writemask_all = true;
/* Read into a temporary, ignoring writemasking. */
inst = emit(VEC4_OPCODE_URB_READ, temp, src_reg(header));
inst->offset = base_offset;
inst->mlen = 1;
inst->base_mrf = -1;
/* Copy the temporary to the destination to deal with writemasking.
*
* Also attempt to deal with gl_PointSize being in the .w component.
*/
if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
emit(MOV(dst, swizzle(src_reg(temp), BRW_SWIZZLE_WWWW)));
} else {
src_reg src = src_reg(temp);
src.swizzle = BRW_SWZ_COMP_INPUT(first_component);
emit(MOV(dst, src));
}
}
void
vec4_tcs_visitor::emit_output_urb_read(const dst_reg &dst,
unsigned base_offset,
unsigned first_component,
const src_reg &indirect_offset)
{
vec4_instruction *inst;
/* Set up the message header to reference the proper parts of the URB */
dst_reg header = dst_reg(this, glsl_type::uvec4_type);
inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, header,
brw_imm_ud(dst.writemask << first_component), indirect_offset);
inst->force_writemask_all = true;
vec4_instruction *read = emit(VEC4_OPCODE_URB_READ, dst, src_reg(header));
read->offset = base_offset;
read->mlen = 1;
read->base_mrf = -1;
if (first_component) {
/* Read into a temporary and copy with a swizzle and writemask. */
read->dst = retype(dst_reg(this, glsl_type::ivec4_type), dst.type);
emit(MOV(dst, swizzle(src_reg(read->dst),
BRW_SWZ_COMP_INPUT(first_component))));
}
}
void
vec4_tcs_visitor::emit_urb_write(const src_reg &value,
unsigned writemask,
unsigned base_offset,
const src_reg &indirect_offset)
{
if (writemask == 0)
return;
src_reg message(this, glsl_type::uvec4_type, 2);
vec4_instruction *inst;
inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, dst_reg(message),
brw_imm_ud(writemask), indirect_offset);
inst->force_writemask_all = true;
inst = emit(MOV(byte_offset(dst_reg(retype(message, value.type)), REG_SIZE),
value));
inst->force_writemask_all = true;
inst = emit(TCS_OPCODE_URB_WRITE, dst_null_f(), message);
inst->offset = base_offset;
inst->mlen = 2;
inst->base_mrf = -1;
}
void
vec4_tcs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_invocation_id:
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD),
invocation_id));
break;
case nir_intrinsic_load_primitive_id:
emit(TCS_OPCODE_GET_PRIMITIVE_ID,
get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD));
break;
case nir_intrinsic_load_patch_vertices_in:
emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D),
brw_imm_d(key->input_vertices)));
break;
case nir_intrinsic_load_per_vertex_input: {
assert(nir_dest_bit_size(instr->dest) == 32);
src_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
src_reg vertex_index = retype(get_nir_src_imm(instr->src[0]),
BRW_REGISTER_TYPE_UD);
unsigned first_component = nir_intrinsic_component(instr);
dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
dst.writemask = brw_writemask_for_size(instr->num_components);
emit_input_urb_read(dst, vertex_index, imm_offset,
first_component, indirect_offset);
break;
}
case nir_intrinsic_load_input:
unreachable("nir_lower_io should use load_per_vertex_input intrinsics");
break;
case nir_intrinsic_load_output:
case nir_intrinsic_load_per_vertex_output: {
src_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
dst.writemask = brw_writemask_for_size(instr->num_components);
emit_output_urb_read(dst, imm_offset, nir_intrinsic_component(instr),
indirect_offset);
break;
}
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_vertex_output: {
assert(nir_src_bit_size(instr->src[0]) == 32);
src_reg value = get_nir_src(instr->src[0]);
unsigned mask = instr->const_index[1];
unsigned swiz = BRW_SWIZZLE_XYZW;
src_reg indirect_offset = get_indirect_offset(instr);
unsigned imm_offset = instr->const_index[0];
unsigned first_component = nir_intrinsic_component(instr);
if (first_component) {
assert(swiz == BRW_SWIZZLE_XYZW);
swiz = BRW_SWZ_COMP_OUTPUT(first_component);
mask = mask << first_component;
}
emit_urb_write(swizzle(value, swiz), mask,
imm_offset, indirect_offset);
break;
}
case nir_intrinsic_control_barrier: {
dst_reg header = dst_reg(this, glsl_type::uvec4_type);
emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header);
emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header));
break;
}
case nir_intrinsic_memory_barrier_tcs_patch:
break;
default:
vec4_visitor::nir_emit_intrinsic(instr);
}
}
/**
* Return the number of patches to accumulate before an 8_PATCH mode thread is
* launched. In cases with a large number of input control points and a large
* amount of VS outputs, the VS URB space needed to store an entire 8 patches
* worth of data can be prohibitive, so it can be beneficial to launch threads
* early.
*
* See the 3DSTATE_HS::Patch Count Threshold documentation for the recommended
* values. Note that 0 means to "disable" early dispatch, meaning to wait for
* a full 8 patches as normal.
*/
static int
get_patch_count_threshold(int input_control_points)
{
if (input_control_points <= 4)
return 0;
else if (input_control_points <= 6)
return 5;
else if (input_control_points <= 8)
return 4;
else if (input_control_points <= 10)
return 3;
else if (input_control_points <= 14)
return 2;
/* Return patch count 1 for PATCHLIST_15 - PATCHLIST_32 */
return 1;
}
} /* namespace brw */
extern "C" const unsigned *
brw_compile_tcs(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const struct brw_tcs_prog_key *key,
struct brw_tcs_prog_data *prog_data,
nir_shader *nir,
int shader_time_index,
struct brw_compile_stats *stats,
char **error_str)
{
const struct intel_device_info *devinfo = compiler->devinfo;
struct brw_vue_prog_data *vue_prog_data = &prog_data->base;
const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_CTRL];
const bool debug_enabled = INTEL_DEBUG(DEBUG_TCS);
const unsigned *assembly;
vue_prog_data->base.stage = MESA_SHADER_TESS_CTRL;
nir->info.outputs_written = key->outputs_written;
nir->info.patch_outputs_written = key->patch_outputs_written;
struct brw_vue_map input_vue_map;
brw_compute_vue_map(devinfo, &input_vue_map, nir->info.inputs_read,
nir->info.separate_shader, 1);
brw_compute_tess_vue_map(&vue_prog_data->vue_map,
nir->info.outputs_written,
nir->info.patch_outputs_written);
brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
brw_nir_lower_vue_inputs(nir, &input_vue_map);
brw_nir_lower_tcs_outputs(nir, &vue_prog_data->vue_map,
key->tes_primitive_mode);
if (key->quads_workaround)
brw_nir_apply_tcs_quads_workaround(nir);
brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled,
key->base.robust_buffer_access);
bool has_primitive_id =
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
prog_data->patch_count_threshold = brw::get_patch_count_threshold(key->input_vertices);
if (compiler->use_tcs_8_patch &&
nir->info.tess.tcs_vertices_out <= (devinfo->ver >= 12 ? 32 : 16) &&
2 + has_primitive_id + key->input_vertices <= (devinfo->ver >= 12 ? 63 : 31)) {
/* 3DSTATE_HS imposes two constraints on using 8_PATCH mode. First, the
* "Instance" field limits the number of output vertices to [1, 16] on
* gfx11 and below, or [1, 32] on gfx12 and above. Secondly, the
* "Dispatch GRF Start Register for URB Data" field is limited to [0,
* 31] - which imposes a limit on the input vertices.
*/
vue_prog_data->dispatch_mode = DISPATCH_MODE_TCS_8_PATCH;
prog_data->instances = nir->info.tess.tcs_vertices_out;
prog_data->include_primitive_id = has_primitive_id;
} else {
unsigned verts_per_thread = is_scalar ? 8 : 2;
vue_prog_data->dispatch_mode = DISPATCH_MODE_TCS_SINGLE_PATCH;
prog_data->instances =
DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, verts_per_thread);
}
/* Compute URB entry size. The maximum allowed URB entry size is 32k.
* That divides up as follows:
*
* 32 bytes for the patch header (tessellation factors)
* 480 bytes for per-patch varyings (a varying component is 4 bytes and
* gl_MaxTessPatchComponents = 120)
* 16384 bytes for per-vertex varyings (a varying component is 4 bytes,
* gl_MaxPatchVertices = 32 and
* gl_MaxTessControlOutputComponents = 128)
*
* 15808 bytes left for varying packing overhead
*/
const int num_per_patch_slots = vue_prog_data->vue_map.num_per_patch_slots;
const int num_per_vertex_slots = vue_prog_data->vue_map.num_per_vertex_slots;
unsigned output_size_bytes = 0;
/* Note that the patch header is counted in num_per_patch_slots. */
output_size_bytes += num_per_patch_slots * 16;
output_size_bytes += nir->info.tess.tcs_vertices_out *
num_per_vertex_slots * 16;
assert(output_size_bytes >= 1);
if (output_size_bytes > GFX7_MAX_HS_URB_ENTRY_SIZE_BYTES)
return NULL;
/* URB entry sizes are stored as a multiple of 64 bytes. */
vue_prog_data->urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
/* HS does not use the usual payload pushing from URB to GRFs,
* because we don't have enough registers for a full-size payload, and
* the hardware is broken on Haswell anyway.
*/
vue_prog_data->urb_read_length = 0;
if (unlikely(debug_enabled)) {
fprintf(stderr, "TCS Input ");
brw_print_vue_map(stderr, &input_vue_map, MESA_SHADER_TESS_CTRL);
fprintf(stderr, "TCS Output ");
brw_print_vue_map(stderr, &vue_prog_data->vue_map, MESA_SHADER_TESS_CTRL);
}
if (is_scalar) {
fs_visitor v(compiler, log_data, mem_ctx, &key->base,
&prog_data->base.base, nir, 8,
shader_time_index, debug_enabled);
if (!v.run_tcs()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, v.fail_msg);
return NULL;
}
prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
fs_generator g(compiler, log_data, mem_ctx,
&prog_data->base.base, false, MESA_SHADER_TESS_CTRL);
if (unlikely(debug_enabled)) {
g.enable_debug(ralloc_asprintf(mem_ctx,
"%s tessellation control shader %s",
nir->info.label ? nir->info.label
: "unnamed",
nir->info.name));
}
g.generate_code(v.cfg, 8, v.shader_stats,
v.performance_analysis.require(), stats);
g.add_const_data(nir->constant_data, nir->constant_data_size);
assembly = g.get_assembly();
} else {
brw::vec4_tcs_visitor v(compiler, log_data, key, prog_data,
nir, mem_ctx, shader_time_index,
debug_enabled);
if (!v.run()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, v.fail_msg);
return NULL;
}
if (INTEL_DEBUG(DEBUG_TCS))
v.dump_instructions();
assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
&prog_data->base, v.cfg,
v.performance_analysis.require(),
stats, debug_enabled);
}
return assembly;
}
|